1
|
Shi Z, Pu W, Li M, Aihemaitijiang M, Li S, Zhang X, Liu B, Sun M, Li J, Li Z. Prostate cancer cell-derived exosomes ZNF667-AS1 reduces TGFBR1 mRNA stability to inhibit Treg expansion and DTX resistance by binding to U2AF1. Mol Med 2024; 30:179. [PMID: 39425009 PMCID: PMC11488200 DOI: 10.1186/s10020-024-00947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Docetaxel (DTX) resistance attenuates anti-tumor effects of DTX on prostate cancer (mCRPC) and drug resistance was related to Treg expansion in tumors. ZNF667-AS1 played a suppressing role in various tumors and tumor-derived exosomes carry lncRNAs to participate in tumor progression. Here, the effects of ZNF667-AS1 on malignant characteristics and DTX resistance in PC and the effect and its underlying molecular mechanism of tumor-derived exosomes carrying ZNF667-AS1 on Treg expansion were investigated. METHODS The identification of exosomes were determined using TEM, NTA and western blot. The abundance of genes and proteins were evaluated using IHC, RT-qPCR, western blot and FISH. Malignant phenotypes of PC cells were evaluated by means of Edu, scratch test, transwell, CCK-8 and flow cytometry. The percentage of CD4+CD25+Foxp3+ Tregs was detected using flow cytometry. The location of ZNF667-AS1 was detected using nuclear-cytoplasmic fractionation. The co-location of ZNF667-AS1 and U2AF1 protein was detected using IF-FISH assay. The interactions among ZNF667-AS1, TGFBR1 and U2AF1 were verified using RNA pull-down, RIP and dual luciferase activity. RESULTS ZNF667-AS1 expression in PC samples was lowered, which was negatively relative to poor prognosis and DTX resistance. ZNF667-AS1 overexpression inhibited malignant phenotypes of PC cells, tumor growth and DTX resistance. Besides, DTX resistant cell-derived exosomes expressed lower ZNF667-AS1 expression. Exosomes carrying exogenously high ZNF667-AS1 expression derived PC cells or serum of mice suppressed Treg expansion. On the mechanism, ZNF667-AS1 interacted with U2AF1 to destabilize TGFBR1 mRNA and reduce TGFBR1 expression in CD4+T cells. CONCLUSION ZNF667-AS1 suppressed cell growth of PC cells, tumor growth of mice and DTX resistance to PC cells and exogenously high ZNF667-AS1 expression in tumor-derived exosomes destabilized TGFBR1 mRNA and reduce TGFBR1 expression through interacting with U2AF1, thus resulting in attenuated Treg expansion, which was related to DTX resistance.
Collapse
MESH Headings
- Humans
- Male
- Exosomes/metabolism
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/immunology
- Drug Resistance, Neoplasm/genetics
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Animals
- Mice
- Cell Line, Tumor
- Docetaxel/pharmacology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA Stability
- Gene Expression Regulation, Neoplastic
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Cell Proliferation
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Zhenfeng Shi
- Department of Urology Surgery Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830002, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Wenjing Pu
- Department of Pathology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830002, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Min Li
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Mierzhayiti Aihemaitijiang
- Graduate School of Xinjiang Medical University, Urumqi, 830011, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Shuo Li
- Graduate School of Xinjiang Medical University, Urumqi, 830011, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Xiaoan Zhang
- Department of Urology Surgery Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830002, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Bide Liu
- Department of Urology Surgery Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830002, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Min Sun
- Department of Urology Surgery Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830002, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Jiuzhi Li
- Department of Urology Surgery Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830002, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Zhiwei Li
- Clinical Laboratory Center, People's Hospital of Xinjiang Uygur Autonomous Region, No.91 Tianchi Road, Urumqi, 830002, Xinjiang Uygur Autonomous Region, People's Republic of China.
