1
|
Lin X, Nie X, Deng P, Wang L, Hu C, Jin N. Whispers of the polycystic ovary syndrome theater: Directing role of long noncoding RNAs. Noncoding RNA Res 2024; 9:1023-1032. [PMID: 39022674 PMCID: PMC11254504 DOI: 10.1016/j.ncrna.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 07/20/2024] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a multifaceted endocrine disorder that implicates a spectrum of clinical manifestations, including hormonal imbalance, metabolic dysfunction, and even compromised ovarian granulosa cell (GC) activity. The underlying molecular mechanisms of PCOS remain elusive, presenting a significant barrier to effective diagnosis and treatment. This review delves into the emerging role of long non-coding RNAs (lncRNAs) in the pathophysiology of PCOS, articulating their intricate interactions with mRNAs, microRNAs, and other epigenetic regulators that collectively influence the hormonal and metabolic milieu of PCOS. We examine the dynamic regulatory networks orchestrated by lncRNAs that impact GC function, steroidogenesis, insulin resistance, and inflammatory pathways. By integrating findings from recent studies, we illuminate the potential of lncRNAs as biomarkers for PCOS and highlight their contribution to the disorder, offering a detailed perspective on the lncRNA-mediated modulation of gene expression and pathogenic pathways. Understanding targeted lncRNA interactions with PCOS proposes novel avenues for therapeutic intervention to ameliorate the reproductive and metabolic disturbances characteristic of the syndrome.
Collapse
Affiliation(s)
- Xiuying Lin
- Department of Pathology and Pathophysiology, Yan Bian University, Yanbian, Jilin, China
- Jilin Province People's Hospital, Changchun, Jilin, China
| | - Xinyu Nie
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, China
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ping Deng
- Medical Department, Jilin Provincial Cancer Hospital, Changchun, Jilin, China
| | - Luyao Wang
- First Hospital of Jilin University, Changchun, Jilin, China
| | - Cong Hu
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ningyi Jin
- Department of Pathology and Pathophysiology, Yan Bian University, Yanbian, Jilin, China
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences Changchun, Jilin, China
| |
Collapse
|
2
|
Zhao J, Xu Y, Yu H, Li X, Wang W, Mao D. Effects of PPARG on the proliferation, apoptosis, and estrogen secretion in goat granulosa cells. Theriogenology 2024; 231:62-72. [PMID: 39413539 DOI: 10.1016/j.theriogenology.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/04/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
As a member of peroxisome proliferator-activated receptor (PPAR) family, PPARG has been reported to be involved in glucolipid metabolism in various species. However, the function of PPARG in estradiol (E2) synthesis, apoptosis, and proliferation in goat ovarian granulosa cells (GCs) is unclear. In this study, we found that goat PPARG was expressed in GCs of all grades of follicles, and localized in the cytoplasm and nucleus of GCs. Transfection of small interfering RNA-PPARG2 (si-PPARG2) decreased E2 synthesis and the abundances of HSD3B and CYP19A1 mRNA and protein. It also promoted cell apoptosis with significant increases in the ratio of BAX/BCL-2 and Caspase3 mRNA and protein. Meanwhile, cell cycle was inhibited by si-PPARG2 transfection, accompanied by decreased mRNA levels of CDK4, CKD6, MYC, CCND1, CCND2, PCNA, and CCNB, increased mRNA level of P53, and decreased protein levels of CDK4, MYC, and CCND1. Furthermore, PPARG interference affected the mRNA and protein abundances of CREB as well as the phosphorylation of CREB but not PKA. In conclusion, our data suggest that PPARG plays an important role in regulating E2 synthesis, cell apoptosis, and proliferation of goat GCs, including the CREB expression and phosphorylation. These results provide evidences for the in-depth study of PPARG in the regulation of goat GCs function.
