1
|
Wang Z, Yu J, Zhu W, Hong X, Xu Z, Mao S, Huang L, Han P, He C, Song C, Xiang X. Unveiling the mysteries of extrachromosomal circular DNA: from generation to clinical relevance in human cancers and health. Mol Cancer 2024; 23:276. [PMID: 39707444 DOI: 10.1186/s12943-024-02187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are a type of circular DNAs originating from but independent of chromosomal DNAs. Nowadays, with the rapid development of sequencing and bioinformatics, the accuracy of eccDNAs detection has significantly improved. This advancement has consequently enhanced the feasibility of exploring the biological characteristics and functions of eccDNAs. This review elucidates the potential mechanisms of eccDNA generation, the existing methods for their detection and analysis, and their basic features. Furthermore, it focuses on the biological functions of eccDNAs in regulating gene expression under both physiological and pathological conditions. Additionally, the review summarizes the clinical implications of eccDNAs in human cancers and health.
Collapse
Affiliation(s)
- Zilong Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaying Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenli Zhu
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiaoning Hong
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhen Xu
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Shuang Mao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Lei Huang
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Peng Han
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- Department of Biology, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Chunxiao He
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Changze Song
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Xi Xiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
2
|
Lu L, Chen M, Zhang G, Liu Y, Xu X, Jiang Z, Xu Y, Liu T, Yang F, Ji G, Xu H. Comprehensive profiling of extrachromosomal circular DNAs in colorectal cancer progression. Sci Rep 2024; 14:28519. [PMID: 39557922 PMCID: PMC11574242 DOI: 10.1038/s41598-024-70455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/16/2024] [Indexed: 11/20/2024] Open
Abstract
Colorectal cancer (CRC) development involves a series of molecular events that drive the progression from normal colorectal epithelium to adenoma and eventually to invasive carcinoma. While the involvement of extrachromosomal circular DNAs (ecDNAs) in cancer genome remodeling has been established, their specific roles in CRC formation remain unclear. Using Circle-Sequencing and whole transcriptomic sequencing, we comprehensively profile circular DNAs and transcriptomes in healthy individuals, colorectal adenoma, and CRC patients. Our delineate analyses characterize the key circular DNAs involved in oncogene expression through the normal-adenoma-carcinoma continuum and highlight that immune response-related pathways and cell cycle pathways, are the dominat events in CRC progression. Notably, chr8 ecDNA 64950741-114379093 exhibits robust up-regulation during CRC progression. Further validation in a new cohort of 50 CRC patients confirms the higher expression of chr8 ecDNA 64950741-114379093 and its strong correlation with poor prognosis. Thus, these findings provide unprecedented insights into the landscape of circular DNAs in CRC and highlights the potential of chr8 ecDNA 64950741-114379093 as a promising biomarker and therapeutic target for CRC management.
Collapse
Affiliation(s)
- Lu Lu
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Xuhui District, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Mingjie Chen
- Shanghai NewCore Biotechnology Co.Ltd, Shanghai, 200240, China
| | - Guicheng Zhang
- Shanghai NewCore Biotechnology Co.Ltd, Shanghai, 200240, China
| | - Yujing Liu
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Xuhui District, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Xiangyuan Xu
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Xuhui District, Shanghai, 200032, China
| | - Zenghua Jiang
- Department of Gastrointestinal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yangxian Xu
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
- Department of Gastrointestinal Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Tao Liu
- Endoscopy Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Fan Yang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 Dongfang Road, Pudong District, Shanghai, 200127, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Guang Ji
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Xuhui District, Shanghai, 200032, China.
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China.
| | - Hanchen Xu
- China-Canada Center of Research for Digestive Diseases (ccCRDD), Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Xuhui District, Shanghai, 200032, China.
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China.
| |
Collapse
|
3
|
Taliento C, Morciano G, Nero C, Froyman W, Vizzielli G, Pavone M, Salvioli S, Tormen M, Fiorica F, Scutiero G, Scambia G, Giorgi C, Greco P, Pinton P. Circulating tumor DNA as a biomarker for predicting progression-free survival and overall survival in patients with epithelial ovarian cancer: a systematic review and meta-analysis. Int J Gynecol Cancer 2024; 34:906-918. [PMID: 38658022 DOI: 10.1136/ijgc-2024-005313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVES Circulating tumor DNA (ctDNA) is emerging as a potential prognostic biomarker in multiple tumor types. However, despite the many studies available on small series of patients with ovarian cancer, a recent systematic review and meta-analysis is lacking. The objective of this study was to determine the association of ctDNA with progression-free-survival and overall survival in patients with epithelial ovarian cancer. METHODS An electronic search was conducted using PubMed (MEDLINE), Embase, CENTRAL (Cochrane Library), and CINAHL-Complete from January 2000 to September 15, 2023. To be included in the analysis the studies had to meet the following pre-specified inclusion criteria: (1) evaluable ctDNA; (2) progression-free-survival and overall survival reported as hazard ratio (HR); and (3) the patient population had epithelial ovarian cancer at the time of ctDNA detection. We evaluated the association of ctDNA with progression-free survival and overall survival. Secondary outcomes focused on sub-group analysis of genomic alterations and international Federation of Gynecology and Obstetrics (FIGO) stage. RESULTS A total of 26 studies reporting on 1696 patients with epithelial ovarian cancer were included. The overall concordance rate between plasma-based and tissue-based analyses was approximately 62%. We found that a high level of ctDNA in epithelial ovarian cancer was associated with worse progression-free survival (HR 5.31, 95% CI 2.14 to 13.17, p<0.001) and overall survival (HR 2.98, 95% CI 1.86 to 4.76, p<0.0001). The sub-group analysis showed a greater than threefold increase in the risk of relapse in patients with positive HOXA9 meth-ctDNA (HR 3.84, 95% CI 1.57 to 9.41, p=0.003). CONCLUSIONS ctDNA was significantly associated with worse progression-free survival and overall survival in patients with epithelial ovarian cancer. Further prospective studies are needed. PROSPERO REGISTRATION NUMBER CRD42023469390.
