1
|
Xu L, Li K, Li J, Xu F, Liang S, Kong Y, Chen B. The crosstalk between lung adenocarcinoma cells and M2 macrophages promotes cancer cell development via the SFRS1/miR-708-5p/PD-L1 axis. Life Sci 2025; 371:123599. [PMID: 40185466 DOI: 10.1016/j.lfs.2025.123599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
This study aimed to elucidate the underlying mechanisms regarding microRNA-708-5p (miR-708-5p) in lung adenocarcinoma (LUAD). Here, the co-culture system of LUAD cells and macrophages, as well as a xenograft mouse model, were established. High levels of miR-708-5p were observed in LUAD. Exosomal miR-708-5p facilitated M2-like phenotype polarization, whereas miR-708-5p inhibition blocked the polarization. Exosomal miR-708-5p was identified as a pivotal signaling molecule for macrophages to mediate tumor cell proliferation, invasion, migration and IFN-γ production in T cells. In addition, miR708-5p was observed to induce PD-L1 expression, and PD-L1 silencing inhibited macrophage-induced tumor cell growth behavior and regulated CD8 T cell activity. In xenograft models, miR-708-5p inhibition and PD-L1 silencing attenuated macrophage-induced tumor growth, induced IFN-γ secretion and CD8 expression, and modulated the PTEN/AKT/mTOR pathway. In LUAD patients, there was an upregulation of both miR-708-5p and PD-L1 expression, accompanied by the activation of PTEN/AKT/mTOR. In conclusion, this study demonstrated the induction of M2 macrophage polarization and PD-L1 expression by exosomal miR-708-5p. We observed that exosomal miR-708-5p mediated the PTEN/AKT/mTOR pathway, diminished CD8 T cell activity and accelerated LUAD progression. The inhibition of specific exosomal miRNA secretion and anti-PD-L1 in the LUAD microenvironment may represent a promising avenue for LUAD immunotherapy.
Collapse
Affiliation(s)
- Li Xu
- The Second Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Kang Li
- The Second Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Jia Li
- The Second Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Fang Xu
- The Second Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Shuzhi Liang
- The Second Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Yi Kong
- The Second Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China.
| | - Bolin Chen
- The Second Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China.
| |
Collapse
|
2
|
Chai Q, Qi Y, Nie X, Wang H. APOC1, transcriptionally regulated by FOXM1, promotes M2 macrophage polarization and cervical cancer progression. Mutat Res 2025; 830:111904. [PMID: 40139083 DOI: 10.1016/j.mrfmmm.2025.111904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/19/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Cervical cancer (CC) is a common malignant tumor in women. M2 macrophages are associated with tumor growth, metastasis, and immunosuppression. Apolipoprotein C1 (APOC1) has been confirmed as an oncogene in CC. However, the role and mechanism of APOC1 in CC progression and M2 macrophages remain to be elucidated. METHODS The effects of APOC1 on CC cell malignant phenotypes were examined by CCK-8, colony formation, wound healing, and transwell assays in vitro and mice transplant tumor model in vivo. M2 macrophage polarization was assessed by qRT-PCR and flow cytometry assays. The interaction between APOC1 and forkhead box M1 (FOXM1) was determined using chromatin immunoprecipitation (ChIP) and luciferase reporter assays. RESULTS The expression of APOC1 and FOXM1 was upregulated in CC tissues and cells. Knockdown of APOC1 or FOXM1 resulted in the inhibition of cell proliferation, migration, invasion, and EMT. Moreover, the polarization of M2 macrophages was attenuated when APOC1 or FOXM1 was silenced. Mechanistically, FOXM1 transcriptionally activated APOC1 by binding to its promoter. Furthermore, overexpression of APOC1 reversed the inhibitory effects of FOXM1 knockdown on cell proliferation, metastasis, and M2 macrophage polarization. Additionally, the knockdown of APOC1 reduced tumor growth and M2 macrophage polarization in mice. CONCLUSION FOXM1/APOC1 axis is involved in the progression of CC and the regulation of M2 macrophages polarization, bringing new hope to the treatment of CC.