Collapse
Affiliation(s)
- Jie Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinying Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaotong Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Pan G, Li S, Xiong G, Zhang P, Zhang L, Yao Y, Lei G. Metformin enhances the survival ability of ovarian granulosa cells in polycystic ovary syndrome by promoting LINC00548 to suppress androgen receptor/klotho pathway. J Obstet Gynaecol Res 2024; 50:1916-1923. [PMID: 39169658 DOI: 10.1111/jog.16060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Metformin (Met) has been reported to play the key role in the pathogenesis of polycystic ovary syndrome (PCOS). However, the precise mechanisms underlying the actions of Met in PCOS remain incompletely understood. This study aimed to confirm the mechanism of Met interacting with a long non-coding RNA LINC00548 in PCOS. METHODS Ovarian granulosa cells (OGCs) were incubated 500 nM dihydrotestosterone (DHT) to construct PCOS in vitro model and then were treated 20 μM Met. A series of cell experiments including Cell Counting Kit-8, Terminal uridine nucleotide end labeling, and flow cytometry were performed to confirm the changes of OGC survival ability. Quantitative real-time polymerase chain reaction was conducted to determine the levels of LINC00548, whereas Western blotting was applied to determine the levels of androgen receptor (AR) and klotho. RESULTS Met improved the cell viability and suppressed cell apoptosis in DHT-treated OGCs. LINC00548 downregulated in DHT-treated OGCs was upregulated by Met, and its overexpression further enhanced the positive effects of Met on the survival ability of DHT-treated OGCs. In addition, Met could induce the upregulation of LINC00548 to suppress the activation of AR/klotho pathway in DHT-treated OGCs. CONCLUSION Overall, this study discovers that Met enhances the survival ability of OGCs in PCOS by elevating LINC00548 expression to suppress AR/klotho pathway.
Collapse
Affiliation(s)
- Guangxin Pan
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sha Li
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoping Xiong
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Zhang
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanru Yao
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Lei
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Yu Y, Zhang M, Wang D, Xiang Z, Zhao Z, Cui W, Ye S, Fazhan H, Waiho K, Ikhwanuddin M, Ma H. Whole transcriptome RNA sequencing provides novel insights into the molecular dynamics of ovarian development in mud crab, Scylla paramamosain after mating. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 51:101247. [PMID: 38788625 DOI: 10.1016/j.cbd.2024.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Ovarian development in animals is a complicated biological process, requiring the simultaneous coordination among various genes and pathways. To understand the dynamic changes and molecular regulatory mechanisms of ovarian development in mud crab (Scylla paramamosain), both histological observation and whole transcriptome sequencing of ovarian tissues at different mating stages were implemented in this study. The histological results revealed that ovarian development was delayed in unmated females (60 days after courtship behavior but not mating), who exhibited an oocyte diameter of 56.38 ± 15.17 μm. Conversely, mated females exhibited accelerated the ovarian maturation process, with females reaching ovarian stage III (proliferative stage) 23 days after mating and attained an average oocyte diameter of 132.19 ± 15.07 μm. Thus, mating process is essential in promoting the rapid ovarian development in mud crab. Based on the whole transcriptome sequencing analysis, a total of 518 mRNAs, 1502 lncRNAs, 18 circRNAs and 151 miRNAs were identified to be differentially expressed between ovarian tissues at different mating stages. Notably, six differentially expressed genes (DEGs) associated with ovarian development were identified, including ovary development-related protein, red pigment concentrating hormone receptor, G2/mitotic-specific cyclin-B3-like, lutropin-chorio gonadotropic hormone receptor, renin receptor, and SoxB2. More importantly, both DEGs and targets of differentially expressed non-coding RNAs (DEncRNAs) were enriched in renin-angiotensin system, TGF-β signaling, cell adhesion molecules, MAPK signaling pathway, and ECM-receptor interaction, suggesting that these pathways may play significant roles in the ovarian development of mud crabs. Moreover, competition endogenous RNA (ceRNA) networks were constructed while mRNAs were differentially expressed between mating stages were involved in Gene Ontology (GO) biological processes such as developmental process, reproduction, and growth. These findings could provide solid foundations for the future development of female mud crab maturation enhancement strategy, and improve the understanding of the ovarian maturation process in crustaceans.
