1
|
Sat-Muñoz D, Balderas-Peña LMA, Gómez-Sánchez E, Martínez-Herrera BE, Trujillo-Hernández B, Quiroga-Morales LA, Salazar-Páramo M, Dávalos-Rodríguez IP, Nuño-Guzmán CM, Velázquez-Flores MC, Ochoa-Plascencia MR, Muciño-Hernández MI, Isiordia-Espinoza MA, Mireles-Ramírez MA, Hernández-Salazar E. Onco-Ontogeny of Squamous Cell Cancer of the First Pharyngeal Arch Derivatives. Int J Mol Sci 2024; 25:9979. [PMID: 39337467 PMCID: PMC11432412 DOI: 10.3390/ijms25189979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Head and neck squamous cell carcinoma (H&NSCC) is an anatomic, biological, and genetic complex disease. It involves more than 1000 genes implied in its oncogenesis; for this review, we limit our search and description to the genes implied in the onco-ontogeny of the derivates from the first pharyngeal arch during embryo development. They can be grouped as transcription factors and signaling molecules (that act as growth factors that bind to receptors). Finally, we propose the term embryo-oncogenesis to refer to the activation, reactivation, and use of the genes involved in the embryo's development during the oncogenesis or malignant tumor invasion and metastasis events as part of an onco-ontogenic inverse process.
Collapse
Affiliation(s)
- Daniel Sat-Muñoz
- Departamento de Morfología, Centro Universitario de Ciencis de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Unidad Médica de Alta Especialidad (UMAE), Departamento Clínico de Cirugía Oncológica, Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Comité de Tumores de Cabeza y Cuello, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Luz-Ma-Adriana Balderas-Peña
- Departamento de Morfología, Centro Universitario de Ciencis de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Comité de Tumores de Cabeza y Cuello, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Unidad de Investigación Biomédica 02, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Eduardo Gómez-Sánchez
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Brenda-Eugenia Martínez-Herrera
- Departamento de Nutrición y Dietética, Hospital General de Zona #1, Instituto Mexicano del Seguro Social, OOAD Aguascalientes, Boulevard José María Chavez #1202, Fracc, Lindavista, Aguascalientes 20270, Mexico
| | | | - Luis-Aarón Quiroga-Morales
- Unidad Académica de Ciencias de la Salud, Clínica de Rehabilitación y Alto Rendimiento ESPORTIVA, Universidad Autónoma de Guadalajara, Zapopan 45129, Mexico
| | - Mario Salazar-Páramo
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Academia de Inmunología, Guadalajara 44340, Mexico
| | - Ingrid-Patricia Dávalos-Rodríguez
- Departamento de Biología Molecular y Genómica, División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social. Guadalajara 44340, Mexico
| | - Carlos M Nuño-Guzmán
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Departamento Clínico de Cirugía General, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Martha-Cecilia Velázquez-Flores
- Departamento de Morfología, Centro Universitario de Ciencis de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Unidad Médica de Alta Especialidad (UMAE), Departamento Clínico de Anestesiología, División de Cirugía, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Miguel-Ricardo Ochoa-Plascencia
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - María-Ivette Muciño-Hernández
- Cuerpo Académico UDG-CA-874, Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Mario-Alberto Isiordia-Espinoza
- Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Instituto de Investigación en Ciencias Médicas, Cuerpo Académico Terapéutica y Biología Molecular (UDG-CA-973), Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico
| | - Mario-Alberto Mireles-Ramírez
- División de Investigación en Salud, UMAE, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Eduardo Hernández-Salazar
- Departamento de Admisión Médica Continua, UMAE Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| |
Collapse
|
2
|
Sun Y, Wang HY, Liu B, Yue B, Liu Q, Liu Y, Rosa IF, Doretto LB, Han S, Lin L, Gong X, Shao C. CRISPR/dCas9-Mediated DNA Methylation Editing on emx2 in Chinese Tongue Sole ( Cynoglossus semilaevis) Testis Cells. Int J Mol Sci 2024; 25:7637. [PMID: 39062879 PMCID: PMC11277268 DOI: 10.3390/ijms25147637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
DNA methylation is a key epigenetic mechanism orchestrating gene expression networks in many biological processes. Nonetheless, studying the role of specific gene methylation events in fish faces challenges. In this study, we validate the regulation of DNA methylation on empty spiracles homeobox 2 (emx2) expression with decitabine treatment in Chinese tongue sole testis cells. We used the emx2 gene as the target gene and developed a new DNA methylation editing system by fusing dnmt3a with catalytic dead Cas9 (dCas9) and demonstrated its ability for sequence-specific DNA methylation editing. Results revealed that utilizing dCas9-dnmt3a to target emx2 promoter region led to increased DNA methylation levels and decreased emx2 expression in Chinese tongue sole testis cells. More importantly, the DNA methylation editing significantly suppressed the expression of MYC proto-oncogene, bHLH transcription factor (myc), one target gene of emx2. Furthermore, we assessed the off-target effects of dCas9-dnmt3a and confirmed no significant impact on the predicted off-target gene expression. Taken together, we developed the first DNA methylation editing system in marine species and demonstrated its effective editing ability in Chinese tongue sole cells. This provides a new strategy for both epigenetic research and molecular breeding of marine species.