| |
Collapse
|
2
|
Hu J, Dai S, Yuan M, Li F, Xu S, Gao L. Isoliensinine suppressed gastric cancer cell proliferation and migration by targeting TGFBR1 to regulate TGF-β-smad signaling pathways. Front Pharmacol 2024; 15:1438161. [PMID: 39364054 PMCID: PMC11446791 DOI: 10.3389/fphar.2024.1438161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024] Open
Abstract
Background Gastric cancer (GC) ranks as the fifth most prevalent cancer globally, and its pronounced invasiveness and propensity to spread provide significant challenges for therapy. At present, there are no efficacious medications available for the treatment of patients with GC. Isoliensinine (ISO), a bisbenzylisoquinoline alkaloid, was isolated from Nelumbo nucifera Gaertn. It possesses anti-tumor, antioxidant, and other physiological effects. Nevertheless, there is currently no available study on the impact of ISO on GC, and further investigation is needed to understand its molecular mechanism. Methods ISO target points and GC-related genes were identified, and the cross-target points of ISO and GC were obtained. We then examined cross-targeting and found genes that were differentially expressed in GCs. Kaplan-Meier survival curves were used to screen target genes, and the STRING database and Cytoscape 3.9.1 were used to construct protein-protein interactions and drug-target networks. In addition, molecular docking studies confirmed the interactions between ISO screen targets. Finally, in vitro tests were used to establish the impact of ISO on GC cells. Results Through bioinformatics research, we have identified TGFBR1 as the target of ISO in GC. In addition, we noticed a substantial inhibition in GC cell proliferation, migration, and invasion activities following ISO treatment. Moreover, we noticed that ISO treatment effectively suppressed TGF-β-induced epithelial-mesenchymal transition (EMT) and activation of the TGF-β-Smad pathway. Furthermore, we discovered that siTGFBR1 nullified the impact of ISO on TGF-β-triggered migration, invasion, and activation of the TGF-β-Smad pathway. Conclusion Our research suggests that ISO specifically targets TGFBR1 and regulates the TGF-β-Smad signaling pathway to suppress the proliferation and migration of GC cells.
Collapse
Affiliation(s)
- Jinda Hu
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shangming Dai
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Mengqin Yuan
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Fengjiao Li
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuoguo Xu
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Lichen Gao
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| |
Collapse
|
3
|
Yang Q, Falahati A, Khosh A, Lastra RR, Boyer TG, Al-Hendy A. Unraveling the Role of Bromodomain and Extra-Terminal Proteins in Human Uterine Leiomyosarcoma. Cells 2024; 13:1443. [PMID: 39273015 PMCID: PMC11394028 DOI: 10.3390/cells13171443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Uterine leiomyosarcoma (uLMS) is the most common type of uterine sarcoma, associated with poor prognosis, high rates of recurrence, and metastasis. Currently, the molecular mechanism of the origin and development of uLMS is limited. Bromodomain and extra-terminal (BET) proteins are involved in both physiological and pathological events. However, the role of BET proteins in the pathogenesis of uLMS is unknown. Here, we show for the first time that BET protein family members, BRD2, BRD3, and BRD4, are aberrantly overexpressed in uLMS tissues compared to the myometrium, with a significant change by histochemical scoring assessment. Furthermore, inhibiting BET proteins with their small, potent inhibitors (JQ1 and I-BET 762) significantly inhibited the uLMS proliferation dose-dependently via cell cycle arrest. Notably, RNA-sequencing analysis revealed that the inhibition of BET proteins with JQ1 and I-BET 762 altered several critical pathways, including the hedgehog pathway, EMT, and transcription factor-driven pathways in uLMS. In addition, the targeted inhibition of BET proteins altered several other epigenetic regulators, including DNA methylases, histone modification, and m6A regulators. The connections between BET proteins and crucial biological pathways provide a fundamental structure to better understand uterine diseases, particularly uLMS pathogenesis. Accordingly, targeting the vulnerable epigenome may provide an additional regulatory mechanism for uterine cancer treatment.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA;
| | - Ali Falahati
- Poundbury Cancer Institute for Personalised Medicine, Dorchester DT1 3BJ, UK;
- DNA GTx LAB, Dubai Healthcare City, Dubai 505262, United Arab Emirates
| | - Azad Khosh
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.K.); (T.G.B.)
