1
|
Ramponi V, Richart L, Kovatcheva M, Stephan-Otto Attolini C, Capellades J, Lord AE, Yanes O, Ficz G, Serrano M. H4K20me3-Mediated Repression of Inflammatory Genes Is a Characteristic and Targetable Vulnerability of Persister Cancer Cells. Cancer Res 2025; 85:32-51. [PMID: 39476057 PMCID: PMC7617193 DOI: 10.1158/0008-5472.can-24-0529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/28/2024] [Accepted: 10/25/2024] [Indexed: 12/12/2024]
Abstract
Anticancer therapies can induce cellular senescence or drug-tolerant persistence, two types of proliferative arrest that differ in their stability. While senescence is highly stable, persister cells efficiently resume proliferation upon therapy termination, resulting in tumor relapse. Here, we used an ATP-competitive mTOR inhibitor to induce and characterize persistence in human cancer cells of various origins. Using this model and previously described models of senescence, we compared the same cancer cell lines under the two types of proliferative arrest. Persister and senescent cancer cells shared an expanded lysosomal compartment and hypersensitivity to BCL-XL inhibition. However, persister cells lacked other features of senescence, such as loss of lamin B1, senescence-associated β-galactosidase activity, upregulation of MHC-I, and an inflammatory and secretory phenotype (senescence-associated secretory phenotype or SASP). A genome-wide CRISPR/Cas9 screening for genes required for the survival of persister cells revealed that they are hypersensitive to the inhibition of one-carbon (1C) metabolism, which was validated by the pharmacologic inhibition of serine hydroxymethyltransferase, a key enzyme that feeds methyl groups from serine into 1C metabolism. Investigation into the relationship between 1C metabolism and the epigenetic regulation of transcription uncovered the presence of the repressive heterochromatic mark H4K20me3 at the promoters of SASP and IFN response genes in persister cells, whereas it was absent in senescent cells. Moreover, persister cells overexpressed the H4K20 methyltransferases KMT5B/C, and their downregulation unleashed inflammatory programs and compromised the survival of persister cells. In summary, this study identifies distinctive features and actionable vulnerabilities of persister cancer cells and provides mechanistic insight into their low inflammatory activity. Significance: Cell persistence and senescence are distinct states of proliferative arrest induced by cancer therapy, with persister cells being characterized by the silencing of inflammatory genes through the heterochromatic mark H4K20me3. See related commentary by Schmitt, p. 7.
Collapse
Affiliation(s)
- Valentina Ramponi
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Laia Richart
- Altos Labs, Cambridge Institute of Science, Granta Park, Cambridge, United Kingdom
| | - Marta Kovatcheva
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jordi Capellades
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Alice E. Lord
- Centre for Haemato-Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, United Kingdom
| | - Oscar Yanes
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Electronic Engineering, Universitat Rovira i Virgili, IISPV, Tarragona, Spain
| | - Gabriella Ficz
- Centre for Haemato-Oncology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, United Kingdom
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Altos Labs, Cambridge Institute of Science, Granta Park, Cambridge, United Kingdom
| |
Collapse
|
2
|
Sase M, Sato T, Sato H, Miya F, Zhang S, Haeno H, Kajita M, Noguchi T, Mori Y, Ohteki T. Comparative analysis of tongue cancer organoids among patients identifies the heritable nature of minimal residual disease. Dev Cell 2024:S1534-5807(24)00607-5. [PMID: 39504967 DOI: 10.1016/j.devcel.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/13/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024]
Abstract
The relapse of tongue cancer (TC) after chemotherapy is caused by minimal residual disease (MRD), which is a few remaining cancer cells after chemotherapy. To understand the mechanism of MRD in TC, we created a library of TC organoids (TCOs) from 28 untreated TC patients at diverse ages and cancer stages. These TCOs reproduced the primary TC tissues both in vitro and in a xenograft model, and several TCO lines survived after cisplatin treatment (chemo-resistant TCOs). Of note, the chemo-resistant TCOs showed "heritable" embryonic diapause-like features before treatment and activation of the autophagy and cholesterol biosynthetic pathways. Importantly, inhibiting these pathways with specific inhibitors converted the chemo-resistant TCOs into chemo-sensitive TCOs. Conversely, autophagy activation with mTOR inhibitors conferred chemo-resistance on the chemo-sensitive TCOs. This unique model provides insights into the mechanism of MRD formation in TCs, leading to effective therapeutic approaches to reduce the recurrence of TC.