Collapse
Affiliation(s)
- Cristina Taliento
- Department of Medical Sciences, Obstetrics and Gynecology Unit, "S. Anna" University Hospital, University of Ferrara, Ferrara, Italy
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Giampaolo Morciano
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Camilla Nero
- Department of Women and Child Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore Dipartimento Scienze della Vita e Sanità Pubblica, Rome, Italy
| | - Wouter Froyman
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, University Hospitals KU Leuven, Leuven, Belgium
| | - Giuseppe Vizzielli
- Department of Obstetrics and Gynecology, University of Udine Medical Area Department, Udine, Italy
| | - Matteo Pavone
- Department of Women and Child Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- IHU Strasbourg, Institute of Image Guided Surgery, Strasbourg, France
| | - Stefano Salvioli
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Mara Tormen
- Department of Medical Sciences, Obstetrics and Gynecology Unit, "S. Anna" University Hospital, University of Ferrara, Ferrara, Italy
| | | | - Gennaro Scutiero
- Department of Medical Sciences, Obstetrics and Gynecology Unit, "S. Anna" University Hospital, University of Ferrara, Ferrara, Italy
| | - Giovanni Scambia
- Department of Women and Child Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Pantaleo Greco
- Department of Medical Sciences, Obstetrics and Gynecology Unit, "S. Anna" University Hospital, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Zhou L, Tang W, Ye B, Zou L. Characterization, biogenesis model, and current bioinformatics of human extrachromosomal circular DNA. Front Genet 2024; 15:1385150. [PMID: 38746056 PMCID: PMC11092383 DOI: 10.3389/fgene.2024.1385150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Human extrachromosomal circular DNA, or eccDNA, has been the topic of extensive investigation in the last decade due to its prominent regulatory role in the development of disorders including cancer. With the rapid advancement of experimental, sequencing and computational technology, millions of eccDNA records are now accessible. Unfortunately, the literature and databases only provide snippets of this information, preventing us from fully understanding eccDNAs. Researchers frequently struggle with the process of selecting algorithms and tools to examine eccDNAs of interest. To explain the underlying formation mechanisms of the five basic classes of eccDNAs, we categorized their characteristics and functions and summarized eight biogenesis theories. Most significantly, we created a clear procedure to help in the selection of suitable techniques and tools and thoroughly examined the most recent experimental and bioinformatics methodologies and data resources for identifying, measuring and analyzing eccDNA sequences. In conclusion, we highlighted the current obstacles and prospective paths for eccDNA research, specifically discussing their probable uses in molecular diagnostics and clinical prediction, with an emphasis on the potential contribution of novel computational strategies.
Collapse
Affiliation(s)
- Lina Zhou
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Wenyi Tang
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Bo Ye
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Lingyun Zou
- School of Medicine, Chongqing University, Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing, China
- School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Wu N, Wei L, Zhu Z, Liu Q, Li K, Mao F, Qiao J, Zhao X. Innovative insights into extrachromosomal circular DNAs in gynecologic tumors and reproduction. Protein Cell 2024; 15:6-20. [PMID: 37233789 PMCID: PMC10762679 DOI: 10.1093/procel/pwad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Originating but free from chromosomal DNA, extrachromosomal circular DNAs (eccDNAs) are organized in circular form and have long been found in unicellular and multicellular eukaryotes. Their biogenesis and function are poorly understood as they are characterized by sequence homology with linear DNA, for which few detection methods are available. Recent advances in high-throughput sequencing technologies have revealed that eccDNAs play crucial roles in tumor formation, evolution, and drug resistance as well as aging, genomic diversity, and other biological processes, bringing it back to the research hotspot. Several mechanisms of eccDNA formation have been proposed, including the breakage-fusion-bridge (BFB) and translocation-deletion-amplification models. Gynecologic tumors and disorders of embryonic and fetal development are major threats to human reproductive health. The roles of eccDNAs in these pathological processes have been partially elucidated since the first discovery of eccDNA in pig sperm and the double minutes in ovarian cancer ascites. The present review summarized the research history, biogenesis, and currently available detection and analytical methods for eccDNAs and clarified their functions in gynecologic tumors and reproduction. We also proposed the application of eccDNAs as drug targets and liquid biopsy markers for prenatal diagnosis and the early detection, prognosis, and treatment of gynecologic tumors. This review lays theoretical foundations for future investigations into the complex regulatory networks of eccDNAs in vital physiological and pathological processes.