Collapse
Affiliation(s)
- Yang Yu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Mengqian Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Dahe Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Zifei Xiang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Zilin Zhao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Wenxiao Cui
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Shaopan Ye
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Hanafiah Fazhan
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Khor Waiho
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Mhd Ikhwanuddin
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| |
Collapse
|
5
|
Wang L, Li B, Cheng D. Influence of Long Non-Coding RNAs on Human Oocyte Development. Pharmgenomics Pers Med 2024; 17:337-345. [PMID: 38979513 PMCID: PMC11229482 DOI: 10.2147/pgpm.s449101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Recent research findings have highlighted the pivotal roles played by lncRNAs in both normal human development and disease pathogenesis. LncRNAs are expressed in oocytes and early embryos, and their expression levels change dynamically once the embryonic genome is activated during early human embryonic development. Abnormal expression of lncRNAs was found in follicular fluid, granulosa cells and oocytes of patients, and these lncRNAs were related to cell proliferation and apoptosis, nuclear maturation and follicle development. The expression levels of some lncRNAs in cumulus cells demonstrate correlations with the quality of oocytes and early embryos. This paper aims to present a comprehensive overview of the influence of LncRNAs on the developmental process of human oocytes as well as their involvement in certain infertility-related diseases.
Collapse
Affiliation(s)
- Leitong Wang
- Embryo Laboratory, Jinghua Hospital of Shenyang, Shenyang, Liaoning Province, 110000, People’s Republic of China
| | - Baoshan Li
- Embryo Laboratory, Jinghua Hospital of Shenyang, Shenyang, Liaoning Province, 110000, People’s Republic of China
| | - Dongkai Cheng
- Embryo Laboratory, Jinghua Hospital of Shenyang, Shenyang, Liaoning Province, 110000, People’s Republic of China
| |
Collapse
|
6
|
Heidarzadehpilehrood R, Pirhoushiaran M. Biomarker potential of competing endogenous RNA networks in Polycystic Ovary Syndrome (PCOS). Noncoding RNA Res 2024; 9:624-640. [PMID: 38571815 PMCID: PMC10988127 DOI: 10.1016/j.ncrna.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 04/05/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common condition affecting women of reproductive age globally. PCOS continues to be the largest contributing factor to female infertility despite significant progress in our knowledge of the molecular underpinnings and treatment of the condition. The fact that PCOS is a very diverse condition makes it one of the key reasons why we haven't been able to overcome it. Non-coding RNAs (ncRNAs) are implicated in the development of PCOS, according to growing evidence. However, it is unclear how the complex regulatory relationships between the many ncRNA types contribute to the growth of this malignancy. Competing endogenous RNA (ceRNA), a recently identified mechanism in the RNA world, suggests regulatory interactions between various RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs). Recent studies on PCOS have shown that dysregulation of multiple ceRNA networks (ceRNETs) between these ncRNAs plays crucial roles in developing the defining characteristics of PCOS development. And it is believed that such a finding may open a new door for a deeper comprehension of PCOS's unexplored facets. In addition, it may be able to provide fresh biomarkers and effective therapy targets for PCOS. This review will go over the body of information that exists about the primary roles of ceRNETs before highlighting the developing involvement of several newly found ceRNETs in a number of PCOS characteristics.
Collapse
Affiliation(s)
- Roozbeh Heidarzadehpilehrood
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| |
Collapse
|
7
|
Zhang T, Zhang J, Yang G, Hu J, Wang H, Jiang R, Yao G. Long non-coding RNA PWRN1 affects ovarian follicular development by regulating the function of granulosa cells. Reprod Biomed Online 2024; 48:103697. [PMID: 38430661 DOI: 10.1016/j.rbmo.2023.103697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 03/05/2024]
Abstract
RESEARCH QUESTION What is the role of Prader-Willi region non-protein coding RNA 1 (PWRN1) in ovarian follicular development and its molecular mechanism? DESIGN The expression and localization of PWRN1 were detected in granulosa cells from patients with different ovarian functions, and the effect of interfering with PWRN1 expression on cell function was detected by culturing granulosa cells in vitro. Furthermore, the effects of interfering with PWRN1 expression on ovarian function of female mice were explored through in-vitro and in-vivo experiments. RESULTS The expression of PWRN1 was significantly lower in granulosa cells derived from patients with diminished ovarian reserve (DOR) compared with patients with normal ovarian function. By in-vitro culturing of primary granulosa cells or the KGN cell line, the results showed that the downregulation of PWRN1 promoted granulosa cell apoptosis, caused cell cycle arrested in S-phase, generated high levels of autophagy and led to significant decrease in steroidogenic capacity, including inhibition of oestradiol and progesterone production. In addition, SIRT1 overexpression could partially reverse the inhibitory effect of PWRN1 downregulation on cell proliferation. The results of in-vitro culturing of newborn mouse ovary showed that the downregulation of PWRN1 could slow down the early follicular development. Further, by injecting AAV-sh-PWRN1 in mouse ovarian bursa, the oestrous cycle of mouse was affected, and the number of oocytes retrieved after ovulation induction and embryos implanted after mating was significantly reduced. CONCLUSION This study systematically elucidated the novel mechanism by which lncRNA PWRN1 participates in the regulation of granulosa cell function and follicular development.