Collapse
Affiliation(s)
- Miwako Sase
- Department of Biodefense Research, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo (formerly Medical Research Institute, Tokyo Medical and Dental University [TMDU]), Tokyo 113-8510, Japan; Department of Dentistry, Oral, and Maxillofacial Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Taku Sato
- Department of Biodefense Research, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo (formerly Medical Research Institute, Tokyo Medical and Dental University [TMDU]), Tokyo 113-8510, Japan; Department of Biochemistry and Molecular Biology, Nippon Medical School Graduate School of Medicine, Tokyo 113-8603, Japan
| | - Hajime Sato
- Department of Biodefense Research, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo (formerly Medical Research Institute, Tokyo Medical and Dental University [TMDU]), Tokyo 113-8510, Japan; Department of Dentistry, Oral, and Maxillofacial Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; Center for Medical Genetics, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shicheng Zhang
- Research Institute for Biomedical Science, Tokyo University of Science, Chiba 278-0022, Japan
| | - Hiroshi Haeno
- Research Institute for Biomedical Science, Tokyo University of Science, Chiba 278-0022, Japan
| | - Mihoko Kajita
- Department of Biodefense Research, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo (formerly Medical Research Institute, Tokyo Medical and Dental University [TMDU]), Tokyo 113-8510, Japan
| | - Tadahide Noguchi
- Department of Dentistry, Oral, and Maxillofacial Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Yoshiyuki Mori
- Department of Dentistry, Oral, and Maxillofacial Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Toshiaki Ohteki
- Department of Biodefense Research, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo (formerly Medical Research Institute, Tokyo Medical and Dental University [TMDU]), Tokyo 113-8510, Japan.
| |
Collapse
|
3
|
Zhang WL, Fan HY, Chen BJ, Wang HF, Pang X, Li M, Liang XH, Tang YL. Cancer-associated fibroblasts-derived CXCL1 activates DEC2-mediated dormancy in oral squamous cell carcinoma. Heliyon 2024; 10:e39133. [PMID: 39469703 PMCID: PMC11513488 DOI: 10.1016/j.heliyon.2024.e39133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 09/03/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are known to play an important role in cancer progression, but their effects on tumor cell dormancy and the underlying mechanisms remain to be explored. Here, we aimed to dissect the intercellular communication between CAFs and oral squamous cell carcinoma (OSCC) cells under cellular dormancy. In this study, we investigated 61 OSCC patients and found that low expression of Differentiated Embryonic Chondrocyte gene 2 (DEC2) was closely associated with tumor recurrence, cisplatin chemotherapy administration, and infiltration of CAFs. Overexpression of DEC2 promoted the invasion and migration ability of OSCC cells but inhibited their proliferation and glucose metabolism, and characterized them as dormant and cisplatin-resistant cells. C-X-C motif ligand 1 (CXCL1) from CAFs was found to down-regulate DEC2 expression in OSCC cells, ultimately awakening dormant cells and leading to tumor recurrence, which was validated in vitro and in vivo. In conclusion, CAFs-derived CXCL1 downregulated DEC2 and "interrupted" DEC2-mediated OSCC cell dormancy, which may be a mechanism by which CAFs modulate OSCC cell dormancy and contribute to the development of new therapies for OSCC.
Collapse
Affiliation(s)
- Wei-long Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hua-yang Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bin-jun Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hao-fan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xin Pang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xin-hua Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya-ling Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
4
|
Bret C, Desmots-Loyer F, Moreaux J, Fest T. BHLHE41, a transcriptional repressor involved in physiological processes and tumor development. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00973-3. [PMID: 39254779 DOI: 10.1007/s13402-024-00973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 09/11/2024] Open
Abstract
BHLHE41 is a nuclear transcriptional repressor that belongs to the basic helix-loop-helix protein superfamily. BHLHE41 expression tends to be restricted to specific tissues and is regulated by environmental cues and biological events. BHLHE41 homodimerizes or heterodimerizes with various partners, influencing its transcription factor function. BHLHE41 is involved in the regulation of many physiological processes implicated in tissue/organ homeostasis, such as myogenesis, adipogenesis, circadian rhythms and DNA repair. At cellular level, BHLHE41 is involved in the regulation of mesenchymal stem cell properties, tissue-specific macrophage functions and lymphoid lineage physiology. In several cancer types, BHLHE41 modulates the expression of different transcriptional programs influencing cell cycle control, apoptosis, invasiveness, epithelial to mesenchymal transition and hypoxia response in the tumor environment. Depending on the cancer cell type, BHLHE41 can act as a tumor suppressor or an oncogene, and could be a target for innovative therapies. This review summarizes the available knowledge on BHLHE41 structure, biological functions, regulation and potential partners, as well as its role in physiological processes, and its implication in major cancer steps.