Collapse
Affiliation(s)
- Qing Chai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| | - Yan Qi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China.
| | - Xiaoyan Nie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| | - Huan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| |
Collapse
|
3
|
Sinha N, Shen X, Haag J, Chen S, Zhang H, John C, Sun W, Emanuele M, Zhou C, Bae-Jump V. Onvansertib exhibits anti-proliferative and anti-invasive effects in endometrial cancer. Front Pharmacol 2025; 16:1545038. [PMID: 40166466 PMCID: PMC11955691 DOI: 10.3389/fphar.2025.1545038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Polo-like kinase 1 (Plk1) is widely recognized as an oncogene that promotes cell proliferation by regulating cell division, DNA damage response, and genome stability and has been shown to be overexpressed in many cancers, including endometrial cancer. Targeting Plk1 by onvansertib has been shown to have anti-tumor activity in pre-clinical models of multiple cancers and is currently being evaluated in phase 1 and 2 clinical trials in cancer patients. In this study, we evaluated the potential anti-tumorigenic effects of onvansertib in endometrial cancer cells and the LKB1fl/fl p53fl/fl mouse model of endometrial cancer. Onvansertib inhibited cellular proliferation, caused G2 phase arrest, induced cellular stress and apoptosis, and inhibited cellular migration and invasion in endometrial cancer cells. Combined treatment with onvansertib and paclitaxel led to synergistic inhibition of cell proliferation. Onvansertib treatment for 4 weeks significantly reduced tumor growth in LKB1fl/flp53fl/fl mice. Given these promising pre-clinical results, further studies are needed to evaluate the clinical translatability of onvansertib combined with paclitaxel as an effective treatment for endometrial cancer.
Collapse
Affiliation(s)
- Nikita Sinha
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xiaochang Shen
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Healthcare Hospital, Capital Medical University, Beijing, China
| | - Jennifer Haag
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shuning Chen
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Healthcare Hospital, Capital Medical University, Beijing, China
| | - Haomeng Zhang
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Healthcare Hospital, Capital Medical University, Beijing, China
| | - Catherine John
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael Emanuele
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Zhang X, Chen Y, Liu X, Li G, Zhang S, Zhang Q, Cui Z, Qin M, Simon HU, Terzić J, Kocic G, Polić B, Yin C, Li X, Zheng T, Liu B, Zhu Y. STING in cancer immunoediting: Modeling tumor-immune dynamics throughout cancer development. Cancer Lett 2025; 612:217410. [PMID: 39826670 DOI: 10.1016/j.canlet.2024.217410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025]
Abstract
Cancer immunoediting is a dynamic process of tumor-immune system interaction that plays a critical role in cancer development and progression. Recent studies have highlighted the importance of innate signaling pathways possessed by both cancer cells and immune cells in this process. The STING molecule, a pivotal innate immune signaling molecule, mediates DNA-triggered immune responses in both cancer cells and immune cells, modulating the anti-tumor immune response and shaping the efficacy of immunotherapy. Emerging evidence has shown that the activation of STING signaling has dual opposing effects in cancer progression, simultaneously provoking and restricting anti-tumor immunity, and participating in every phase of cancer immunoediting, including immune elimination, equilibrium, and escape. In this review, we elucidate the roles of STING in the process of cancer immunoediting and discuss the dichotomous effects of STING agonists in the cancer immunotherapy response or resistance. A profound understanding of the sophisticated roles of STING signaling pathway in cancer immunoediting would potentially inspire the development of novel cancer therapeutic approaches and overcome the undesirable protumor effects of STING activation.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yan Chen
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xi Liu
- Department of Cardiology, ordos central hospital, Ordos, People's Republic of China
| | - Guoli Li
- Department of Colorectal and Anal Surgery, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, People's Republic of China
| | - Shuo Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China
| | - Qi Zhang
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Zihan Cui
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Minglu Qin
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, Neuruppin, 16816, Germany
| | - Janoš Terzić
- Laboratory for Cancer Research, University of Split School of Medicine, Split, Croatia
| | - Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Croatia
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, People's Republic of China.
