1
|
Xin C, Jia P, Zhao Y, Cheng Z, Liu W, Di P, Li W, Zhu H. Antioxidant effects of Gastrodia elata polysaccharide-based hydrogels loaded with puerarin/gelatin microspheres for D-galactose-induced aging-skin wound healing. Int J Biol Macromol 2025; 296:139809. [PMID: 39805458 DOI: 10.1016/j.ijbiomac.2025.139809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/18/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
The healing of wounds in aging skin is a challenging issue that has not been thoroughly studied. Composite hydrogels made from natural polysaccharides have shown potential as dressings for various types of wounds. In this study, we prepared a polysaccharide-based composite hydrogel to provide a new strategy for treating aging skin wounds. First, chitosan (CS) was modified and Gastrodin (GAS) was grafted onto its main chain structure to obtain GAS/CS. Then GAS/CS was mixed with oxidized Gastrodia elata polysaccharides (GEP) to form a hydrogel using the principle of adsorbent reaction, and Puerarin (PUE), a natural plant ingredient, was embedded by gelatin microspheres and then loaded into the hydrogel. As a result, the composite hydrogel effectively reduced oxidative stress in tissue cells at the wound site and inhibited bacterial growth. It also reduced inflammation, promoted angiogenesis, and enhanced collagen deposition, which facilitated the repair of all aspects of the wound healing process in aging mouse skin. In short, this study explored the anti-aging effects of polysaccharides from Gastrodia elata, which might serve as both a treatment and an auxiliary for aging skin wounds. Additionally, the Gastrodia elata polysaccharide hydrogel was expected to be a promising drug carrier for skin repair.
Collapse
Affiliation(s)
- Chenran Xin
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Jilin Agricultural University, Changchun 130118, China
| | - Pinhui Jia
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhiqiang Cheng
- Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Jilin Agricultural University, Changchun 130118, China; College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Peng Di
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Hongyan Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
2
|
Maldonado-Cárceles AB, Souter I, Li MC, Mitsunami M, Dimitriadis I, Ford JB, Mínguez-Alarcón L, Chavarro JE. Antioxidant Intake and Ovarian Reserve in Women Attending a Fertility Center. Nutrients 2025; 17:554. [PMID: 39940413 PMCID: PMC11820690 DOI: 10.3390/nu17030554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES The aim of this study was to investigate the association between antioxidant intake and antral follicle count (AFC), a marker of ovarian reserve, in women attending a fertility clinic. METHODS We conducted an observational study with 567 women undergoing infertility evaluation at the Massachusetts General Hospital Fertility Center, who were enrolled in the Environment and Reproductive Health (EARTH) study. Participants filled out the lifestyle and health questionnaires and a validated food frequency questionnaire (FFQ) for assessing habitual dietary intake and underwent a transvaginal ultrasound to measure AFC. Intake of nutrients with direct antioxidant capacity (vitamin A, C, and E and carotenoids) and intake of antioxidant food sources were estimated from the FFQ. Adjusted Poisson regression models were fitted to assess the relationships between antioxidants and AFC while adjusting for potential confounders. Non-linearity was assessed with restricted cubic splines. RESULTS The median (interquartile range) age and AFC of participants were 35.0 (32.0-38.0) years and 13 (9-18), respectively. Our findings revealed a non-linear association between lycopene intake and AFC. There was a positive linear association with the highest AFC among women consuming approximately 6000 mcg/day of lycopene (p for non-linearity = 0.003). An inverse association was observed between retinol intake, predominantly from dairy foods, and AFC among women aged under 35 years (p-trend < 0.001 and 0.01, respectively). CONCLUSIONS Our findings suggest that lycopene intake might influence the ovarian reserve in fertility patients. The observed inverse association with retinol, if confirmed, may reflect biological mechanisms different from oxidative stress. The underlying mechanisms of these associations remain to be elucidated and warrant further investigation.