Collapse
Affiliation(s)
- Tongwei Zhang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junya Zhang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guang Yang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingyi Hu
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huihui Wang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ran Jiang
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guidong Yao
- Center for Reproductive Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
8
|
He X, Wang W, Du X, Chu M. Association between single-nucleotide polymorphism in PIK3CD gene and litter size in Small Tail Han sheep. Anim Biotechnol 2023; 34:3337-3342. [PMID: 36332162 DOI: 10.1080/10495398.2022.2140059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The p110δ isoform of the PI3K catalytic subunit (encoded by the PIK3CD gene) is a key component of the PI3K pathway for follicle growth in mammalian ovarian granulosa cells. Nevertheless, little is known about the association of its polymorphisms with ovine litter size. In this study, the distribution of different genotypes of two SNPs in the PIK3CD gene was calculated in more than forty sheep breeds, and the associations between SNPs and litter size in Small Tail Han (STH) sheep were also analyzed. Besides, the mRNA expression of the PIK3CD gene was also detected in some reproduction-related tissues. The results showed that the "A" allele frequency was higher in rs412889931 (g.41926327G > A) in a typical polytocous sheep breed (p < 0.01). The association's analysis showed rs412889931 was correlated with ovine fecundity as assessed by three parity litter sizes (p < 0.05). Finally, we found the expression of PIK3CD in the ovary had significant differences in different fecundity sheep breeds, indicating that SNP may regulate the litter size by influencing the PIK3CD gene expression. The present results demonstrated that rs412889931 could be used in the marker-assisted selection of the litter size in sheep breeding.
Collapse
Affiliation(s)
- Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolong Du
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Yang Z, Wu S, He S, Han L, Zhou M, Yang J, Chen J, Wu G. LncRNA AOC4P impacts the differentiation of macrophages and T-lymphocyte by regulating the NF-κB pathways of KGN cells: Potential pathogenesis of polycystic ovary syndrome. Am J Reprod Immunol 2023; 90:e13776. [PMID: 37766402 DOI: 10.1111/aji.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a multifactorial endocrine disease, which is an important cause of female infertility worldwide. PCOS patients are in a state of chronic low-grade inflammation, and immune imbalance is considered as a potential cause of its pathogenesis. METHODS The expression of AOC4P in PCOS and normal ovarian granulosa cells (GCs) was detected by real-time quantitative PCR. KGN cells were induced by dihydrotestosterone at 500 ng/mL to construct the PCOS model. After lentivirus-infected, KGN cells were constructed with AOC4P overexpression cell lines, the proliferation and apoptosis levels of KGN cells in AOC4P and NC groups were detected. Human monocyte cell line (THP-1)-derived macrophages and peripheral blood mononuclear cells (PBMC) were co-cultured with KGN cells for 48 h, respectively, and the differentiation of macrophages and CD4+ T cells were detected by flow cytometry. RESULTS Decreased AOC4P expression was found in PCOS patients. After constructing the PCOS cell model, we observed that overexpression of AOC4P promoted KGN cell proliferation and inhibited apoptosis. After co-culture with AOC4P overexpressed KGN cells, M1 macrophages decreased, M2 macrophages increased, T helper cells type 1 (Th1)/Th2 ratio increased, and regulatory T cell (Treg) cells increased. Finally, we found that AOC4P inhibited the activation of the nuclear factor κ B (NF-κB) pathway in KGN cells. CONCLUSIONS In this study, we found that AOC4P regulated the NF-κB signaling pathway by inhibiting the phosphorylation of P65, thereby affecting the proliferation and apoptosis of GCs, altering the differentiation of macrophages and T cells, thus contributing to the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Zhe Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Shujuan Wu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Shaojing He
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Lu Han
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Mengqi Zhou
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Jiao Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| | - Gengxiang Wu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
- Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
10
|
Gong Z, Shi X, Xu W, Fang Y, Fang M, Yao M, Jiang Y, Sui H, Luo M. LncRNA PWRN2 promotes polycystic ovary syndrome progression via epigenetically reducing ATRX by recruiting LSD1. Reprod Biol 2023; 23:100782. [PMID: 37320994 DOI: 10.1016/j.repbio.2023.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Long non-coding RNA has been shown to mediate the progression of polycystic ovary syndrome (PCOS). However, the role and mechanism of Prader-Willi region nonprotein coding RNA 2 (PWRN2) in PCOS progression remain unclear. In our study, Sprague-Dawley rat was injected with dehydroepiandrosterone to mimic PCOS rat models. HE staining was used to assess the number of benign granular cells, and serum insulin and hormone levels were detected by ELISA kit. The expression of PWRN2 was examined by qRT-PCR. Ovarian granulosa cells (GCs) proliferation and apoptosis were examined by CCK-8 assay and flow cytometry. The protein levels of apoptosis markers and Alpha thalassemia retardation syndrome X-linked (ATRX) were determined by western blot. The interaction between lysine-specific demethylase 1 (LSD1) and PWRN2 or ATRX was confirmed by RIP and ChIP assay. Our data showed that PWRN2 was upregulated and ATRX was downregulated in the ovarium tissues and serum of PCOS rat. PWRN2 knockdown promoted GCs proliferation and inhibited apoptosis. In the mechanism, PWRN2 inhibited ATRX transcription by binding with LSD1. In addition, downregulation of ATRX also eliminated the effect of sh-PWRN2 on GCs growth. In conclusion, our data suggested that PWRN2 might restrain GCs growth to promote PCOS progression, which was achieved by binding with LSD1 to inhibit ATRX transcription.
Collapse
Affiliation(s)
- Zhaoqing Gong
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan City, Shandong Province 250000, PR China
| | - Xinlei Shi
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan City, Shandong Province 250000, PR China
| | - Weizhen Xu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan City, Shandong Province 250000, PR China
| | - Yuan Fang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan City, Shandong Province 250000, PR China
| | - Meijia Fang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan City, Shandong Province 250000, PR China
| | - Minhua Yao
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan City, Shandong Province 250000, PR China
| | - Yu Jiang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan City, Shandong Province 250000, PR China
| | - Hongshu Sui
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan City, Shandong Province 250000, PR China.
| | - Mingjiu Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province 271000, PR China.
| |
Collapse
|
11
|
Xing J, Qiao G, Luo X, Liu S, Chen S, Ye G, Zhang C, Yi J. Ferredoxin 1 regulates granulosa cell apoptosis and autophagy in polycystic ovary syndrome. Clin Sci (Lond) 2023; 137:453-468. [PMID: 36752638 DOI: 10.1042/cs20220408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/09/2023]
Abstract
Polycystic ovary syndrome (PCOS), a common reproductive endocrine disorder in women of reproductive age, causes anovulatory infertility. Increased apoptosis of granulosa cells has been identified as one of the key factors contributing to abnormal follicular development. Ferredoxin 1 (FDX1) encodes a small ferredoxin that is involved in the reduction in mitochondrial cytochromes and the synthesis of various steroid hormones and has the potential to influence the function of granulosa cells. In the present study, we aimed to determine the relationship between FDX1 and follicular granulosa cell function. To this end, we investigated the difference between FDX1 expression in the granulosa cells of 50 patients with PCOS and that of the controls. Furthermore, we sought to elucidate the role and mechanism of FDX1 in PCOS granulosa cells by establishing a mouse PCOS model with dehydroepiandrosterone and KGN (a steroidogenic human granulosa cell-like tumor cell line). The results indicated significant up-regulation of FDX1 in the granulosa cells after androgen stimulation. Knockdown of FDX1 promoted the proliferation of KGN and inhibited apoptosis. Moreover, FDX1 could regulate autophagy by influencing the autophagy proteins ATG3 and ATG7. Our results demonstrated that FDX1 plays a critical role in female folliculogenesis by mediating apoptosis, autophagy, and proliferation. Therefore, FDX1 may be a potential prognostic factor for female infertility.