Collapse
Affiliation(s)
- Yanxu Sun
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (B.Y.); (X.G.)
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.-Y.W.); (B.L.); (Q.L.); (Y.L.); (L.B.D.); (S.H.); (L.L.)
| | - Hong-Yan Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.-Y.W.); (B.L.); (Q.L.); (Y.L.); (L.B.D.); (S.H.); (L.L.)
| | - Binghua Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.-Y.W.); (B.L.); (Q.L.); (Y.L.); (L.B.D.); (S.H.); (L.L.)
| | - Bowen Yue
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (B.Y.); (X.G.)
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.-Y.W.); (B.L.); (Q.L.); (Y.L.); (L.B.D.); (S.H.); (L.L.)
| | - Qian Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.-Y.W.); (B.L.); (Q.L.); (Y.L.); (L.B.D.); (S.H.); (L.L.)
| | - Yuyan Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.-Y.W.); (B.L.); (Q.L.); (Y.L.); (L.B.D.); (S.H.); (L.L.)
| | - Ivana F. Rosa
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 01049-010, Brazil;
| | - Lucas B. Doretto
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.-Y.W.); (B.L.); (Q.L.); (Y.L.); (L.B.D.); (S.H.); (L.L.)
| | - Shenglei Han
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.-Y.W.); (B.L.); (Q.L.); (Y.L.); (L.B.D.); (S.H.); (L.L.)
| | - Lei Lin
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.-Y.W.); (B.L.); (Q.L.); (Y.L.); (L.B.D.); (S.H.); (L.L.)
| | - Xiaoling Gong
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (B.Y.); (X.G.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Changwei Shao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (H.-Y.W.); (B.L.); (Q.L.); (Y.L.); (L.B.D.); (S.H.); (L.L.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Zhou X, Dong S, Zhou Y, He Z, Zhang Z, Liao L, Zou B, Zheng X, Peng K, Duan X. EMX2 inhibits clear cell renal cell carcinoma progress via modulating Akt/FOXO3a pathway. Mol Carcinog 2024; 63:951-961. [PMID: 38362840 DOI: 10.1002/mc.23700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Empty spiracles homeobox 2 (EMX2) is initially identified as a key transcription factor that plays an essential role in the regulation of neuronal development and some brain disorders. Recently, several studies emphasized that EMX2 could as a tumor suppressor, but its role in human clear cell renal cell carcinoma (ccRCC) remains unclear. In the present study, we investigated the role and underlying mechanism of EMX2 in the regulation of ccRCC progress. Our results demonstrated that EMX2 expression was markedly decreased in ccRCC tissues and cell lines, and low EMX2 expression predicted the poor prognosis of ccRCC patients. In addition, forced expression of EMX2 significantly inhibited the cell growth, migration, and invasion in vitro, as well as ccRCC tumor growth in nude mice, via, at least in part, regulating Akt/FOXO3a pathway. In detail, EMX2 could attenuate the phosphorylation levels of Akt and FOXO3a, and increase FOXO3a expression without affecting total Akt expression in vivo and in vitro. Meanwhile, shRNA-mediated knockdown of FOXO3a expression could obviously attenuate the effects of EMX2 on cell growth, migration, invasion, and tumor growth. Furthermore, EMX2 could significantly attenuate the interaction between Akt and FOXO3a. Taken together, our results demonstrated that EMX2 could inhibit ccRCC progress through, at least in part, modulating Akt/FOXO3a signaling pathway, thus representing a novel role and underlying mechanism of EMX2 in the regulation of ccRCC progress.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Urology, Guangzhou, China
- Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China
- Guangzhou Institute of Urology, Guangzhou, China
| | - Sicheng Dong
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Urology, Guangzhou, China
- Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China
- Guangzhou Institute of Urology, Guangzhou, China
| | - Yuhao Zhou
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Urology, Guangzhou, China
- Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China
- Guangzhou Institute of Urology, Guangzhou, China
| | - Zhiqing He
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Urology, Guangzhou, China
- Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China
- Guangzhou Institute of Urology, Guangzhou, China
| | - Zhixiong Zhang
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Urology, Guangzhou, China
- Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China
- Guangzhou Institute of Urology, Guangzhou, China
| | - Liqiong Liao
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Urology, Guangzhou, China
- Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China
- Guangzhou Institute of Urology, Guangzhou, China
| | - Bangyu Zou
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaopeng Zheng
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Urology, Guangzhou, China
- Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China
- Guangzhou Institute of Urology, Guangzhou, China
| | - Kaoqing Peng
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Urology, Guangzhou, China
- Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China
- Guangzhou Institute of Urology, Guangzhou, China
| | - Xiaolu Duan
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Urology, Guangzhou, China
- Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China
- Guangzhou Institute of Urology, Guangzhou, China
| |
Collapse
|
4
|
Zhang J, Gao Q, Hou S, Chi X, Zheng M, Zhang Q, Shan H, Zhang X, Kang C. Role of PAX6, TRPA1, BCL11B, MCOLN2, CUX1, EMX1 in colorectal cancer and osteosarcoma. Medicine (Baltimore) 2024; 103:e37056. [PMID: 38306561 PMCID: PMC10843516 DOI: 10.1097/md.0000000000037056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024] Open
Abstract
Colorectal cancer is a cancer that arises from the abnormal growth of cells in the colon or rectum. Osteosarcoma (OS) is a common primary bone tumor with high degree of malignancy. The configuration files for colorectal cancer dataset GSE142279 and OS datasets GSE197158 and GSE206448 were downloaded from Gene Expression Omnibus database using the platforms GPL20795, GPL20301, and GPL24676. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis (WGCNA) was performed. Construction and analysis of protein-protein interactions (PPI) network. Functional enrichment analysis, gene set enrichment analysis (GSEA) were performed. A heat map of gene expression was drawn. The Comparative Toxicogenomics Database (CTD) was used to find the diseases most associated with the core genes. TargetScan was used to screen miRNAs regulating DEGs. According to the Gene Ontology (GO) analysis, DEGs are mainly enriched in acetylcholine binding receptor activity involved in Wnt signaling pathway, cell polarity pathway, PI3K-Akt signaling pathway, receptor regulator activity, cytokine-cytokine receptor interaction, transcriptional misregulation in cancer, and inflammation-mediated regulation of tryptophan transport. In the Metascape enrichment analysis, GO enrichment items related to the regulation of Wnt signaling pathway, regulation of muscle system process, and regulation of actin filament-based movement. Eight core genes (CUX1, NES, BCL11B, PAX6, EMX1, MCOLN2, TRPA1, TRPC4) were identified. CTD showed that 4 genes (CUX1, EMX1, TRPA1, BCL11B) were associated with colorectal neoplasms, colorectal tumors, colonic diseases, multiple myeloma, OS, and inflammation. PAX6, TRPA1, BCL11B, MCOLN2, CUX1, and EMX1 are highly expressed in colorectal cancer and OS, and the higher the expression level, the worse the prognosis.
Collapse
Affiliation(s)
- Jie Zhang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Qiang Gao
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Shiyang Hou
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Xiaoqian Chi
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Meiliang Zheng
- Department of Orthopedics, The Second Central Hospital of Baoding, Zhuozhou City, Hebei Province, P.R. China
| | - Qijun Zhang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Haifeng Shan
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Xiaoyu Zhang
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Chang’an District, Shijiazhuang City, Hebei Province, P.R. China
| | - Chunbo Kang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| |
Collapse
|
5
|
Wen DS, Huang LC, Bu XY, He MK, Lai ZC, Du ZF, Huang YX, Kan A, Shi M. DNA methylation-activated full-length EMX1 facilitates metastasis through EMX1-EGFR-ERK axis in hepatocellular carcinoma. Cell Death Dis 2023; 14:769. [PMID: 38007497 PMCID: PMC10676392 DOI: 10.1038/s41419-023-06293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Altered DNA methylation is a crucial epigenetic event in hepatocellular carcinoma (HCC) development and progression. Through methylation-transcriptomic analysis, we identified a set of sixty potential DNA methylation-based epidriver genes. In this set of genes, we focused on the hypermethylation of EMX1, which is frequently observed in hepatobiliary tumors. Despite of its frequent occurrence, the function of EMX1 remains largely unknown. By utilizing bisulfite-next-generation sequencing, we have detected EMX1 DNA hypermethylation on the gene body, which is positively correlated with EMX1 mRNA expression. Further analysis revealed that EMX1 mRNA terminal exon splicing in HCC generated two protein isoforms: EMX1 full length (EMX1-FL) and alternative terminal exon splicing isoform (EMX1-X1). Cellular functional assays demonstrated that gain-of-function EMX1-FL, but not EMX1-X1, induced HCC cells migration and invasion while silencing EMX1-FL inhibited HCC cells motility. This result was further validated by in vivo tumor metastasis models. Mechanistically, EMX1-FL bound to EGFR promoter, promoting EGFR transcription and activating EGFR-ERK signaling to trigger tumor metastasis. Therefore, EGFR may be a potential therapeutic target for EMX1-high expression HCC. Our work illuminated the crucial role of gene body hypermethylation-activated EMX1-FL in promoting tumorigenesis and metastasis in HCC. These findings pave the way for targeting the EMX1-EGFR axis in HCC tumorigenicity and metastasis.