Collapse
Affiliation(s)
- Ana B. Maldonado-Cárceles
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA; (A.B.M.-C.); (M.M.)
- Department of Health and Social Sciences, Division of Preventive Medicine and Public Health, University of Murcia School of Medicine, 30100 Espinardo, Murcia, Spain
| | - Irene Souter
- Fertility Center, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, 32 Fruit Street, Suite 10A, Boston, MA 02114, USA; (I.S.); (I.D.)
| | - Ming-Chieh Li
- Department of Health Promotion and Health Education, National Taiwan Normal University College of Education, Taipei 106, Taiwan;
| | - Makiko Mitsunami
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA; (A.B.M.-C.); (M.M.)
| | - Irene Dimitriadis
- Fertility Center, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, 32 Fruit Street, Suite 10A, Boston, MA 02114, USA; (I.S.); (I.D.)
| | - Jennifer B. Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA; (J.B.F.); (L.M.-A.)
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA; (J.B.F.); (L.M.-A.)
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Jorge E. Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA; (A.B.M.-C.); (M.M.)
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
3
|
Pouladvand N, Azarnia M, Zeinali H, Fathi R, Tavana S. An overview of different methods to establish a murine premature ovarian failure model. Animal Model Exp Med 2024; 7:835-852. [PMID: 39219374 PMCID: PMC11680483 DOI: 10.1002/ame2.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024] Open
Abstract
Premature ovarian failure (POF)is defined as the loss of normal ovarian function before the age of 40 and is characterized by increased gonadotropin levels and decreased estradiol levels and ovarian reserve, often leading to infertility. The incomplete understanding of the pathogenesis of POF is a major impediment to the development of effective treatments for this disease, so the use of animal models is a promising option for investigating and identifying the molecular mechanisms involved in POF patients and developing therapeutic agents. As mice and rats are the most commonly used models in animal research, this review article considers studies that used murine POF models. In this review based on the most recent studies, first, we introduce 10 different methods for inducing murine POF models, then we demonstrate the advantages and disadvantages of each one, and finally, we suggest the most practical method for inducing a POF model in these animals. This may help researchers find the method of creating a POF model that is most appropriate for their type of study and suits the purpose of their research.
Collapse
Affiliation(s)
- Negar Pouladvand
- Department of Embryology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
- Department of Animal Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Mahnaz Azarnia
- Department of Animal Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Hadis Zeinali
- Department of Animal Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| |
Collapse
|
4
|
Ma LZ, Wang A, Lai YH, Zhang J, Zhang XF, Chen SL, Zhou XY. USP14 inhibition promotes DNA damage repair and represses ovarian granulosa cell senescence in premature ovarian insufficiency. J Transl Med 2024; 22:834. [PMID: 39261935 PMCID: PMC11389224 DOI: 10.1186/s12967-024-05636-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a condition characterized by a substantial decline or loss of ovarian function in women before the age of 40. However, the pathogenesis of POI remains to be further elucidated, and specific targeted drugs which could delay or reverse ovarian reserve decline are urgently needed. Abnormal DNA damage repair (DDR) and cell senescence in granulosa cells are pathogenic mechanisms of POI. Ubiquitin-specific protease 14 (USP14) is a key enzyme that regulates the deubiquitylation of DDR-related proteins, but whether USP14 participates in the pathogenesis of POI remains unclear. METHODS We measured USP14 mRNA expression in granulosa cells from biochemical POI (bPOI) patients. In KGN cells, we used IU1 and siRNA-USP14 to specifically inhibit USP14 and constructed a cell line stably overexpressing USP14 to examine its effects on DDR function and cellular senescence in granulosa cells. Next, we explored the therapeutic potential of IU1 in POI mouse models induced by D-galactose. RESULTS USP14 expression in the granulosa cells of bPOI patients was significantly upregulated. In KGN cells, IU1 treatment and siUSP14 transfection decreased etoposide-induced DNA damage levels, promoted DDR function, and inhibited cell senescence. USP14 overexpression increased DNA damage, impaired DDR function, and promoted cell senescence. Moreover, IU1 treatment and siUSP14 transfection increased nonhomologous end joining (NHEJ), upregulated RNF168, Ku70, and DDB1, and increased ubiquitinated DDB1 levels in KGN cells. Conversely, USP14 overexpression had the opposite effects. Intraperitoneal IU1 injection alleviated etoposide-induced DNA damage in granulosa cells, ameliorated the D-galactose-induced POI phenotype, promoted DDR, and inhibited cell senescence in ovarian granulosa cells in vivo. CONCLUSIONS Upregulated USP14 in ovarian granulosa cells may play a role in POI pathogenesis, and targeting USP14 may be a potential POI treatment strategy. Our study provides new insights into the pathogenesis of POI and a novel POI treatment strategy.