Collapse
Affiliation(s)
- Ning Wu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Ling Wei
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Qiang Liu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Kailong Li
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China
| | - Xiaolu Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| |
Collapse
|
6
|
Peng F, Wang S, Feng Z, Zhou K, Zhang H, Guo X, Xing J, Liu Y. Circulating cell-free mtDNA as a new biomarker for cancer detection and management. Cancer Biol Med 2023; 21:j.issn.2095-3941.2023.0280. [PMID: 37823689 PMCID: PMC10884534 DOI: 10.20892/j.issn.2095-3941.2023.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Affiliation(s)
- Fan Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Siyuan Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Zehui Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Kaixiang Zhou
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Huanqin Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Xu Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Jinliang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Yang Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| |
Collapse
|
7
|
Borah S, Mishra R, Dey S, Suchanti S, Bhowmick NA, Giri B, Haldar S. Prognostic Value of Circulating Mitochondrial DNA in Prostate Cancer and Underlying Mechanism. Mitochondrion 2023; 71:40-49. [PMID: 37211294 DOI: 10.1016/j.mito.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/03/2023] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
Circulating DNAs are considered as degraded DNA fragments of approximately 50-200 bp, found in blood plasma, consisting of cell-free mitochondrial and nuclear DNA. Such cell-free DNAs in the blood are found to be altered in different pathological conditions including lupus, heart disease, and malignancies. While nuclear DNAs are being used and being developed as a powerful clinical biomarker in liquid biopsies, mitochondrial DNAs (mtDNAs) are associated with inflammatory conditions including cancer progression. Patients with cancer including prostate cancer are found to have measurable concentrations of mitochondrial DNA in circulation in comparison with healthy controls. The plasma content of mitochondrial DNA is dramatically elevated in both prostate cancer patients and mouse models treated with the chemotherapeutic drug. Cell-free mtDNA, in its oxidized form, induced a pro-inflammatory condition and activates NLRP3-mediated inflammasome formation which causes IL-1β-mediated activation of growth factors. On the other hand, interacting with TLR9, mtDNAs trigger NF-κB-mediated complement C3a positive feedback paracrine loop and activate pro-proliferating signaling through upregulating AKT, ERK, and Bcl2 in the prostate tumor microenvironment. In this review, we discuss the growing evidence supporting cell-free mitochondrial DNA copy number, size, and mutations in mtDNA genes as potential prognostic biomarkers in different cancers and targetable prostate cancer therapeutic candidates impacting stromal-epithelial interactions essential for chemotherapy response.
Collapse
Affiliation(s)
- Supriya Borah
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles 90048, CA, USA
| | - Rajeev Mishra
- Department of Life Sciences, CSJM University, Kanpur, Uttar Pradesh 208012, India
| | - Sananda Dey
- Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Surabhi Suchanti
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles 90048, CA, USA; Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda 732103, India.
| | - Subhash Haldar
- Department of Biochemistry, Bose Institute, Kolkata 700091, India.
| |
Collapse
|
8
|
Zhao L, Jiang Y, Lei X, Yang X. Amazing roles of extrachromosomal DNA in cancer progression. Biochim Biophys Acta Rev Cancer 2023; 1878:188843. [PMID: 36464200 DOI: 10.1016/j.bbcan.2022.188843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
In cancers, extrachromosomal DNA (ecDNA) has gained renewed interest since its first discovery, presenting its roles in tumorigenesis. Because of the unique structure and genetic characteristics, extrachromosomal DNA shed new light on development, early diagnosis, treatment and prognosis of cancers. Occurs in cancer cells, extrachromosomal DNA, one dissociative circular extrachromosomal element, drives the amplification of oncogenes, promotes the transcription and lifts tumor heterogeneity to participate in tumorigenesis. Given its role act as messenger, extrachromosomal DNA is connected with drug resistance, tumor microenvironment, germline and aging. The diversity of space and time gives extrachromosomal DNA a crucial role in cancer progression that has been ignored for decades. Thus, in this review, we will focus on some unique information of extrachromosomal DNA and the regulation of oncogenes as well as its roles and possible mechanisms in tumorigenesis, which are of great significance for us to understand extrachromosomal DNA comprehensively in carcinogenic mechanism.