| | - Bing Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; School of Stomatology, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Yuanyuan Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
5
|
Liang H, Fang C, Qiu M. The multi-target mechanism of action of Selaginella doederleinii Hieron in the treatment of nasopharyngeal carcinoma: a network pharmacology and multi-omics analysis. Sci Rep 2025; 15:159. [PMID: 39747499 PMCID: PMC11695685 DOI: 10.1038/s41598-024-83921-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Nasopharyngeal carcinoma (NPC) presents significant treatment challenges due to its complex etiology and late-stage diagnosis. The traditional Chinese medicine Selaginella doederleinii Hieron (S. doederleinii) has shown potentiality in NPC treatment due to its multi-target, multi-pathway anti-cancer mechanisms. First, we identified NPC related target genes from databases like GeneCards, OMIM, and DisGeNET, and performed WGCNA analysis on the GSE53819 dataset to identify several important gene modules related to NPC. Active components and their targets in S. doederleinii were screened from the TCMSP and other databases, identifying 32 overlapping genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that these genes are primarily involved in critical biological processes like protein phosphorylation and cell cycle regulation. A protein-protein interaction network was constructed, and cytoHubba identified six key genes (BCL2, MAPK14, ABCB1, PLK1, ATM, HMOX1). Kaplan-Meier analysis and immune infiltration analysis further showed that these key genes are closely related to the prognosis and immune microenvironment of NPC patients. Single-cell RNA sequencing analysis revealed the expression distribution of key genes across different immune cell types and explored their roles in the differentiation process of malignant cells through pseudotime trajectory analysis. Molecular docking and dynamics simulation results indicated that the Berberine-MAPK14 and Matairesinol-PLK1 complexes have high binding affinity and stability. Binding free energy calculations confirmed the stability of these complexes. Based on our comprehensive multi-level analysis, the active components of S. doederleinii may play a significant role in the treatment of NPC through multi-pathway and multi-target synergistic effects.
Collapse
Affiliation(s)
- Huaguo Liang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Caifu Fang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Meng Qiu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
6
|
Kim DE, Oh HJ, Kim HJ, Kim YB, Kim ST, Yim H. Synergistic two-step inhibition approach using a combination of trametinib and onvansertib in KRAS and TP53-mutated colorectal adenocarcinoma. Biomed Pharmacother 2025; 182:117796. [PMID: 39731938 DOI: 10.1016/j.biopha.2024.117796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024] Open
Abstract
Colorectal malignancies associated with KRAS and TP53 mutations led us to investigate the effects of combination therapy targeting KRAS, MEK1, or PLK1 in colorectal cancer. MEK1 is downstream of RAS in the MAPK pathway, whereas PLK1 is a mitotic kinase of the cell cycle activated by MAPK and regulated by p53. Bioinformatics analysis revealed that patients with colorectal cancer had a high expression of MAP2K1 and PLK1. Furthermore, PLK1 and MEK1 activity in human colorectal adenocarcinoma (COAD) tissues was found to be highly upregulated compared to healthy tissues. To determine the sensitivity of KRAS or/and TP53-mutated cancer to KRAS, MEK1, or PLK1-targeted therapy, the inhibitors salirasib, trametinib, volasertib, and onvansertib were used in COAD cells with different KRAS and TP53 status. The results showed that combinations with trametinib and PLK1 inhibitors were more potent than combinations with salirasib. A combination of MEK1 and PLK1 inhibitors exhibited significant therapeutic effects on KRAS or/and TP53-mutated COAD cells. Notably, the combination of trametinib and onvansertib effectively suppressed tumor growth in a xenograft mouse model of KRAS and TP53-mutated COAD. This treatment induced G1 and G2/M arrest, respectively, and showed the strongest synergistic effect in KRAS and TP53-mutated SW48 cells expressing mutant KRASG13D and transduced with TP53 shRNA, ultimately leading to apoptotic cell death. These effects are attributed to two-step inhibition mechanism that blocks the MAPK signaling pathway and disrupts mitosis in KRAS and TP53-mutated COAD cells.