Collapse
Affiliation(s)
- Lin-Zi Ma
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, Guangdong, 510515, China
| | - Ao Wang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, Guangdong, 510515, China
| | - Yun-Hui Lai
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, Guangdong, 510515, China
| | - Jun Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, Guangdong, 510515, China
| | - Xiao-Fei Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, Guangdong, 510515, China
| | - Shi-Ling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, Guangdong, 510515, China.
| | - Xing-Yu Zhou
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Northern Road, Guangzhou, Guangdong, 510515, China.
- Department of Reproductive Medicine Centre, Guangzhou First People's Hospital, South China University of Technology, No. 1 Panfu Road, Guangzhou, Guangdong, 510180, China.
| |
Collapse
|
5
|
Su C, Zhang R, Zhang X, Feng X, Wu Q, Gao Y, Hao J, Mu YL. Honghua Xiaoyao tablet combined with estradiol improves ovarian function in D-galactose-induced aging mice by reducing apoptosis and affecting the release of reproductive hormones: an in vivo study. Front Pharmacol 2024; 15:1394941. [PMID: 38903998 PMCID: PMC11187083 DOI: 10.3389/fphar.2024.1394941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Context: It is very necessary to delay ovarian aging and prevent age-related health problems. The active ingredient in Honghua Xiaoyao tablet (HHXYT) has the effects of anti-oxidation, anti-inflammation, immune regulation and so on. Objective: To explore the effect and mechanism of Honghua Xiaoyao tablet on aging model mice. Materials and methods: The aging model was established by intraperitoneal injection of D-galactose in model mice. The mice in the HHXYT-L,M,H group were given 0.3 g/kg, 0.6 g/kg and 1.2 g/kg Honghua Xiaoyao tablet suspension respectively, and the HHXYT-M + E2 group was given 0.6 g/kg HHXYT +0.13 mg/kg estradiol valerate for 30 days. In this study, ELISA, HE, Western blot, IH and TUNEL were used. Results: HHXYT + E2 can improve the gonadal index, estrous cycle of aging mice. In HHXYT-M + E2 group, the level of FSH and LH decreased, while E2 and AMH increased significantly. The number of growing follicles in HHXYT-M + E2 group increased, which was better than that of HHXYT alone. Western blot results showed that HHXYT-M + E2 group decreased the expression of Bax, cleaved-Parp, cleaved-Casp-3 and CytC molecules and increased the expression of Bcl-2 in ovarian tissue. FSHR expression decreased in model group and increased in HHXYT group. TUNEL staining showed that the number of apoptotic cells in HHXYT group was reduced, and the HHXYT-M + E2 group was the most significantly. Discussion and conclusion: HHXYT can improve the level of sex hormones and increase the number of growing follicles in aging mice. HHXYT-M + E2 group has the best effect, and its mechanism may be related to reducing ovarian granulosa cell apoptosis.