Collapse
Affiliation(s)
- Leilei Zhao
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China
| | - Yicun Jiang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
9
|
Kim JG, Kim SI, Song SH, Gu JY, Lee M, Kim HK. Diagnostic and prognostic role of circulating neutrophil extracellular trap markers and prekallikrein in patients with high-grade serous ovarian cancer. Front Oncol 2022; 12:992056. [PMID: 36620601 PMCID: PMC9813379 DOI: 10.3389/fonc.2022.992056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Tumor-promoting inflammation is among the hallmarks of cancer. Prekallikrein is among the acute-phase reactants in the inflammatory response; moreover, neutrophils release nuclear contents into the extracellular space to create neutrophil extracellular traps (NET). We aimed to investigate the diagnostic and prognostic utilities of circulating plasma NET markers and prekallikrein for high-grade serous ovarian cancer (HGSOC). Methods Circulating levels of three NET markers (histone-DNA complex, cell-free DNA, and neutrophil elastase) and prekallikrein were measured in 75 patients with HGSOC and 23 healthy controls. We used an area under the receiver operating characteristic curve (AUC) analysis to investigate their diagnostic and prognostic utilities for HGSOC. Results Compared with healthy controls, patients with HGSOC showed significantly higher levels of the three NET markers and prekallikrein. Patients with advanced-stage HGSOC showed significantly higher levels of the cell-free DNA (87.4 vs. 79.5 ng/ml; P = 0.013), compared with those with early-stage HGSOC. Further, the levels of histone-DNA complex, neutrophil elastase, and prekallikrein did not significantly differ according to the cancer stage. All markers showed significant diagnostic utility. Notably, a logistic regression-based model that comprised all four markers showed the strongest diagnostic power (AUC, 0.966; 95% confidence interval [CI], 0.933-1.000). Specifically, neutrophil elastase was identified as an independent poor prognostic factor for overall survival (adjusted hazard ratio [aHR], 10.17; 95% CI, 1.09-94.97; P = 0.042) and progression-free survival (aHR, 14.47; 95% CI, 1.52-137.35; P = 0.020) in patients with HGSOC. Conclusions The levels of the three NET markers and prekallikrein might be novel diagnostic and prognostic markers for HGSOC.
Collapse
Affiliation(s)
- Jisoo G. Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Hoon Song
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea,Department of Laboratory Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Ja-Yoon Gu
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Maria Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea,Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea,*Correspondence: Maria Lee, ; Hyun Kyung Kim,
| | - Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea,Department of Laboratory Medicine, Seoul National University Hospital, Seoul, South Korea,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea,*Correspondence: Maria Lee, ; Hyun Kyung Kim,
| |
Collapse
|
10
|
Li R, Wang Y, Li J, Zhou X. Extrachromosomal circular DNA (eccDNA): an emerging star in cancer. Biomark Res 2022; 10:53. [PMID: 35883211 PMCID: PMC9327165 DOI: 10.1186/s40364-022-00399-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/13/2022] [Indexed: 02/08/2023] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is defined as a type of circular DNA that exists widely in nature and is independent of chromosomes. EccDNA has attracted the attention of researchers due to its broad, random distribution, complex biogenesis and tumor-relevant functions. EccDNA can carry complete gene information, especially the oncogenic driver genes that are often carried in tumors, with increased copy number and high transcriptional activity. The high overexpression of oncogenes by eccDNA leads to malignant growth of tumors. Regardless, the exact generation and functional mechanisms of eccDNA in disease progression are not yet clear. There is, however, an emerging body of evidence characterizing that eccDNA can be generated from multiple pathways, including DNA damage repair pathways, breakage-fusion-bridge (BFB) mechanisms, chromothripsis and cell apoptosis, and participates in the regulation of tumor progression with multiplex functions. This up-to-date review summarizes and discusses the origins, biogenesis and functions of eccDNA, including its contribution to the formation of oncogene instability and mutations, the heterogeneity and cellular senescence of tumor cells, and the proinflammatory response of tumors. We highlight the possible cancer-related applications of eccDNA, such as its potential use in the diagnosis, targeted therapy and prognostic assessment of cancer.
Collapse
Affiliation(s)
- Ruomeng Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Ying Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
11
|
Tutanov O, Shtam T, Grigor’eva A, Tupikin A, Tsentalovich Y, Tamkovich S. Blood Plasma Exosomes Contain Circulating DNA in Their Crown. Diagnostics (Basel) 2022; 12:diagnostics12040854. [PMID: 35453902 PMCID: PMC9027845 DOI: 10.3390/diagnostics12040854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 01/13/2023] Open
Abstract
It is known that circulating DNA (cirDNA) is protected from nuclease activity by proteins that form macromolecular complexes with DNA. In addition, it was previously shown that cirDNA can bind to the outer surface of exosomes. NTA analysis and real-time PCR show that exosomes from healthy females (HF) or breast cancer patients (BCP) plasma contain less than 1.4 × 10−8 pg of DNA. Thus, only a minor part of cirDNA is attached to the outer side of the exosome as part of the vesicle crown: the share of exosomal DNA does not exceed 0.025% HF plasma DNA and 0.004% BCP plasma DNA. Treatment of plasma exosomes with DNase I with subsequent dot immunoassay reveals that H2a, H2b, and H3 histones are not part of the exosomal membrane, but are part of the cirDNA–protein macromolecular complex associated with the surface of the exosome either through interaction with DNA-binding proteins or with histone-binding proteins. Using bioinformatics approaches after identification by MALDI-TOF mass spectrometry, 16 exosomal DNA-binding proteins were identified. It was shown that four proteins—AIFM1, IGHM, CHD5, and KCNIP3—are candidates for DNA binding on the outer membrane of exosomes; the crown of exosomes may include five DNA-binding proteins: H2a, H2b, H3, IGHM, and ALB. Of note, AIFM1, IGHM, and CHD5 proteins are found only in HF plasma exosomes; KCNIP3 protein is identified only in BCP plasma exosomes; and H2a, H2b, H3, and ALB are revealed in all samples of plasma exosomes. Two histone-binding proteins, CHD5 and KDM6B, have been found in exosomes from HF plasma. The data obtained indicate that cirDNA preferentially binds to the outer membrane of exosomes by association with DNA-binding proteins.