Collapse
Affiliation(s)
- Da-Eun Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hyun-Ji Oh
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hyun-Jin Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Yeo-Bin Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Seung-Tae Kim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
7
|
Bao C, Ma Q, Ying X, Wang F, Hou Y, Wang D, Zhu L, Huang J, He C. Histone lactylation in macrophage biology and disease: from plasticity regulation to therapeutic implications. EBioMedicine 2025; 111:105502. [PMID: 39662177 PMCID: PMC11697715 DOI: 10.1016/j.ebiom.2024.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
Epigenetic modifications have been identified as critical molecular determinants influencing macrophage plasticity and heterogeneity. Among these, histone lactylation is a recently discovered epigenetic modification. Research examining the effects of histone lactylation on macrophage activation and polarization has grown substantially in recent years. Evidence increasingly suggests that lactate-mediated changes in histone lactylation levels within macrophages can modulate gene transcription, thereby contributing to the pathogenesis of various diseases. This review provides a comprehensive analysis of the role of histone lactylation in macrophage activation, exploring its discovery, effects, and association with macrophage diversity and phenotypic variability. Moreover, it highlights the impact of alterations in macrophage histone lactylation in diverse pathological contexts, such as inflammation, tumorigenesis, neurological disorders, and other complex conditions, and demonstrates the therapeutic potential of drugs targeting these epigenetic modifications. This mechanistic understanding provides insights into the underlying disease mechanisms and opens new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Qing Ma
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xihong Ying
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Fengsheng Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, PR China
| | - Yue Hou
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Dun Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Linsen Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Jiapeng Huang
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
8
|
Zhang Y, Wang Y, Mu P, Zhu X, Dong Y. Bidirectional regulation of the cGAS-STING pathway in the immunosuppressive tumor microenvironment and its association with immunotherapy. Front Immunol 2024; 15:1470468. [PMID: 39464890 PMCID: PMC11502381 DOI: 10.3389/fimmu.2024.1470468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Adaptive anti-tumor immunity is currently dependent on the natural immune system of the body. The emergence of tumor immunotherapy has improved prognosis and prolonged the survival cycle of patients. Current mainstream immunotherapies, including immune checkpoint blockade, chimeric antigen receptor T-cell immunotherapy, and monoclonal antibody therapy, are linked to natural immunity. The cGAS-STING pathway is an important natural immunity signaling pathway that plays an important role in fighting against the invasion of foreign pathogens and maintaining the homeostasis of the organism. Increasing evidence suggests that the cGAS-STING pathway plays a key role in tumor immunity, and the combination of STING-related agonists can significantly enhance the efficacy of immunotherapy and reduce the emergence of immunotherapeutic resistance. However, the cGAS-STING pathway is a double-edged sword, and its activation can enhance anti-tumor immunity and immunosuppression. Immunosuppressive cells, including M2 macrophages, MDSC, and regulatory T cells, in the tumor microenvironment play a crucial role in tumor escape, thereby affecting the immunotherapy effect. The cGAS-STING signaling pathway can bi-directionally regulate this group of immunosuppressive cells, and targeting this pathway can affect the function of immunosuppressive cells, providing new ideas for immunotherapy. In this study, we summarize the activation pathway of the cGAS-STING pathway and its immunological function and elaborate on the key role of this pathway in immune escape mediated by the tumor immunosuppressive microenvironment. Finally, we summarize the mainstream immunotherapeutic approaches related to this pathway and explore ways to improve them, thereby providing guidelines for further clinical services.