Collapse
Affiliation(s)
- Chan Su
- Department of Gynecology, Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
- Department of Gynecology, Taiyuan Maternal and Child Health Hospital, Taiyuan, China
| | - Ruihong Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Xiujuan Zhang
- Department of Gynecology, Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoning Feng
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Qiong Wu
- The Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiwei Gao
- The Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Hao
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Yu-lan Mu
- Department of Gynecology, Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
6
|
Derks B, Rivera-Cruz G, Hagen-Lillevik S, Vos EN, Demirbas D, Lai K, Treacy EP, Levy HL, Wilkins-Haug LE, Rubio-Gozalbo ME, Berry GT. The hypergonadotropic hypogonadism conundrum of classic galactosemia. Hum Reprod Update 2023; 29:246-258. [PMID: 36512573 PMCID: PMC9976963 DOI: 10.1093/humupd/dmac041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/19/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hypergonadotropic hypogonadism is a burdensome complication of classic galactosemia (CG), an inborn error of galactose metabolism that invariably affects female patients. Since its recognition in 1979, data have become available regarding the clinical spectrum, and the impact on fertility. Many women have been counseled for infertility and the majority never try to conceive, yet spontaneous pregnancies can occur. Onset and mechanism of damage have not been elucidated, yet new insights at the molecular level are becoming available that might greatly benefit our understanding. Fertility preservation options have expanded, and treatments to mitigate this complication either by directly rescuing the metabolic defect or by influencing the cascade of events are being explored. OBJECTIVE AND RATIONALE The aims are to review: the clinical picture and the need to revisit the counseling paradigm; insights into the onset and mechanism of damage at the molecular level; and current treatments to mitigate ovarian damage. SEARCH METHODS In addition to the work on this topic by the authors, the PubMed database has been used to search for peer-reviewed articles and reviews using the following terms: 'classic galactosemia', 'gonadal damage', 'primary ovarian insufficiency', 'fertility', 'animal models' and 'fertility preservation' in combination with other keywords related to the subject area. All relevant publications until August 2022 have been critically evaluated and reviewed. OUTCOMES A diagnosis of premature ovarian insufficiency (POI) results in a significant psychological burden with a high incidence of depression and anxiety that urges adequate counseling at an early stage, appropriate treatment and timely discussion of fertility preservation options. The cause of POI in CG is unknown, but evidence exists of dysregulation in pathways crucial for folliculogenesis such as phosphatidylinositol 3-kinase/protein kinase B, inositol pathway, mitogen-activated protein kinase, insulin-like growth factor-1 and transforming growth factor-beta signaling. Recent findings from the GalT gene-trapped (GalTKO) mouse model suggest that early molecular changes in 1-month-old ovaries elicit an accelerated growth activation and burnout of primordial follicles, resembling the progressive ovarian failure seen in patients. Although data on safety and efficacy outcomes are still limited, ovarian tissue cryopreservation can be a fertility preservation option. Treatments to overcome the genetic defect, for example nucleic acid therapy such as mRNA or gene therapy, or that influence the cascade of events are being explored at the (pre-)clinical level. WIDER IMPLICATIONS Elucidation of the molecular pathways underlying POI of any origin can greatly advance our insight into the pathogenesis and open new treatment avenues. Alterations in these molecular pathways might serve as markers of disease progression and efficiency of new treatment options.