| | - Ricardo R. Lastra
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA;
| | - Thomas G. Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.K.); (T.G.B.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA;
| |
Collapse
|
4
|
Wang Y, Saelao P, Chanthavixay G, Gallardo RA, Wolc A, Fulton JE, Dekkers JM, Lamont SJ, Kelly TR, Zhou H. Genomic Regions and Candidate Genes Affecting Response to Heat Stress with Newcastle Virus Infection in Commercial Layer Chicks Using Chicken 600K Single Nucleotide Polymorphism Array. Int J Mol Sci 2024; 25:2640. [PMID: 38473888 DOI: 10.3390/ijms25052640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Heat stress results in significant economic losses to the poultry industry. Genetics plays an important role in chickens adapting to the warm environment. Physiological parameters such as hematochemical parameters change in response to heat stress in chickens. To explore the genetics of heat stress resilience in chickens, a genome-wide association study (GWAS) was conducted using Hy-Line Brown layer chicks subjected to either high ambient temperature or combined high temperature and Newcastle disease virus infection. Hematochemical parameters were measured during three treatment phases: acute heat stress, chronic heat stress, and chronic heat stress combined with NDV infection. Significant changes in blood parameters were recorded for 11 parameters (sodium (Na+, potassium (K+), ionized calcium (iCa2+), glucose (Glu), pH, carbon dioxide partial pressure (PCO2), oxygen partial pressure (PO2), total carbon dioxide (TCO2), bicarbonate (HCO3), base excess (BE), and oxygen saturation (sO2)) across the three treatments. The GWAS revealed 39 significant SNPs (p < 0.05) for seven parameters, located on Gallus gallus chromosomes (GGA) 1, 3, 4, 6, 11, and 12. The significant genomic regions were further investigated to examine if the genes within the regions were associated with the corresponding traits under heat stress. A candidate gene list including genes in the identified genomic regions that were also differentially expressed in chicken tissues under heat stress was generated. Understanding the correlation between genetic variants and resilience to heat stress is an important step towards improving heat tolerance in poultry.
Collapse
Affiliation(s)
- Ying Wang
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Perot Saelao
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA
- Department of Animal Science, University of California, Davis, CA 95616, USA
- Veterinary Pest Genetics Research Unit, United States Department of Agriculture U, Kerrville, TX 78006, USA
| | - Ganrea Chanthavixay
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Rodrigo A Gallardo
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Anna Wolc
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Hy-Line International, Dallas Center, IA 50063, USA
| | | | - Jack M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Terra R Kelly
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Huaijun Zhou
- Genomics to Improve Poultry Innovation Lab, University of California, Davis, CA 95616, USA
- Department of Animal Science, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Wang P, Zhang T, Jiang N, Wang K, Feng L, Liu T, Yang X. PDIA6, which is regulated by TRPM2-AS/miR-424-5p axis, promotes endometrial cancer progression via TGF-beta pathway. Cell Death Dis 2023; 14:829. [PMID: 38097564 PMCID: PMC10721792 DOI: 10.1038/s41419-023-06297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023]
Abstract
PDIA6 have been reported to be involved in a variety of cancers, however, the underlying role in endometrial cancer is still unclear. In this study, we aimed to study the function of PDIA6 in endometrial cancer. Firstly, we verified that PDIA6 was significantly upregulated in endometrial cancer, which was correlated with the progression of endometrial cancer patients. Furthermore, we identified PDIA6 significantly altered the ability of endometrial cancer cells to proliferate and metastasize. In addition, our result illustrated the oncogene effects of PDIA6 in promoting malignant biological behavior of endometrial cancer cells by regulating TGF-β pathway and being modulated by TRPM2-AS/miR-424-5p axis for the first time. Taken together, this study suggested that PDIA6 may be a new candidate target for endometrial cancer therapy.
Collapse
Affiliation(s)
- Pengling Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Tianli Zhang
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong, 250033, People's Republic of China
| | - Nan Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Kun Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Liping Feng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Ting Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China.
| | - Xingsheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
6
|
Lin J, Zhuo Y, Zhang Y, Liu R, Zhong W. Molecular predictors of metastasis in patients with prostate cancer. Expert Rev Mol Diagn 2023; 23:199-215. [PMID: 36860119 DOI: 10.1080/14737159.2023.2187289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
INTRODUCTION Prostate cancer is a serious threat to the health of older adults worldwide. The quality of life and survival time of patients sharply decline once metastasis occurs. Thus, early screening for prostate cancer is very advanced in developed countries. The detection methods used include Prostate-specific antigen (PSA) detection and digital rectal examination. However, the lack of universal access to early screening in some developing countries has resulted in an increased number of patients presenting with metastatic prostate cancer. In addition, the treatment methods for metastatic and localized prostate cancer are considerably different. In many patients, early-stage prostate cancer cells often metastasize due to delayed observation, negative PSA results, and delay in treatment time. Therefore, the identification of patients who are prone to metastasis is important for future clinical studies. AREAS COVERED this review introduced a large number of predictive molecules related to prostate cancer metastasis. These molecules involve the mutation and regulation of tumor cell genes, changes in the tumor microenvironment, and the liquid biopsy. EXPERT OPINION In next decade, PSMA PET/CT and liquid biopsy will be the excellent predicting tools, while 177 Lu- PSMA-RLT will be showed excellent anti-tumor efficacy in mPCa patients.