Collapse
Affiliation(s)
- Yurui Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Yudi Wang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Peizheng Mu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Xiao Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Yantai, China
| |
Collapse
|
9
|
Lingo JJ, Voigt E, Quelle DE. Linking FOXM1 and PD-L1 to CDK4/6-MEK targeted therapy resistance in malignant peripheral nerve sheath tumors. Oncotarget 2024; 15:638-643. [PMID: 39347707 PMCID: PMC11441412 DOI: 10.18632/oncotarget.28650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, Ras-driven sarcomas characterized by loss of the NF1 tumor suppressor gene and hyperactivation of MEK and CDK4/6 kinases. MPNSTs lack effective therapies. We recently demonstrated remarkable efficacy of dual CDK4/6-MEK inhibition in mice with de novo MPNSTs, which was heightened by combined targeting of the immune checkpoint protein, PD-L1. The triple combination therapy targeting CDK4/6, MEK, and PD-L1 led to extended MPNST regression and improved survival, although most tumors eventually acquired drug resistance. Here, we consider the immune activation phenotype caused by CDK4/6-MEK inhibition in MPNSTs that uniquely involved intratumoral plasma cell accumulation. We discuss how PD-L1 and FOXM1, a tumor-promoting transcription factor, are functionally linked and may be key mediators of resistance to CDK4/6-MEK targeted therapies. Finally, the role of FOXM1 in suppressing anti-tumor immunity and potentially thwarting immune-based therapies is considered. We suggest that future therapeutic strategies targeting the oncogenic network of CDK4/6, MEK, PD-L1, and FOXM1 represent exciting future treatment options for MPNST patients.
Collapse
Affiliation(s)
- Joshua J. Lingo
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Ellen Voigt
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA
| | - Dawn E. Quelle
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Li C, Yu X, Han X, Lian C, Wang Z, Shao S, Shao F, Wang H, Ma S, Liu J. Innate immune cells in tumor microenvironment: A new frontier in cancer immunotherapy. iScience 2024; 27:110750. [PMID: 39280627 PMCID: PMC11399700 DOI: 10.1016/j.isci.2024.110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Innate immune cells, crucial in resisting infections and initiating adaptive immunity, play diverse and significant roles in tumor development. These cells, including macrophages, granulocytes, dendritic cells (DCs), innate lymphoid cells, and innate-like T cells, are pivotal in the tumor microenvironment (TME). Innate immune cells are crucial components of the TME, based on which various immunotherapy strategies have been explored. Immunotherapy strategies, such as novel immune checkpoint inhibitors, STING/CD40 agonists, macrophage-based surface backpack anchoring, ex vivo polarization approaches, DC-based tumor vaccines, and CAR-engineered innate immune cells, aim to enhance their anti-tumor potential and counteract cancer-induced immunosuppression. The proximity of innate immune cells to tumor cells in the TME also makes them excellent drug carriers. In this review, we will first provide a systematic overview of innate immune cells within the TME and then discuss innate cell-based therapeutic strategies. Furthermore, the research obstacles and perspectives within the field will also be addressed.
Collapse
Affiliation(s)
- Changhui Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Xinyu Yu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Xinyan Han
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Chen Lian
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Zijin Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Fangwei Shao
- National Key Laboratory of Biobased Transportation Fuel Technology, ZJU-UIUC Institute, Zhejiang University, Hangzhou 310027, China
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shenglin Ma
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Biomedical and Heath Translational Research Center of Zhejiang Province, Haining, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther 2024; 9:192. [PMID: 39090094 PMCID: PMC11294630 DOI: 10.1038/s41392-024-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Metastasis remains a pivotal characteristic of cancer and is the primary contributor to cancer-associated mortality. Despite its significance, the mechanisms governing metastasis are not fully elucidated. Contemporary findings in the domain of cancer biology have shed light on the molecular aspects of this intricate process. Tumor cells undergoing invasion engage with other cellular entities and proteins en route to their destination. Insights into these engagements have enhanced our comprehension of the principles directing the movement and adaptability of metastatic cells. The tumor microenvironment plays a pivotal role in facilitating the invasion and proliferation of cancer cells by enabling tumor cells to navigate through stromal barriers. Such attributes are influenced by genetic and epigenetic changes occurring in the tumor cells and their surrounding milieu. A profound understanding of the metastatic process's biological mechanisms is indispensable for devising efficacious therapeutic strategies. This review delves into recent developments concerning metastasis-associated genes, important signaling pathways, tumor microenvironment, metabolic processes, peripheral immunity, and mechanical forces and cancer metastasis. In addition, we combine recent advances with a particular emphasis on the prospect of developing effective interventions including the most popular cancer immunotherapies and nanotechnology to combat metastasis. We have also identified the limitations of current research on tumor metastasis, encompassing drug resistance, restricted animal models, inadequate biomarkers and early detection methods, as well as heterogeneity among others. It is anticipated that this comprehensive review will significantly contribute to the advancement of cancer metastasis research.