Collapse
Affiliation(s)
- Britt Derks
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands.,GROW, Maastricht University, Maastricht, The Netherlands.,European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member and United for Metabolic Diseases Member
| | - Greysha Rivera-Cruz
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Synneva Hagen-Lillevik
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
| | - E Naomi Vos
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands.,GROW, Maastricht University, Maastricht, The Netherlands.,European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member and United for Metabolic Diseases Member
| | - Didem Demirbas
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kent Lai
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, UT, USA
| | - Eileen P Treacy
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member and United for Metabolic Diseases Member.,National Centre for Inherited Metabolic Disorders, Mater Misericordiae University Hospital, Dublin, Ireland.,School of Medicine, Trinity College, Dublin 2, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Harvey L Levy
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Louise E Wilkins-Haug
- Division of Maternal Fetal Medicine, Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Estela Rubio-Gozalbo
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands.,GROW, Maastricht University, Maastricht, The Netherlands.,European Reference Network for Hereditary Metabolic Disorders (MetabERN) Member and United for Metabolic Diseases Member
| | - Gerard T Berry
- Division of Genetics & Genomics, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Geng Z, Guo H, Li Y, Liu Y, Zhao Y. Stem cell-derived extracellular vesicles: A novel and potential remedy for primary ovarian insufficiency. Front Cell Dev Biol 2023; 11:1090997. [PMID: 36875770 PMCID: PMC9977284 DOI: 10.3389/fcell.2023.1090997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Primary ovarian insufficiency (POI) is an essential cause of young female fertility loss. At present, there are many treatments for primary ovarian insufficiency, but due to the complexity of the pathogenesis of primary ovarian insufficiency, the efficacy still could not be satisfactory. Stem cell transplantation is a feasible intervention protocol for primary ovarian insufficiency. However, its wide application in the clinic is limited by some defects such as tumorigenic and controversial ethical issues. Stem cell-derived extracellular vesicles (EVs) represent an important mode of intercellular communication attracting increasing interest. It is well documented that stem cell-derived extracellular vesicles for primary ovarian insufficiency with exciting therapeutic effects. Studies have found that stem cell-derived extracellular vesicles could improve ovarian reserve, increase the growth of follicles, reduce follicle atresia, and restore hormone levels of FSH and E2. Its mechanisms include inhibiting ovarian granulosa cells (GCs) apoptosis, reactive oxygen species, and inflammatory response and promoting granulosa cells proliferation and angiogenesis. Thus, stem cell-derived extracellular vesicles are a promising and potential method for primary ovarian insufficiency patients. However, stem cell-derived extracellular vesicles are still a long way from clinical translation. This review will provide an overview of the role and the mechanisms of stem cell-derived extracellular vesicles in primary ovarian insufficiency, and further elaborate on the current challenges. It may suggest new directions for future research.
Collapse
Affiliation(s)
- Zixiang Geng
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hailing Guo
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- Department of Dermatology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Yongfang Zhao
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Mirzaei R, Bidgoli SA, Khosrokhavar R, Shoeibi S, Ashtiani HA. Increased risk of primary ovarian insufficiency by high-fructose diet consumption: a 90-day study in female rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7415-7426. [PMID: 36040692 DOI: 10.1007/s11356-022-22258-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
There is ambiguous evidence that high-fructose diet can induce toxicity in different organ systems but its endocrine disrupting effects by abnormal changes in female reproductive organs is poorly evidenced. This study aimed to address the reproductive safety of high fructose diet through clinical, biochemical, hormonal, histopathological, and immunohistochemical analysis. For this purpose, 5-6 weeks mature female Wistar rats were divided in three groups and each five animals/group exposed to standard chow + water + HFCS-55, standard chow + water + sucrose 75%w/v and standard chow + water for 90 days. Remarkable increase in most lipid profile factors and total body weights of HFCS-55 fed rats and sucrose fed rats were detected in similar pattern compared to control. At the same time, a battery of differential signs and symptoms in HFCS-fed groups including squamous metaplasia in the uterine tissue and ovarian congestion, significant increase in FSH and LH levels, meaningful decreased serum testosterone and 17β-estradiol levels, and strong androgen receptor expression in ovaries and uterine of HFCS group of animals were recorded compared to other two study groups. These thought-provoking signs and signals of fructose induced reproductive toxicity in this model emphasis the contribution of HFCS-55 to deteriorated ovarian and endometrial health and increased risk primary ovarian insufficiency (POI) in women.