Collapse
Affiliation(s)
- Jundong Lin
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yangjia Zhuo
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yixun Zhang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Ren Liu
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weide Zhong
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Eun JW, Ahn HR, Baek GO, Yoon MG, Son JA, Weon JH, Yoon JH, Kim HS, Han JE, Kim SS, Cheong JY, Kim BW, Cho HJ. Aberrantly Expressed MicroRNAs in Cancer-Associated Fibroblasts and Their Target Oncogenic Signatures in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:4272. [PMID: 36901700 PMCID: PMC10002073 DOI: 10.3390/ijms24054272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) contribute to tumor progression, and microRNAs (miRs) play an important role in regulating the tumor-promoting properties of CAFs. The objectives of this study were to clarify the specific miR expression profile in CAFs of hepatocellular carcinoma (HCC) and identify its target gene signatures. Small-RNA-sequencing data were generated from nine pairs of CAFs and para-cancer fibroblasts isolated from human HCC and para-tumor tissues, respectively. Bioinformatic analyses were performed to identify the HCC-CAF-specific miR expression profile and the target gene signatures of the deregulated miRs in CAFs. Clinical and immunological implications of the target gene signatures were evaluated in The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA_LIHC) database using Cox regression and TIMER analysis. The expressions of hsa-miR-101-3p and hsa-miR-490-3p were significantly downregulated in HCC-CAFs. Their expression in HCC tissue gradually decreased as HCC stage progressed in the clinical staging analysis. Bioinformatic network analysis using miRWalks, miRDB, and miRTarBase databases pointed to TGFBR1 as a common target gene of hsa-miR-101-3p and hsa-miR-490-3p. TGFBR1 expression was negatively correlated with miR-101-3p and miR-490-3p expression in HCC tissues and was also decreased by ectopic miR-101-3p and miR-490-3p expression. HCC patients with TGFBR1 overexpression and downregulated hsa-miR-101-3p and hsa-miR-490-3p demonstrated a significantly poorer prognosis in TCGA_LIHC. TGFBR1 expression was positively correlated with the infiltration of myeloid-derived suppressor cells, regulatory T cells, and M2 macrophages in a TIMER analysis. In conclusion, hsa-miR-101-3p and hsa-miR-490-3p were substantially downregulated miRs in CAFs of HCC, and their common target gene was TGFBR1. The downregulation of hsa-miR-101-3p and hsa-miR-490-3p, as well as high TGFBR1 expression, was associated with poor clinical outcome in HCC patients. In addition, TGFBR1 expression was correlated with the infiltration of immunosuppressive immune cells.
Collapse
Affiliation(s)
- Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Hye Ri Ahn
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Geum Ok Baek
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Moon Gyeong Yoon
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Ju A Son
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Ji Hyang Weon
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyung Seok Kim
- Department of Biochemistry, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Ji Eun Han
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Soon Sun Kim
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Jae Youn Cheong
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Bong-wan Kim
- Department of General Surgery, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Hyo Jung Cho
- Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| |
Collapse
|
8
|
Sokolov D, Gorshkova A, Markova K, Milyutina Y, Pyatygina K, Zementova M, Korenevsky A, Mikhailova V, Selkov S. Natural Killer Cell Derived Microvesicles Affect the Function of Trophoblast Cells. MEMBRANES 2023; 13:213. [PMID: 36837716 PMCID: PMC9963951 DOI: 10.3390/membranes13020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The interaction of natural killer (NK) and trophoblast cells underlies the formation of immune tolerance in the mother-fetus system and the maintenance of the physiological course of pregnancy. In addition, NK cells affect the function of trophoblast cells, interacting with them via the receptor apparatus and through the production of cytokines. Microvesicles (MVs) derived from NK cells are able to change the function of target cells. However, in the overall pattern of interactions between NK cells and trophoblasts, the possibility that both can transmit signals to each other via MVs has not been taken into account. Therefore, the aim of this study was to assess the effect of NK cell-derived MVs on the phenotype, proliferation, and migration of trophoblast cells and their expression of intracellular messengers. We carried out assays for the detection of content transferred from MV to trophoblasts. We found that NK cell-derived MVs did not affect the expression of CD54, CD105, CD126, CD130, CD181, CD119, and CD120a receptors in trophoblast cells or lead to the appearance of CD45 and CD56 receptors in the trophoblast membrane. Further, the MVs reduced the proliferation but increased the migration of trophoblasts with no changes to their viability. Incubation of trophoblast cells in the presence of MVs resulted in the activation of STAT3 via pSTAT3(Ser727) but not via pSTAT3(Tyr705). The treatment of trophoblasts with MVs did not result in the phosphorylation of STAT1 and ERK1/2. The obtained data indicate that NK cell-derived MVs influence the function of trophoblast cells, which is accompanied by the activation of STAT3 signaling.