Collapse
Affiliation(s)
- Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Dongmin Shi
- Department of Medical Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xihuan Shao
- The Fourth Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengqing Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yue Chai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Li W, Yuan Q, Li M, He X, Shen C, Luo Y, Tai Y, Li Y, Deng Z, Luo Y. Research advances on signaling pathways regulating the polarization of tumor-associated macrophages in lung cancer microenvironment. Front Immunol 2024; 15:1452078. [PMID: 39144141 PMCID: PMC11321980 DOI: 10.3389/fimmu.2024.1452078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Lung cancer (LC) is one of the most common cancer worldwide. Tumor-associated macrophages (TAMs) are important component of the tumor microenvironment (TME) and are closely related to the stages of tumor occurrence, development, and metastasis. Macrophages are plastic and can differentiate into different phenotypes and functions under the influence of different signaling pathways in TME. The classically activated (M1-like) and alternatively activated (M2-like) represent the two polarization states of macrophages. M1 macrophages exhibit anti-tumor functions, while M2 macrophages are considered to support tumor cell survival and metastasis. Macrophage polarization involves complex signaling pathways, and blocking or regulating these signaling pathways to enhance macrophages' anti-tumor effects has become a research hotspot in recent years. At the same time, there have been new discoveries regarding the modulation of TAMs towards an anti-tumor phenotype by synthetic and natural drug components. Nanotechnology can better achieve combination therapy and targeted delivery of drugs, maximizing the efficacy of the drugs while minimizing side effects. Up to now, nanomedicines targeting the delivery of various active substances for reprogramming TAMs have made significant progress. In this review, we primarily provided a comprehensive overview of the signaling crosstalk between TAMs and various cells in the LC microenvironment. Additionally, the latest advancements in novel drugs and nano-based drug delivery systems (NDDSs) that target macrophages were also reviewed. Finally, we discussed the prospects of macrophages as therapeutic targets and the barriers to clinical translation.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Quan Yuan
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Mei Li
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu He
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Chen Shen
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yurui Luo
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunze Tai
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiping Deng
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Yao Luo
- Department of Respiratory and Critical Care Medicine, Zigong First People’s Hospital, Zigong, Sichuan, China
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Peng W, Fu J, Zhou L, Duan H. METTL1/FOXM1 promotes lung adenocarcinoma progression and gefitinib resistance by inhibiting PTPN13 expression. Cancer Med 2024; 13:e7420. [PMID: 38967523 PMCID: PMC11225164 DOI: 10.1002/cam4.7420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024] Open
Abstract
INTRODUCTION Lung adenocarcinoma (LUAD) is the most common malignant tumor in respiratory system. Methyltransferase-like 1 (METTL1) is a driver of m7G modification in mRNA. This study aimed to demonstrate the role of METTL1 in the proliferation, invasion and Gefitinib-resistance of LUAD. METHODS Public datasets were downloaded from the Gene Expression Profiling Interactive Analysis (GEPIA) and GSE31210 datasets. Malignant tumor phenotypes were tested in vitro and in vivo through biological function assays and nude mouse with xenograft tumors. RNA immunoprecipitation assays were conducted to determine the interaction between METTL1 protein and FOXM1 mRNA. Public transcriptional database, Chromatin immunoprecipitation and luciferase report assays were conducted to detect the downstream target of a transcriptional factor FOXM1. Half maximal inhibitory concentration (IC50) was calculated to evaluate the sensitivity to Gefitinib in LUAD cells. RESULTS The results showed that METTL1 was upregulated in LUAD, and the high expression of METTL1 was associated with unfavorable prognosis. Through the m7G-dependent manner, METTL1 improved the RNA stability of FOXM1, leading to the up-regulation of FOXM1. FOXM1 transcriptionally suppressed PTPN13 expression. The METTL1/FOXM1/PTPN13 axis reduced the sensitivity of LUAD cells to Gefitinib. Taken together, our data suggested that METTL1 plays oncogenic role in LUAD through inducing the m7G modification of FOXM1, therefore METTL1 probably is a new potential therapeutic target to counteract Gefitinib resistance in LUAD.