Collapse
Affiliation(s)
- Roya Mirzaei
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Arbabi Bidgoli
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Roya Khosrokhavar
- Food and Drug Laboratory Research Center, Food and Drug Administration, MOH&ME, Tehran, Iran
| | - Shahram Shoeibi
- Food and Drug Laboratory Research Center, Food and Drug Administration, MOH&ME, Tehran, Iran
| | - Hamidreza Ahmadi Ashtiani
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Tramice A, Paris D, Manca A, Guevara Agudelo FA, Petrosino S, Siracusa L, Carbone M, Melck D, Raymond F, Piscitelli F. Analysis of the oral microbiome during hormonal cycle and its alterations in menopausal women: the "AMICA" project. Sci Rep 2022; 12:22086. [PMID: 36543896 PMCID: PMC9772230 DOI: 10.1038/s41598-022-26528-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The maintenance of human health is dependent on a symbiotic relationship between humans and associated bacteria. The diversity and abundance of each habitat's signature microbes vary widely among body areas and among them the oral microbiome plays a key role. Significant changes in the oral cavity, predominantly at salivary and periodontal level, have been associated with changes in estrogen levels. However, whether the oral microbiome is affected by hormonal level alterations is understudied. Hence the main objective pursued by AMICA project was to characterize the oral microbiome (saliva) in healthy women through: profiling studies using "omics" technologies (NMR-based metabolomics, targeted lipidomics by LC-MS, metagenomics by NGS); SinglePlex ELISA assays; glycosidase activity analyses and bioinformatic analysis. For this purpose, thirty-nine medically healthy women aged 26-77 years (19 with menstrual cycle and 20 in menopause) were recruited. Participants completed questionnaires assessing detailed medical and medication history and demographic characteristics. Plasmatic and salivary levels of sexual hormones were assessed (FSH, estradiol, LH and progesteron) at day 3 and 14 for women with menstrual cycle and only once for women in menopause. Salivary microbiome composition was assessed through meta-taxonomic 16S sequencing and overall, the salivary microbiome of most women remained relatively stable throughout the menstrual cycle and in menopause. Targeted lipidomics and untargeted metabolomics profiling were assessed through the use of LC-MS and NMR spectroscopy technologies, respectively and significant changes in terms of metabolites were identified in saliva of post-menopausal women in comparison to cycle. Moreover, glycosyl hydrolase activities were screened and showed that the β-D-hexosaminidase activity was the most present among those analyzed. Although this study has not identified significant alterations in the composition of the oral microbiome, multiomics analysis have revealed a strong correlation between 2-AG and α-mannosidase. In conclusion, the use of a multidisciplinary approach to investigate the oral microbiome of healthy women provided some indication about microbiome-derived predictive biomarkers that could be used in the future for developing new strategies to help to re-establish the correct hormonal balance in post-menopausal women.
Collapse
Affiliation(s)
- A. Tramice
- grid.473581.c0000 0004 1761 6004CNR Istituto Di Chimica Biomolecolare, Pozzuoli (NA), Italy
| | - D. Paris
- grid.473581.c0000 0004 1761 6004CNR Istituto Di Chimica Biomolecolare, Pozzuoli (NA), Italy
| | - A. Manca
- CNR Istituto di Ricerca Genetica e Biomedica (IRGB), Sassari, Italy
| | | | - S. Petrosino
- grid.473581.c0000 0004 1761 6004CNR Istituto Di Chimica Biomolecolare, Pozzuoli (NA), Italy ,Epitech Group SpA, Saccolongo (PD), Italy
| | - L. Siracusa
- grid.473581.c0000 0004 1761 6004CNR Istituto Di Chimica Biomolecolare, Pozzuoli (NA), Italy
| | - M. Carbone
- grid.473581.c0000 0004 1761 6004CNR Istituto Di Chimica Biomolecolare, Pozzuoli (NA), Italy