Collapse
|
9
|
Epigenetic Regulation of MAP3K8 in EBV-Associated Gastric Carcinoma. Int J Mol Sci 2023; 24:ijms24031964. [PMID: 36768307 PMCID: PMC9916342 DOI: 10.3390/ijms24031964] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Super-enhancers (SEs) regulate gene expressions, which are critical for cell type-identity and tumorigenesis. Although genome wide H3K27ac profiling have revealed the presence of SE-associated genes in gastric cancer (GC), their roles remain unclear. In this study, ChIP-seq and HiChIP-seq experiments revealed mitogen-activated protein kinase 8 (MAP3K8) to be an SE-associated gene with chromosome interactions in Epstein-Barr virus-associated gastric carcinoma (EBVaGC) cells. CRISPRi mediated repression of the MAP3K8 SEs attenuated MAP3K8 expression and EBVaGC cell proliferation. The results were validated by treating EBVaGC cells with bromodomain and the extra-terminal motif (BET) inhibitor, OTX015. Further, functional analysis of MAP3K8 in EBVaGC revealed that silencing MAP3K8 could inhibit the cell proliferation, colony formation, and migration of EBVaGC cells. RNA-seq and pathway analysis indicated that knocking down MAP3K8 obstructed the notch signaling pathway and epithelial-mesenchymal transition (EMT) in EBVaGC cells. Further, analysis of the cancer genome atlas (TCGA) and GSE51575 databases exhibited augmented MAP3K8 expression in gastric cancer and it was found to be inversely correlated with the disease-free progression of GC. Moreover, Spearman's correlation revealed that MAP3K8 expression was positively correlated with the expressions of notch pathway and EMT related genes, such as, Notch1, Notch2, C-terminal binding protein 2 (CTBP2), alpha smooth muscle actin isotype 2 (ACTA2), transforming growth factor beta receptor 1 (TGFβR1), and snail family transcriptional repressors 1/2 (SNAI1/SNAI2) in GC. Taken together, we are the first to functionally interrogate the mechanism of SE-mediated regulation of MAP3K8 in EBVaGC cell lines.
Collapse
|
10
|
Whole-Exome Sequencing of Germline Variants in Non- BRCA Families with Hereditary Breast Cancer. Biomedicines 2022; 10:biomedicines10051004. [PMID: 35625741 PMCID: PMC9138793 DOI: 10.3390/biomedicines10051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancer is the most prevalent malignancy among women worldwide and hereditary breast cancer (HBC) accounts for about 5−10% of the cases. Today, the most recurrent genes known are BRCA1 and BRCA2, accounting for around 25% of familial cases. Although thousands of loss-of-function variants in more than twenty predisposing genes have been found, the majority of familial cases of HBC remain unexplained. The aim of this study was to identify new predisposing genes for HBC in three non-BRCA families with autosomal dominant inheritance pattern using whole-exome sequencing and functional prediction tools. No pathogenic variants in known hereditary cancer-related genes could explain the breast cancer susceptibility in these families. Among 2122 exonic variants with maximum minor allele frequency (MMAF) < 0.1%, between 17−35 variants with combined annotation-dependent depletion (CADD) > 20 segregated with disease in the three analyzed families. Selected candidate genes, i.e., UBASH3A, MYH13, UTP11L, and PAX7, were further evaluated using protein expression analysis but no alterations of cancer-related pathways were observed. In conclusion, identification of new high-risk cancer genes using whole-exome sequencing has been more challenging than initially anticipated, in spite of selected families with pronounced family history of breast cancer. A combination of low- and intermediate-genetic-risk variants may instead contribute the breast cancer susceptibility in these families.
Collapse
|