Collapse
Affiliation(s)
- Oleg Tutanov
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Tatiana Shtam
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia;
| | - Alina Grigor’eva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.G.); (A.T.)
| | - Alexey Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.G.); (A.T.)
| | - Yuri Tsentalovich
- International Tomography Center, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Svetlana Tamkovich
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia;
- Correspondence:
| |
Collapse
|
12
|
Lu Y, Li L. The Prognostic Value of Circulating Tumor DNA in Ovarian Cancer: A Meta-Analysis. Technol Cancer Res Treat 2021; 20:15330338211043784. [PMID: 34817271 PMCID: PMC8649094 DOI: 10.1177/15330338211043784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Studies have shown that circulating tumor DNA (ctDNA) indicates a poor prognosis in ovarian cancer. In this study, meta-analysis was used to assess the relationship between ctDNA and the prognosis of patients with epithelial ovarian cancer. Methods: The clinical trials included in this study were obtained via a search of PubMed, the Cochrane Library, the Web of Science and Embase between the period of establishment and March 2020. We selected clinical studies using qualitative or quantitative ctDNA methods to analyse the prognosis of ovarian epithelial cancer, screened the studies according to the determined inclusion and exclusion criteria, and used the modified JADAD score scale and NOS scale for evaluation, with OS (overall survival) and PFS (progression-free survival) as end events. The Cochrane Evaluation Tool was used to evaluate the quality of the randomized controlled trials. Stata 15.0 software was used to combine the effect ratio (hazard ratio, HR) and its 95% confidence interval (CI). In addition, a source analysis of ctDNA specimens, an analysis of ctDNA detection methods and a subgroup and sensitivity analysis of FIGO staging were performed. Results: A total of 8 studies were included in this meta-analysis, and ctDNA was found to be an independent risk factor for patients with epithelial ovarian cancer (OS: HR = 2.36, 95% CI [1.76,3.17], P < .001; PFS: HR = 2.51, 95% CI [1.83,3.45]). Conclusions: The results of our analysis suggested that ctDNA is a potential biomarker that can be used to evaluate the prognosis of patients with ovarian cancer.
Collapse
Affiliation(s)
- Yuanyuan Lu
- 117981Guangxi Medical University Affiliated Cancer Hospital, Nanning, Guangxi, China
| | - Li Li
- 117981Guangxi Medical University Affiliated Cancer Hospital, Nanning, Guangxi, China
| |
Collapse
|
13
|
Karami Fath M, Akbari Oryani M, Ramezani A, Barjoie Mojarad F, Khalesi B, Delazar S, Anjomrooz M, Taghizadeh A, Taghizadeh S, Payandeh Z, Pourzardosht N. Extra chromosomal DNA in different cancers: Individual genome with important biological functions. Crit Rev Oncol Hematol 2021; 166:103477. [PMID: 34534658 DOI: 10.1016/j.critrevonc.2021.103477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer can be caused by various factors, including the malfunction of tumor suppressor genes and the hyper-activation of proto-oncogenes. Tumor-associated extrachromosomal circular DNA (eccDNA) has been shown to adversely affect human health and accelerate malignant actions. Whole-genome sequencing (WGS) on different cancer types suggested that the amplification of ecDNA has increased the oncogene copy number in various cancers. The unique structure and function of ecDNA, its profound significance in cancer, and its help in the comprehension of current cancer genome maps, renders it as a hotspot to explore the tumor pathogenesis and evolution. Illumination of the basic mechanisms of ecDNA may provide more insights into cancer therapeutics. Despite the recent advances, different features of ecDNA require further elucidation. In the present review, we primarily discussed the characteristics, biogenesis, genesis, and origin of ecDNA and later highlighted its functions in both tumorigenesis and therapeutic resistance of different cancers.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arefeh Ramezani
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Barjoie Mojarad
- Department of Radiology, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Sina Delazar
- Department of Radiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Anjomrooz
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arvin Taghizadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Taghizadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
14
|
Hong J, Zheng S, Jiang D. The contributions of extrachromosomal DNA elements in neoplasm progression. Am J Cancer Res 2021; 11:2417-2429. [PMID: 34249408 PMCID: PMC8263671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/13/2021] [Indexed: 06/13/2023] Open
Abstract
Extrachromosomal DNA (ecDNA) is a small, circular structure of DNA found outside chromosomes, in the cytoplasm and outside cells. Since the discovery of ecDNA in 1964, more studies have verified the significant prospect and application potential of its use in oncology. The presence of ecDNA is associated with a series of tumor activities such as the increasing or decreasing of oncogene copies, carcinogenic transmission, and activation of related signaling pathways. This review focuses on discussing the structure of ecDNA and its relevance in carcinogenesis, angiogenesis, drug resistance and metastasis.