| | - D. Melck
- grid.473581.c0000 0004 1761 6004CNR Istituto Di Chimica Biomolecolare, Pozzuoli (NA), Italy
| | - F. Raymond
- grid.23856.3a0000 0004 1936 8390Université Laval, Québéc City, Canada
| | - F. Piscitelli
- grid.473581.c0000 0004 1761 6004CNR Istituto Di Chimica Biomolecolare, Pozzuoli (NA), Italy
| |
Collapse
|
10
|
Han Q, Chen ZJ, Du Y. Dietary supplementation for female infertility: Recent advances in the nutritional therapy for premature ovarian insufficiency. Front Microbiol 2022; 13:1001209. [PMID: 36466679 PMCID: PMC9712792 DOI: 10.3389/fmicb.2022.1001209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/01/2022] [Indexed: 08/27/2023] Open
Abstract
Premature ovarian insufficiency (POI) ranks top in the reproductive disorders that may impair multiple functioning systems, reduce the quality of life and ultimately deprive patients of their fertility among women. Symptoms can be partially alleviated by present hormone replacement therapy that cannot improve conception or decrease occurrence rates of systemic complication. Nutritional dietary supplements are attracting more and more attention because of their safety, bioavailability, and efficacy for well-being. Nutrients in the daily food are composed of carbohydrates, fat and lipoprotein, protein and polypeptide, vitamins, and vegetable or fruits containing phytoestrogens. These are functional nutrients due to the proliferative, anti-inflammatory, anti-oxidant, and mitochondria-protective potential during the course of menopause. Apart from dietary nutrients, microbe-related nutritional substances, including probiotics, prebiotics and the combination-synbiotics, display high potential as well in supporting estrous cycle, ovarian viability and modulating other vital reproductive functions. The present review will discuss dietary and microbial nutrients and their roles and applications in the living body based upon animal or human research, evaluate possible effect mechanisms from molecular, cellular and tissue levels, and provide insights into nutritional therapy for prolonging reproductive lifespan in female patients.
Collapse
Affiliation(s)
- Qixin Han
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
11
|
Yin L, Xu L, Chen B, Zheng X, Chu J, Niu Y, Ma T. SRT1720 plays a role in oxidative stress and the senescence of human trophoblast HTR8/SVneo cells induced by D-galactose through the SIRT1/FOXO3a/ROS signalling pathway. Reprod Toxicol 2022; 111:1-10. [PMID: 35562067 DOI: 10.1016/j.reprotox.2022.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/15/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022]
Abstract
D-galactose (D-gal) is a reducing sugar widely distributed in food. In a pregnant animal model exposed to D-gal, D-gal was found to have toxic effects on both the mother and foetus through oxidative stress. However, little is known about the effect of D-gal exposure on the placenta and its underlying mechanism. In this study, we evaluated the effects of D-gal on HTR8/SVneo cells and the mechanisms in vitro. In the present study, the activity of HTR8/SVneo human trophoblasts decreased in a time- and concentration-dependent manner after exposure to D-gal. D-gal resulted in premature senescence of HTR8/SVneo cells, as confirmed by assessing β-galactosidase (SA-β-gal) activity and the expression of senescence-related factor p21. We also verified the damage of oxidative stress induced by D-gal by measuring the expression of reactive oxygen species (ROS), sirtuin 1 (SIRT1) and forkhead box O (FOXO) 3a. SRT1720, as a SIRT1 activator, mitigated D-gal-induced oxidative stress and senescence by upregulating SIRT1 and FOXO3a expression and reducing ROS production. Our data suggest that D-gal may induce HTR8/SVneo premature ageing through the SIRT1/FOXO3a/ROS signalling pathway mediated by oxidative stress and that SIRT1 protects cells from this damage.