Collapse
Affiliation(s)
- Wei Peng
- Department of Oncology, Hunan Provincial People's HospitalThe First Affiliated of Human Normal UniversityChangshaHunanChina
- Key Laboratory of Study and Discovey of Small Targeted Molecules of Hunan ProvinceHunan Normal UniversityChangshaHunanChina
- Laboratory of Oncology, Institute of Translational MedicineHunan Procincial People's HospitalChangshaHunanChina
| | - Jia Fu
- Department of Oncology, Hunan Provincial People's HospitalThe First Affiliated of Human Normal UniversityChangshaHunanChina
| | - Lijun Zhou
- Department of Oncology, Hunan Provincial People's HospitalThe First Affiliated of Human Normal UniversityChangshaHunanChina
| | - Huaxin Duan
- Department of Oncology, Hunan Provincial People's HospitalThe First Affiliated of Human Normal UniversityChangshaHunanChina
- Key Laboratory of Study and Discovey of Small Targeted Molecules of Hunan ProvinceHunan Normal UniversityChangshaHunanChina
- Laboratory of Oncology, Institute of Translational MedicineHunan Procincial People's HospitalChangshaHunanChina
| |
Collapse
|
14
|
Li X, Yu D, Wang Q, Chen Y, Jiang H. Elucidating the molecular mechanisms of pterostilbene against cervical cancer through an integrated bioinformatics and network pharmacology approach. Chem Biol Interact 2024; 396:111058. [PMID: 38761877 DOI: 10.1016/j.cbi.2024.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Pterostilbene (PTE), a natural phenolic compound, has exhibited promising anticancer properties in the preclinical treatment of cervical cancer (CC). This study aims to comprehensively investigate the potential targets and mechanisms underlying PTE's anticancer effects in CC, thereby providing a theoretical foundation for its future clinical application and development. To accomplish this, we employed a range of methodologies, including network pharmacology, bioinformatics, and computer simulation, with specific techniques such as WGCNA, PPI network construction, ROC curve analysis, KM survival analysis, GO functional enrichment, KEGG pathway enrichment, molecular docking, MDS, and single-gene GSEA. Utilizing eight drug target prediction databases, we have identified a total of 532 potential targets for PTE. By combining CC-related genes from the GeneCards disease database with significant genes derived from WGCNA analysis of the GSE63514 dataset, we obtained 7915 unique CC-related genes. By analyzing the intersection of the 7915 CC-related genes and the 2810 genes that impact overall survival time in CC, we identified 690 genes as crucial for CC. Through the use of a Venn diagram, we discovered 36 overlapping targets shared by PTE and CC. We have constructed a PPI network and identified 9 core candidate targets. ROC and KM curve analyses subsequently revealed IL1B, EGFR, IL1A, JUN, MYC, MMP1, MMP3, and ANXA5 as the key targets modulated by PTE in CC. GO and KEGG pathway enrichment analyses indicated significant enrichment of these key targets, primarily in the MAPK and IL-17 signaling pathways. Molecular docking analysis verified the effective binding of PTE to all nine key targets. MDS results showed that the protein-ligand complex between MMP1 and PTE was the most stable among the nine targets. Additionally, GSEA enrichment analysis suggested a potential link between elevated MMP1 expression and the activation of the IL-17 signaling pathway. In conclusion, our study has identified key targets and uncovered the molecular mechanism behind PTE's anticancer activity in CC, establishing a firm theoretical basis for further exploration of PTE's pharmacological effects in CC therapy.