Collapse
Affiliation(s)
- Caroline Bret
- Department of Biological Hematology, CHU Montpellier, Montpellier, 34295, France.
- Faculty of Medicine of Montpellier and Nîmes, University of Montpellier, Montpellier, 34090, France.
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, 34396, France.
| | - Fabienne Desmots-Loyer
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.
- Pôle de Biologie, Rennes University Medical Center, Rennes, France.
| | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, 34295, France.
- Faculty of Medicine of Montpellier and Nîmes, University of Montpellier, Montpellier, 34090, France.
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, 34396, France.
- Institut Universitaire de France, Paris, France.
| | - Thierry Fest
- UMR 1236, University of Rennes 1, INSERM, Établissement Français du Sang Bretagne, Rennes, France.
- Pôle de Biologie, Rennes University Medical Center, Rennes, France.
| |
Collapse
|
5
|
Zhang TQ, Lv QY, Jin WL. The cellular-centered view of hypoxia tumor microenvironment: Molecular mechanisms and therapeutic interventions. Biochim Biophys Acta Rev Cancer 2024; 1879:189137. [PMID: 38880161 DOI: 10.1016/j.bbcan.2024.189137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Cancer is a profoundly dynamic, heterogeneous and aggressive systemic ailment, with a coordinated evolution of various types of tumor niches. Hypoxia plays an indispensable role in the tumor micro-ecosystem, drastically enhancing the plasticity of cancer cells, fibroblasts and immune cells and orchestrating intercellular communication. Hypoxia-induced signals, particularly hypoxia-inducible factor-1α (HIF-1α), drive the reprogramming of genetic, transcriptional, and proteomic profiles. This leads to a spectrum of interconnected processes, including augmented survival of cancer cells, evasion of immune surveillance, metabolic reprogramming, remodeling of the extracellular matrix, and the development of resistance to conventional therapeutic modalities like radiotherapy and chemotherapy. Here, we summarize the latest research on the multifaceted effects of hypoxia, where a multitude of cellular and non-cellular elements crosstalk with each other and co-evolve in a synergistic manner. Additionally, we investigate therapeutic approaches targeting hypoxic niche, encompassing hypoxia-activated prodrugs, HIF inhibitors, nanomedicines, and combination therapies. Finally, we discuss some of the issues to be addressed and highlight the potential of emerging technologies in the treatment of cancer.
Collapse
Affiliation(s)
- Tian-Qi Zhang
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; The Second Hospital of Jilin University, Changchun 130041, China
| | - Qian-Yu Lv
- The Second Hospital of Jilin University, Changchun 130041, China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
6
|
He J, Qiu Z, Fan J, Xie X, Sheng Q, Sui X. Drug tolerant persister cell plasticity in cancer: A revolutionary strategy for more effective anticancer therapies. Signal Transduct Target Ther 2024; 9:209. [PMID: 39138145 PMCID: PMC11322379 DOI: 10.1038/s41392-024-01891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 08/15/2024] Open
Abstract
Non-genetic mechanisms have recently emerged as important drivers of anticancer drug resistance. Among these, the drug tolerant persister (DTP) cell phenotype is attracting more and more attention and giving a predominant non-genetic role in cancer therapy resistance. The DTP phenotype is characterized by a quiescent or slow-cell-cycle reversible state of the cancer cell subpopulation and inert specialization to stimuli, which tolerates anticancer drug exposure to some extent through the interaction of multiple underlying mechanisms and recovering growth and proliferation after drug withdrawal, ultimately leading to treatment resistance and cancer recurrence. Therefore, targeting DTP cells is anticipated to provide new treatment opportunities for cancer patients, although our current knowledge of these DTP cells in treatment resistance remains limited. In this review, we provide a comprehensive overview of the formation characteristics and underlying drug tolerant mechanisms of DTP cells, investigate the potential drugs for DTP (including preclinical drugs, novel use for old drugs, and natural products) based on different medicine models, and discuss the necessity and feasibility of anti-DTP therapy, related application forms, and future issues that will need to be addressed to advance this emerging field towards clinical applications. Nonetheless, understanding the novel functions of DTP cells may enable us to develop new more effective anticancer therapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Jun He
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zejing Qiu
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jingjing Fan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
7
|