Collapse
Affiliation(s)
- Dong-Sheng Wen
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China
| | - Li-Chang Huang
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China
| | - Xiao-Yun Bu
- Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, P. R. China
| | - Min-Ke He
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China
| | - Zhi-Cheng Lai
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China
| | - Ze-Feng Du
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China
| | - Ye-Xing Huang
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China
| | - Anna Kan
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China.
| | - Ming Shi
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, P. R. China.
| |
Collapse
|
6
|
Deng C, Ye C, Liao X, Zhou F, Shi Y, Zhong H, Huang J. KMT2A maintains stemness of gastric cancer cells through regulating Wnt/β-catenin signaling-activated transcriptional factor KLF11. Open Med (Wars) 2023; 18:20230764. [PMID: 38025523 PMCID: PMC10655684 DOI: 10.1515/med-2023-0764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 12/01/2023] Open
Abstract
The molecular mechanisms of epigenetic regulation in gastric cancer development are not yet well established. In this study, we demonstrated that KMT2A was highly expressed in gastric cancer and associated with poor outcomes of patients and revealed that KMT2A was significantly associated with stemness and increased nuclear β-catenin in gastric cancer. Mechanistically, KMT2A activated the translocation of β-catenin into the nucleus of gastric cancer cells, and then, β-catenin served as a coactivator of KLF11, which promoted the expression of specific gastric cancer stemness-related molecules, including SOX2 and FOXM1. Together, KMT2A is an important epigenetic regulator of gastric cancer stemness, which provides a novel insight to the potential application of targeting against KMT2A in treating gastric cancer.
Collapse
Affiliation(s)
- Chongwen Deng
- Department of General Surgery, Loudi Central Hospital, No. 51, Changqing Middle Street, Loudi, 417000, People’s Republic of China
| | - Chunhua Ye
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Xiwang Liao
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Fuyin Zhou
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Youxiong Shi
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Hong Zhong
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| | - Junbiao Huang
- Department of General Surgery, Loudi Central Hospital, Loudi, 417000, People’s Republic of China
| |
Collapse
|
7
|
Leung RF, George AM, Roussel EM, Faux MC, Wigle JT, Eisenstat DD. Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes. Front Neurosci 2022; 16:843794. [PMID: 35546872 PMCID: PMC9081933 DOI: 10.3389/fnins.2022.843794] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Forebrain development in vertebrates is regulated by transcription factors encoded by homeobox, bHLH and forkhead gene families throughout the progressive and overlapping stages of neural induction and patterning, regional specification and generation of neurons and glia from central nervous system (CNS) progenitor cells. Moreover, cell fate decisions, differentiation and migration of these committed CNS progenitors are controlled by the gene regulatory networks that are regulated by various homeodomain-containing transcription factors, including but not limited to those of the Pax (paired), Nkx, Otx (orthodenticle), Gsx/Gsh (genetic screened), and Dlx (distal-less) homeobox gene families. This comprehensive review outlines the integral role of key homeobox transcription factors and their target genes on forebrain development, focused primarily on the telencephalon. Furthermore, links of these transcription factors to human diseases, such as neurodevelopmental disorders and brain tumors are provided.
Collapse
Affiliation(s)
- Ryan F. Leung
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ankita M. George
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Enola M. Roussel
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Maree C. Faux
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey T. Wigle
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - David D. Eisenstat
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|