Collapse
Affiliation(s)
- Jinshan Xing
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Gan Qiao
- Department of Pharmacology, School of Pharmacy, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xin Luo
- Department of Pharmacology, School of Pharmacy, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shuang Liu
- Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shaokun Chen
- Department of Morphological Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Geng Ye
- Department of Pharmacology, School of Pharmacy, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Chunxiang Zhang
- Nucleic Acid Medicine of Luzhou Key Laboratory, Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Nucleic Acid Medicine of Luzhou Key Laboratory, Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, China
| |
Collapse
|
12
|
Li T, Zhang T, Gao H, Wang H, Yan H, Wan Z, Liu R, Yin C. Tempol modulates lncRNA-miRNA-mRNA ceRNA networks in ovaries of DHEA induced PCOS rats. J Steroid Biochem Mol Biol 2023; 226:106175. [PMID: 36374793 DOI: 10.1016/j.jsbmb.2022.106175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 11/11/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine and metabolic disorders in reproductive age women. Our previous results demonstrated that tempol was able to ameliorate PCOS phenotype in rats. However, the exact pathophysiological effect of tempol on PCOS remains largely unknown. To extend this research, deep RNA-sequencing was performed to investigate the long noncoding RNA (lncRNA) associated ceRNA mechanisms in the ovarian tissues of control rats, dehydropiandrosterone (DHEA) induced PCOS rats and tempol treated PCOS rats. Our results identified total 164, 79, and 914 significantly dysregulated lncRNAs, miRNAs, and mRNAs in three groups, respectively. The total of 7 lncRNAs, 8 mRNAs and 5 miRNAs were involved in lncRNA-associated ceRNA networks were constructed. Among them, mRNAs including C1qtnf1, Dipk2a, IL4r and lncRNAs including MSTRG.16751.2, MSTRG.8065.2 had high RNA connectivity in the ceRNA network, which also showed significant alterations in these three groups by using qPCR validation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the involvement of the identified ceRNA networks in regulating the development of PCOS from distinct origins, such as metabolic pathway, immune cell differentiation. The study presents the first systematic dissection of lncRNA-associated ceRNA profiles in tempol treated PCOS rats. The identified ceRNA networks could provide insights that help facilitate PCOS diagnosis and treatment.
Collapse
Affiliation(s)
- Tianhe Li
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Tingting Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Huimin Gao
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Huanhuan Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihui Yan
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Zhihui Wan
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Ruixia Liu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Chenghong Yin
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China.
| |
Collapse
|
13
|
Lin S, Jin X, Gu H, Bi F. Relationships of ferroptosis-related genes with the pathogenesis in polycystic ovary syndrome. Front Med (Lausanne) 2023; 10:1120693. [PMID: 36873892 PMCID: PMC9981782 DOI: 10.3389/fmed.2023.1120693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Background Numerous studies have suggested that ferroptosis plays a significant role in the development of polycystic ovary syndrome (PCOS), but the mechanism remains unclear. Methods In this study, we explored the role of ferroptosis-related genes in the pathogenesis of PCOS using a comprehensive bioinformatics method. First, we downloaded several Gene Expression Omnibus (GEO) datasets and combined them into a meta-GEO dataset. Differential expression analysis was performed to screen for significant ferroptosis-related genes between the normal and PCOS samples. The least absolute shrinkage selection operator regression and support vector machine-recursive feature elimination were used to select the best signs to construct a PCOS diagnostic model. Receiver operating characteristic curve analysis and decision curve analysis were applied to test the performance of the model. Finally, a ceRNA network-related ferroptosis gene was constructed. Results Five genes, namely, NOX1, ACVR1B, PHF21A, FTL, and GALNT14, were identified from 10 differentially expressed ferroptosis-related genes to construct a PCOS diagnostic model. Finally, a ceRNA network including 117 lncRNAs, 67 miRNAs, and five ferroptosis-related genes was constructed. Conclusion Our study identified five ferroptosis-related genes that may be involved in the pathogenesis of PCOS, which may provide a novel perspective for the clinical diagnosis and treatment of PCOS.