Collapse
Affiliation(s)
- Jiawei Hong
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, China
- NHFPC Key Laboratory of Combined Multi-organ TransplantationHangzhou 310000, China
| | - Shusen Zheng
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, China
- NHFPC Key Laboratory of Combined Multi-organ TransplantationHangzhou 310000, China
- Key Laboratory of The Diagnosis and Treatment of Organ Transplantation, CAMSChina
- Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious DiseasesHangzhou 310000, China
| | - Donghai Jiang
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou 310000, China
- NHFPC Key Laboratory of Combined Multi-organ TransplantationHangzhou 310000, China
- Key Laboratory of The Diagnosis and Treatment of Organ Transplantation, CAMSChina
- Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for Diagnosis Treatment of Infectious DiseasesHangzhou 310000, China
| |
Collapse
|
15
|
Shukla P, Singh KK. The mitochondrial landscape of ovarian cancer: emerging insights. Carcinogenesis 2021; 42:663-671. [PMID: 33928357 PMCID: PMC8163040 DOI: 10.1093/carcin/bgab033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/18/2021] [Accepted: 04/20/2021] [Indexed: 02/02/2023] Open
Abstract
Ovarian cancer (OC) is known to be the most lethal cancer in women worldwide, and its etiology is poorly understood. Recent studies show that mitochondrial DNA (mtDNA) content as well as mtDNA and nuclear genes encoding mitochondrial proteins influence OC risk. This review presents an overview of role of mitochondrial genetics in influencing OC development and discusses the contribution of mitochondrial proteome in OC development, progression and therapy. A role of mitochondrial genetics in racial disparity is also highlighted. In-depth understanding of role of mitochondria in OC will help develop strategies toward prevention and treatment and improving overall survival in women with OC.
Collapse
Affiliation(s)
- Pallavi Shukla
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Molecular Endocrinology, Indian Council of Medical Research-National Institute for Research in Reproductive Health (ICMR-NIRRH), Mumbai, India
| | - Keshav K Singh
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
16
|
Liu S, Wu M, Wang F. Research Progress in Prognostic Factors and Biomarkers of Ovarian Cancer. J Cancer 2021; 12:3976-3996. [PMID: 34093804 PMCID: PMC8176232 DOI: 10.7150/jca.47695] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is a serious threat to women's health; its early diagnosis rate is low and prone to metastasis and recurrence. The current conventional treatment for ovarian cancer is a combination of platinum and paclitaxel chemotherapy based on surgery. The recurrence and progression of ovarian cancer with poor prognosis is a major challenge in treatment. With rapid advances in technology, understanding of the molecular pathways involved in ovarian cancer recurrence and progression has increased, biomarker-guided treatment options can greatly improve the prognosis of patients. This review systematically discusses and summarizes existing and new information on prognostic factors and biomarkers of ovarian cancer, which is expected to improve the clinical management of patients and lead to effective personalized treatment.
Collapse
Affiliation(s)
- Shuna Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210029
- National Key Clinical Department of Laboratory Medicine, Nanjing, China, 210029
| | - Ming Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210029
- National Key Clinical Department of Laboratory Medicine, Nanjing, China, 210029
| | - Fang Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210029
- National Key Clinical Department of Laboratory Medicine, Nanjing, China, 210029
| |
Collapse
|
17
|
Wang Y, Huang R, Zheng G, Shen J. Small ring has big potential: insights into extrachromosomal DNA in cancer. Cancer Cell Int 2021; 21:236. [PMID: 33902601 PMCID: PMC8077740 DOI: 10.1186/s12935-021-01936-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
Recent technical advances have led to the discovery of novel functions of extrachromosomal DNA (ecDNA) in multiple cancer types. Studies have revealed that cancer-associated ecDNA shows a unique circular shape and contains oncogenes that are more frequently amplified than that in linear chromatin DNA. Importantly, the ecDNA-mediated amplification of oncogenes was frequently found in most cancers but rare in normal tissues. Multiple reports have shown that ecDNA has a profound impact on oncogene activation, genomic instability, drug sensitivity, tumor heterogeneity and tumor immunology, therefore may offer the potential for cancer diagnosis and therapeutics. Nevertheless, the underlying mechanisms and future applications of ecDNA remain to be determined. In this review, we summarize the basic concepts, biological functions and molecular mechanisms of ecDNA. We also provide novel insights into the fundamental role of ecDNA in cancer.
Collapse
Affiliation(s)
- Yihao Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Rui Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Guopei Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| |
Collapse
|
18
|
Abstract
The liquid biopsy preserves a noninvasive technique to analyze promising biomarkers in cell-free bodyfluids, mainly in cell-free plasma. The most cells secrete extracellular vesicles into the extracellular place which can be isolated, analyzed easily due to the wide range of different protocols and commercial kits. The mitochondrial DNA isolated from biofluids can serve as new view in early diagnosis of various diseases (e.g. cancers, cardiovascular diseases). In this chapter, possible protocols of mitochondrial DNA copy number quantification are discussed presenting some ways to determine the mtDNA level of extracellular vesicles in different diseases.