Tuerxun M, Zheng X, Xu J, Yang Q, Yuan T, Zhang C, Zhou S. High expression of DEC2 distinguishes chondroblastic osteosarcoma and promotes tumour growth by activating the VEGFC/VEGFR2 signalling pathway. J Cell Mol Med 2024; 28:e18462. [PMID: 38847478 PMCID: PMC11157672 DOI: 10.1111/jcmm.18462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/10/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumour in children and young adults. Account for 80% of all OS cases, conventional OS are characterized by the presence of osteoblastic, chondroblastic and fibroblastic cell types. Despite this heterogeneity, therapeutic treatment and prognosis of OS are essentially the same for all OS subtypes. Here, we report that DEC2, a transcriptional repressor, is expressed at higher levels in chondroblastic OS compared with osteoblastic OS. This difference suggests that DEC2 is disproportionately involved in the progression of chondroblastic OS, and thus, DEC2 may represent a possible molecular target for treating this type of OS. In the human chondroblastic-like OS cell line MNNG/HOS, we found that overexpression of DEC2 affects the proliferation of the cells by activating the VEGFC/VEGFR2 signalling pathway. Enhanced expression of DEC2 increased VEGFR2 expression, as well as increased the phosphorylation levels at sites Y951 and Y1175 of VEGFR2. On the one hand, activation of VEGFR2Y1175 enhanced cell proliferation through VEGFR2Y1175-PLCγ1-PKC-SPHK-MEK-ERK signalling. On the other hand, activation of VEGFR2Y951 decreased mitochondria-dependent apoptosis rate through VEGFR2Y951-VARP-PI3K-AKT signalling. Activation of these two signalling pathways resulted in enhanced progression of chondroblastic OS. In conclusion, DEC2 plays a pivotal role in cell proliferation and apoptosis-resistance in chondroblastic OS via the VEGFC/VEGFR2 signalling pathway. These findings lay the groundwork for developing focused treatments that target specific types of OS.
Collapse
Affiliation(s)
- Maimaitiaili Tuerxun
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xu Zheng
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jun Xu
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Quanjun Yang
- Department of PharmacyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ting Yuan
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Changqing Zhang
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shumin Zhou
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
8
|
Chi Z, Wang Q, Tong L, Qiu J, Yang F, Guo Q, Li W, Zheng J, Chen Z. Silencing geranylgeranyltransferase I inhibits the migration and invasion of salivary adenoid cystic carcinoma through RhoA/ROCK1/MLC signaling and suppresses proliferation through cell cycle regulation. Cell Biol Int 2024; 48:174-189. [PMID: 37853939 DOI: 10.1002/cbin.12096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/05/2023] [Accepted: 09/30/2023] [Indexed: 10/20/2023]
Abstract
Geranylgeranyltransferase type I (GGTase-I) significantly affects Rho proteins, such that the malignant progression of several cancers may be induced. Nevertheless, the effect and underlying mechanism of GGTase-I in the malignant progression of salivary adenoid cystic carcinoma (SACC) remain unclear. This study primarily aimed to investigate the role and mechanism of GGTase-I in mediating the malignant progression of SACC. The level of GGTase-I gene in cells was stably knocked down by short hairpin RNA-EGFP-lentivirus. The effects of GGTase-I silencing on the migration, invasion, and spread of cells were examined, the messenger RNA levels of GGTase-I and RhoA genes of SACC cells after GGTase-I knockdown were determined, and the protein levels of RhoA and RhoA membrane of SACC cells were analyzed. Moreover, the potential underlying mechanism of silencing GGTase-I on the above-mentioned aspects in SACC cells was assessed by examining the protein expression of ROCK1, MLC, p-MLC, E-cadherin, Vimentin, MMP2, and MMP9. Furthermore, the underlying mechanism of SACC cells proliferation was investigated through the analysis of the expression of cyclinD1, MYC, E2F1, and p21CIP1/WAF1 . Besides, the change of RhoA level in SACC tissues compared with normal paracancer tissues was demonstrated through quantitative reverse-transcription polymerase chain reaction and western blot experiments. Next, the effect after GGTase-I silencing was assessed through the subcutaneous tumorigenicity assay. As indicated by the result of this study, the silencing of GGTase-I significantly reduced the malignant progression of tumors in vivo while decreasing the migration, invasion, and proliferation of SACC cells and RhoA membrane, Vimentin, ROCK1, p-MLC, MMP2, MMP9, MYC, E2F1, and CyclinD1 expression. However, the protein expression of E-cadherin and p21CIP1/WAF1 was notably upregulated. Subsequently, no significant transform of RhoA and MLC proteins was identified. Furthermore, RhoA expression in SACC tissues was significantly higher than that in paracancerous tissues. As revealed by the results of this study, GGTase-I shows a correlation with the proliferation of SACC through the regulation of cell cycle and may take on vital significance in the migration and invasion of SACC by regulating RhoA/ROCK1/MLC signaling pathway. GGTase-I is expected to serve as a novel exploration site of SACC.