Collapse
Affiliation(s)
- Lanlan Yin
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lihua Xu
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Bi Chen
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiudan Zheng
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jiaqi Chu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yanru Niu
- Laboratory of Bone Science, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Tianzhong Ma
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
12
|
Hagen-Lillevik S, Rushing JS, Appiah L, Longo N, Andrews A, Lai K, Johnson J. Pathophysiology and management of classic galactosemic primary ovarian insufficiency. REPRODUCTION AND FERTILITY 2021; 2:R67-R84. [PMID: 35118398 PMCID: PMC8788619 DOI: 10.1530/raf-21-0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
Classic galactosemia is an inborn error of carbohydrate metabolism associated with early-onset primary ovarian insufficiency (POI) in young women. Our understanding of the consequences of galactosemia upon fertility and fecundity of affected women is expanding, but there are important remaining gaps in our knowledge and tools for its management, and a need for continued dialog so that the special features of the condition can be better managed. Here, we review galactosemic POI and its reproductive endocrinological clinical sequelae and summarize current best clinical practices for its management. Special consideration is given to the very early-onset nature of the condition in the pediatric/adolescent patient. Afterward, we summarize our current understanding of the reproductive pathophysiology of galactosemia, including the potential action of toxic galactose metabolites upon the ovary. Our work establishing that ovarian cellular stress reminiscent of endoplasmic reticulum (ER) stress is present in a mouse model of galactosemia, as well as work by other groups, are summarized. LAY SUMMARY Patients with the condition of classic galactosemia need to maintain a strict lifelong diet that excludes the sugar galactose. This is due to having mutations in enzymes that process galactose, resulting in the buildup of toxic metabolic by-products of the sugar. Young women with classic galactosemia often lose the function of their ovaries very early in life (termed 'primary ovarian insufficiency'), despite adherence to a galactose-restricted diet. This means that in addition to the consequences of the disease, these women also face infertility and the potential need for hormone replacement therapy. This article summarizes current strategies for managing the care of galactosemic girls and women and also what is known of how the condition leads to early primary ovarian insufficiency.
Collapse
Affiliation(s)
- Synneva Hagen-Lillevik
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA
| | - John S Rushing
- Divisions of Reproductive Sciences, Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado Denver (AMC), Aurora, Colorado, USA
| | - Leslie Appiah
- Division of General Obstetrics and Gynecology, Department of Obstetrics and Gynecology, University of Colorado Denver (AMC), Anschutz Outpatient Pavilion, Aurora, Colorado, USA
| | - Nicola Longo
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA
| | - Ashley Andrews
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Kent Lai
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Department of Nutrition and Integrative Physiology, University of Utah College of Health, Salt Lake City, Utah, USA
| | - Joshua Johnson
- Divisions of Reproductive Sciences, Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Colorado Denver (AMC), Aurora, Colorado, USA
| |
Collapse
|
13
|
Zhang S, Zhu D, Mei X, Li Z, Li J, Xie M, Xie HJW, Wang S, Cheng K. Advances in biomaterials and regenerative medicine for primary ovarian insufficiency therapy. Bioact Mater 2020; 6:1957-1972. [PMID: 33426370 PMCID: PMC7773538 DOI: 10.1016/j.bioactmat.2020.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Primary ovarian insufficiency (POI) is an ovarian dysfunction that affects more than 1 % of women and is characterized by hormone imbalances that afflict women before the age of 40. The typical perimenopausal symptoms result from abnormal levels of sex hormones, especially estrogen. The most prevalent treatment is hormone replacement therapy (HRT), which can relieve symptoms and improve quality of life. However, HRT cannot restore ovarian functions, including secretion, ovulation, and fertility. Recently, as part of a developing field of regenerative medicine, stem cell therapy has been proposed for the treatment of POI. Thus, we recapitulate the literature focusing on the use of stem cells and biomaterials for POI treatment, and sum up the underlying mechanisms of action. A thorough understanding of the work already done can aid in the development of guidelines for future translational applications and clinical trials that aim to cure POI by using regenerative medicine and biomedical engineering strategies. This paper illustrates the in-vivo, in-vitro, and cell-free treatments for POI using stem cells and biomaterials. We provide basic theories and suggestions for future research and clinical therapy translation. This review can help researcher to develop guidelines on stem cells treating POI.
Collapse
Affiliation(s)
- Sichen Zhang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Xuan Mei
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Junlang Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Mengjie Xie
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Halle Jiang Williams Xie
- Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
| | - Shaowei Wang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|