Collapse
|
19
|
Looijaard SMLM, Te Lintel Hekkert ML, Wüst RCI, Otten RHJ, Meskers CGM, Maier AB. Pathophysiological mechanisms explaining poor clinical outcome of older cancer patients with low skeletal muscle mass. Acta Physiol (Oxf) 2021; 231:e13516. [PMID: 32478975 PMCID: PMC7757176 DOI: 10.1111/apha.13516] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022]
Abstract
Low skeletal muscle mass is highly prevalent in older cancer patients and affects 5% to 89% depending on the type and stage of cancer. Low skeletal muscle mass is associated with poor clinical outcomes such as post-operative complications, chemotherapy toxicity and mortality in older cancer patients. Little is known about the mediating pathophysiological mechanisms. In this review, we summarize proposed pathophysiological mechanisms underlying the association between low skeletal muscle mass and poor clinical outcomes in older cancer patients including a) systemic inflammation; b) insulin-dependent glucose handling; c) mitochondrial function; d) protein status and; e) pharmacokinetics of anticancer drugs. The mechanisms of altered myokine balance negatively affecting the innate and adaptive immune system, and altered pharmacokinetics of anticancer drugs leading to a relative overdosage of anticancer drugs are best-substantiated. The effects of glucose intolerance and circulating mitochondrial DNA as a consequence of low skeletal muscle mass are topics of interest for future research. Restoring myokine balance through physical exercise, exercise mimetics, neuro-muscular activation and adapting anticancer drug dosing on skeletal muscle mass could be targeted approaches to improve clinical outcomes in older cancer patients with low skeletal muscle mass.
Collapse
Affiliation(s)
- Stéphanie M L M Looijaard
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Miriam L Te Lintel Hekkert
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Rob C I Wüst
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - René H J Otten
- University Library, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Carel G M Meskers
- Department of Rehabilitation Medicine, Amsterdam University Medical Center, VU University Medical Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Andrea B Maier
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| |
Collapse
|
20
|
Abstract
Ovarian cancer has the worst survival rate because it is typically diagnosed at advanced stage. Despite treatment, the disease commonly recurs due to chemo-resistance. Liquid biopsy, based on minimally invasive blood tests, has the advantage of following tumor evolution in real time, offering novel insights on cancer prevention and treatment. Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating cell-free microRNAs (cfmiRNAs) and circulating exosomes represent the major components of liquid biopsy. In this chapter, we provide an overview of recent research on CTCs, ctDNA, cfmiRNAs and exosomes in ovarian cancer. We also focus on the clinical value of liquid biopsy in early diagnosis, prognosis, treatment response, as well as screening in the general population.
Collapse
Affiliation(s)
- Lydia Giannopoulou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, University Campus, Athens, Greece
| | - Evi S Lianidou
- Analysis of Circulating Tumor Cells Lab, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, University Campus, Athens, Greece.
| |
Collapse
|
21
|
Su S, Sun X, Zhang Q, Zhang Z, Chen J. CCL20 Promotes Ovarian Cancer Chemotherapy Resistance by Regulating ABCB1 Expression. Cell Struct Funct 2019; 44:21-28. [PMID: 30760665 DOI: 10.1247/csf.18029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ovarian cancer (OC) is one of prevalent tumors and this study aimed to explore CCL20's effects on doxorubicin resistance of OC and related mechanisms. Doxorubicin-resistant SKOV3 DR cells were established from SKOV3 cells via 6-month continuous exposure to gradient concentrations of doxorubicin. Quantitative PCR and Western blot assay showed that SKOV3 DR cells had higher level of CCL20 than SKOV3 cells, and doxorubicin upregulated CCL20 expression in SKOV3 cells. MTT and cell count assay found that CCL20 overexpression plasmid enhanced doxorubicin resistance of SKOV3 and OVCA433 cells compared to empty vector, as shown by the increase in cell viability. In contrast, CCL20 shRNA enhanced doxorubicin sensitivity of SKOV3 DR cells compared to control. CCL20 overexpression plasmid promoted NF-kB activation and positively regulated ABCB1 expression. Besides, ABCB1 overexpression plasmid enhanced the viability of SKOV3 and OVCA433 cells compared to empty vector under treatment with the same concentration of doxorubicin, whereas ABCB1 shRNA inhibited doxorubicin resistance of SKOV3 DR cells compared to control. In conclusion, CCL20 enhanced doxorubicin resistance of OC cells by regulating ABCB1 expression.Key words: CCL20, ovarian cancer, doxorubicin resistance, tumor-promoting, ABCB1.