Collapse
Affiliation(s)
- Xiang Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Dequan Yu
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Qiming Wang
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Yating Chen
- Department of Clinical Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Hanbing Jiang
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
15
|
Guo Y, Chang G, Wan R, Zhang X, Ma Z, Bai H, Wang J. Discovery of a novel ROS-based signature for predicting prognosis and immunosuppressive tumor microenvironment in lung adenocarcinoma. J Cancer 2024; 15:2691-2711. [PMID: 38577601 PMCID: PMC10988302 DOI: 10.7150/jca.93975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
The role of reactive oxygen species (ROS) is critical in the emergence and progression of lung adenocarcinoma (LUAD), affecting cell survival, proliferation, angiogenesis, and metastasis. Further investigations are needed to elucidate these effects' precise pathways and devise therapeutic approaches targeting ROS. Moreover, the expression pattern and clinical significance of the ROS-related genes in LUAD remain elusive. Through comprehensive analysis incorporating 1494 LUAD cases from The Cancer Genome Atlas, six Gene Expression Omnibus series, and a Chinese LUAD cohort, we identified a ROS-related signature with substantial predictive value in various LUAD patient cohorts. The ROS-related signature has demonstrated a significant negative relationship with antitumor immunity and dendritic cell maturation and activation. Moreover, The ROS-related signature showed predictive value on immunotherapy outcomes across multiple types of solid tumors, including LUAD. These findings reinforce the ROS-related signature as a predictive tool for LUAD and provide new insights into its link with antitumor immunity and immunotherapy efficacy. These results have implications for refining clinical assessments and tailoring immunotherapeutic strategies for patients with LUAD.
Collapse
Affiliation(s)
- Yufeng Guo
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 100021
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 100021
| | - Geyun Chang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China, 100044
| | - Rui Wan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 100021
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 100021
| | - Xue Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 100021
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 100021
| | - Zixiao Ma
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 100021
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 100021
| | - Hua Bai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 100021
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 100021
| | - Jie Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 100021
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 100021
| |
Collapse
|
16
|
Ji W, Jin Y, Jiang W. Foxm1-Mediated Transcriptional Inactivation of NLRP3 Inflammasome Promotes Immunosuppression in Cervical Cancer. Crit Rev Eukaryot Gene Expr 2024; 34:35-45. [PMID: 39180206 DOI: 10.1615/critreveukaryotgeneexpr.2024053577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Foxm1 functions as an oncogene in multiple human malignancies, including cervical cancer. However, the potential of Foxm1 in the tumor microenvironment (TME) is still unknown. The purpose of the present study is to investigate the role of Foxm1 in CD8+ T cell anti-tumor immunity. RT-qPCR is conducted to calculate mRNA levels. JASPAR is used to predict the binding sites between Foxm1 and NLRP3. ChIP assay is performed to verify the occupancy of Foxm1 on the promoter of NLRP3. Modulatory relationship between Foxm1 and NLRP3 is verified by luciferase assay. In vivo assays are conducted to further verify the role of Foxm1/NLRP3 axis in cervical cancer. HE staining assay is applied for histological analysis. Flow cytometry is conducted to determine the functions of immune cells. We found that Foxm1 knockdown decreases tumor burden and suppresses tumor growth of cervical cancer. Foxm1 knock-down promotes the infiltration of CD8+ T cells. Foxm1 deficiency inhibits the exhaustion of CD8+ T cells and facilitates the maintenance of CD8+ effector and stem-like T cells. Moreover, Foxm1 transcriptionally inactivates NLRP3 and suppresses the expression of innate cytokines IL-1β and IL-18. However, inhibition of NLRP3 inflammasome or neutralizing IL-1β and IL-18 inhibits anti-tumor immunity and promoted tumor growth in Foxm1 deficiency in CD8+ T cells. In summary, targeting Foxm1 mediates the activation of NLRP3 inflammasome and stimulates CD8+ T cell anti-tumor immunity in cervical cancer.
Collapse
Affiliation(s)
- Weipeng Ji
- Department of Obstetrics and Gynecology, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, Jiangsu Province, China
| | - Yang Jin
- Department of Obstetrics and Gynecology, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou 213003, Jiangsu Province, China
| | - Wen Jiang
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University
| |
Collapse
|