Collapse
Affiliation(s)
- Zengpeng Chi
- Department of Stomatology, Qingdao West Coast New District Central Hospital, Qingdao, China
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Qimin Wang
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Lei Tong
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Jing Qiu
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Fang Yang
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Qingyuan Guo
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Wenjian Li
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Jiawei Zheng
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenggang Chen
- Department of Stomatology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| |
Collapse
|
9
|
Dai L, Xian H, Wang H, Li M, Zhang M, Liang XH, Tang YL. Hypoxia induced cell dormancy of salivary adenoid cystic carcinoma through miR-922/DEC2 axis. Transl Oncol 2024; 40:101868. [PMID: 38141378 PMCID: PMC10751830 DOI: 10.1016/j.tranon.2023.101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Hypoxia has been shown to induce cancer cells to become dormant meanwhile these cells inclined to disseminate and eventually cause metastasis. However, the molecular mechanism is still elusive. The purpose is to explore whether dormancy-associated microRNAs (DmiRs) get involved in hypoxia-induced cell dormancy of salivary adenoid cystic carcinoma (SACC). MATERIAL AND METHODS This study performed multi-perspective investigation of the biological effects of miR-922/DEC2 on SACC based on clinical samples, 2D and 3D in vitro model and nude mice in vivo model, based on our previous study of overexpression of DEC2 inducing SACC cellular dormancy. RESULTS According to the existing microRNA array of SACC tissue, we found that miR-922 was upregulated in SACC tissue and was inversely correlated with DEC2, suggesting that miR-922 might participate in the activation of SACC cell dormancy as a DmiR. Then, we found miR-922 low SACC cells exhibited cell dormancy and a low level of fatty acid oxidation with propensity for lipid droplets accumulation through DEC2. Moreover, HIF1a downregulated the level of miR-922 to induce SACC cell dormancy. In addition, in xenografts of nude mice the inhibition of miR-922 attenuated the growth of primary tumor and the lung metastasis of SACC. CONCLUSIONS miR-922/DEC2 axis was necessary to hypoxia-induced cell dormancy and played an important role in the lipid metabolism reprogramming of SACC.
Collapse
Affiliation(s)
- Li Dai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Hongchun Xian
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haofan Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mao Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Abstract
The genomics and pathways governing metastatic dormancy are critically important drivers of long-term patient survival given the considerable portion of cancers that recur aggressively months to years after initial treatments. Our understanding of dormancy has expanded greatly in the last two decades, with studies elucidating that the dormant state is regulated by multiple genes, microenvironmental (ME) interactions, and immune components. These forces are exerted through mechanisms that are intrinsic to the tumor cell, manifested through cross-talk between tumor and ME cells including those from the immune system, and regulated by angiogenic processes in the nascent micrometastatic niche. The development of new in vivo and 3D ME models, as well as enhancements to decades-old tumor cell pedigree models that span the development of metastatic dormancy to aggressive growth, has helped fuel what arguably is one of the least understood areas of cancer biology that nonetheless contributes immensely to patient mortality. The current review focuses on the genes and molecular pathways that regulate dormancy via tumor-intrinsic and ME cells, and how groups have envisioned harnessing these therapeutically to benefit patient survival.
Collapse
|