Collapse
Affiliation(s)
- Shan Su
- Department of Gynecology, the Central Hospital of Zibo
| | - Xueqin Sun
- Department of Gynecology, the Central Hospital of Zibo
| | - Qinghua Zhang
- Department of Gynecology, the Central Hospital of Zibo
| | - Zhe Zhang
- Department of Gynecology, the Central Hospital of Zibo
| | - Ju Chen
- Department of Ultrasound, the Central Hospital of Zibo
| |
Collapse
|
22
|
Circulating Mitochondrial DNA is Linked to Progression and Prognosis of Epithelial Ovarian Cancer. Transl Oncol 2019; 12:1213-1220. [PMID: 31271962 PMCID: PMC6609736 DOI: 10.1016/j.tranon.2019.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/12/2019] [Accepted: 05/15/2019] [Indexed: 02/08/2023] Open
Abstract
As peripheral blood contains fluctuated levels of circulating cell-free mitochondrial DNA (ccf mtDNA), we aimed to evaluate ccf mtDNA as a biomarker for diagnosis and prognosis of epithelial ovarian cancer (EOC). In the present study, we recruited 165 EOC patients and 60 healthy women. Quantitative RT-PCR was applied to amplify 79-bp and 230-bp fragments of the mitochondrial 16 s RNA gene in sera of these participants. MtDNA integrity was defined as the ratio of long to short mtDNA fragments. We observed that the levels of mtDNA79 and mtDNA230 were significantly increased (P = .0001), whereas the mtDNA integrity (P = .0001) was decreased in EOC patients compared with those in healthy controls. MtDNA79 showed a sensitivity of 90.3% and a specificity of 81.7% (AUC = 0.900) to discriminate EOC from healthy controls. Moreover, the amounts of mtDNA79 (P = .0001, P = .012, P = .039) and mtDNA230 (P = .0001, P = .042) continuously raised from healthy controls over FIGO I-II to FIGO III and IV, with highest levels of mtDNA79 (P = .0001) and mtDNA230 (P = .0001) in FIGO III and IV. Increasing levels of mtDNA79 (P = .003, P = .0001) and mtDNA230 (P = .041, P = .0001) were also associated with lymph node metastasis and CA125 values. The higher levels of mtDNA79 (P = .0001; HR 3.2, 95%CI:1.6-6.3) and mtDNA230 (borderline P = .048, HR 0.9, 95%CI:0.9-1.0) also correlated with poor patients' overall survival, of which mtDNA79 could act as an independent factor for overall survival. Our data show a significant association of increasing levels of ccf mtDNA with EOC progress and poor prognosis.
Collapse
|
23
|
Cervena K, Vodicka P, Vymetalkova V. Diagnostic and prognostic impact of cell-free DNA in human cancers: Systematic review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:100-129. [PMID: 31416571 DOI: 10.1016/j.mrrev.2019.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
|
24
|
Keserű JS, Soltész B, Lukács J, Márton É, Szilágyi-Bónizs M, Penyige A, Póka R, Nagy B. Detection of cell-free, exosomal and whole blood mitochondrial DNA copy number in plasma or whole blood of patients with serous epithelial ovarian cancer. J Biotechnol 2019; 298:76-81. [PMID: 31002856 DOI: 10.1016/j.jbiotec.2019.04.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 01/05/2023]
Abstract
Ovarian tumor is one of the leading causes of cancer among women. Patients are diagnosed at an advanced stage, usually. There is a need for new specific and sensitive biomarkers. Mitochondrial DNA copy number change was observed in various cancers. Our aim was to detect mitochondrial DNA copy number in whole blood (wb-mtDNA) and in plasma (cell-free and exosome encapsulated mtDNA) in patients with serous epithelial ovarian tumor. DNA was isolated from EDTA blood and plasma obtained from 24 patients and 24 healthy controls. Exosomes were isolated from cell-free plasma, and exosome encapsulated DNA (exoDNA) was extracted. Quantitative-real-time PCR was performed with Human Mitochondrial DNA (mtDNA) Monitoring Primer Set. Kruskall‑Wallis and Mann‑Whitney U test were used for data analysis. Wb-mtDNA copy number was significantly different among healthy controls and patients in multiple comparison (p = 0.0090 considering FIGO stage independently, and p = 0.0048 considering early- and late-stage cancers). There was a significant decrease among early-stage, all advanced stage and all cancer patients (FIGO I: 32.5 ± 8.3, p = 0.0061; FIGO III + IV: 37.2 ± 13.7 p = 0.0139; FIGO I + III + IV: 35.6 ± 12.2, p = 0.0017) or FIGO III patients alone (32.8 ± 5.6, p = 0.00089) compared to healthy controls. We found significant increase in copy number in exosomal mtDNA in cancer patients (236.0 ± 499.0, p = 0.0155), advanced-stage cancer patients (333.0 ± 575.0, p = 0.0095), of FIGO III (362.0 ± 609.2, p = 0.0494), and FIGO IV (304.0 ± 585.0, p = 0.0393) patients alone but not in samples of FIGO I patients (10.0 ± 3.5, p = 0.3907). In multiple comparison the increase was significant considering early- and late-stage cancers (p = 0.0253). Cell-free mtDNA copy numbers were not increased significantly. We found the highest copy number of mtDNA in exosomes, followed by plasma and peripheral blood in late-stage cancer patients. We observed significant difference in wb-mtDNA copy number between healthy controls and both early- and late-stage cancer patients.
Collapse
Affiliation(s)
- Judit Szilvia Keserű
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Lukács
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Márton
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Melinda Szilágyi-Bónizs
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Róbert Póka
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|