Collapse
Affiliation(s)
- Shuang Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Jin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Gu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fangfang Bi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
14
|
Rani S, Chandna P. Multiomics Analysis-Based Biomarkers in Diagnosis of Polycystic Ovary Syndrome. Reprod Sci 2023; 30:1-27. [PMID: 35084716 PMCID: PMC10010205 DOI: 10.1007/s43032-022-00863-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/20/2022] [Indexed: 01/06/2023]
Abstract
Polycystic ovarian syndrome is an utmost communal endocrine, psychological, reproductive, and metabolic disorder that occurs in women of reproductive age with extensive range of clinical manifestations. This may even lead to long-term multiple morbidities including obesity, diabetes mellitus, insulin resistance, cardiovascular disease, infertility, cerebrovascular diseases, and ovarian and endometrial cancer. Women affliction from PCOS in midst assemblage of manifestations allied with menstrual dysfunction and androgen exorbitance, which considerably affects eminence of life. PCOS is recognized as a multifactorial disorder and systemic syndrome in first-degree family members; therefore, the etiology of PCOS syndrome has not been copiously interpreted. The disorder of PCOS comprehends numerous allied health conditions and has influenced various metabolic processes. Due to multifaceted pathophysiology engaging several pathways and proteins, single genetic diagnostic tests cannot be supportive to determine in straight way. Clarification of cellular and biochemical pathways and various genetic players underlying PCOS could upsurge our consideration of pathophysiology of this syndrome. It is requisite to know pathophysiological relationship between biomarker and their reflection towards PCOS disease. Biomarkers deliver vibrantly and potent ways to apprehend the spectrum of PCOS with applications in screening, diagnosis, characterization, and monitoring. This paper relies on the endeavor to point out many candidates as potential biomarkers based on omics technologies, thus highlighting correlation between PCOS disease with innovative technologies. Therefore, the objective of existing review is to encapsulate more findings towards cutting-edge advances in prospective use of biomarkers for PCOS disease. Discussed biomarkers may be fruitful in guiding therapies, addressing disease risk, and predicting clinical outcomes in future.
Collapse
Affiliation(s)
- Shikha Rani
- Department of Biophysics, University of Delhi, South Campus, Benito Juarez Road, New Delhi , 110021, India.
| | - Piyush Chandna
- Natdynamics Biosciences Confederation, Gurgaon, Haryana, 122001, India
| |
Collapse
|
15
|
Bhandary P, Shetty PK, Manjeera L, Patil P. Hormonal, genetic, epigenetic and environmental aspects of polycystic ovarian syndrome. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Identification and characterization of unique and common lncRNAs and mRNAs in the pituitary, ovary, and uterus of Hu sheep with different prolificacy. Genomics 2022; 114:110511. [PMID: 36283658 DOI: 10.1016/j.ygeno.2022.110511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 01/15/2023]
Abstract
LncRNAs are regarded as regulators in various animal reproductive physiological processes. However, the regulation of lncRNAs in the reproductive organ development of Hu sheep with different prolificacy remains unknown. Herein, numerous tissue-unique and -common differentially expressed lncRNAs (DELs) and differentially expressed genes (DEGs), and fecundity-unique DELs and DEGs were identified among different comparison groups at horizontal and vertical levels. Moreover, the tissue-unique and -common, and fecundity-unique female reproduction-associated DEGs and DELs were screened, and the interaction networks were constructed. Furthermore, MSTRG.43442.1 was mainly present in the cytoplasm of tested cells. The key genes ADAMTS1 and DCN were mainly localized in the granulosa cells, pituitary cells and/or endometrial epithelial cells of ovary, pituitary and/or uterus. Overall, this study identified large numbers of unique and common DELs and DEGs in the female reproductive organs of Hu sheep with different prolificacy and provided new insights into understanding the regulation of Hu sheep fecundity.
Collapse
|
17
|
Tang J, Chen J, Wang Y, Zhou S. The role of
MiRNA
‐433 in malignant tumors of digestive tract as tumor suppressor. Cancer Rep (Hoboken) 2022; 5:e1694. [PMID: 35976177 PMCID: PMC9458491 DOI: 10.1002/cnr2.1694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a class of short non‐coding RNAs with a length of approximate 22 nuclei acids that can be expressed both as an oncogene and tumor suppressor gene in human cancers. MiRNAs can participate in the post‐ transcriptional regulation of gene expression, and regulate the several cancer‐related processes, including proliferation, apoptosis, metastasis, etc. Recent findings Expression of miRNA‐433 has been reported to vary in different tumors and affected by various factors. We have summarized the different previous studies and found that miRNA‐433 can significantly inhibit the growth of the cancer cells not only in malignant tumors of the digestive tract, but also in lung cancer, breast cancer, cervical cancer, ovarian cancer, bladder cancer, renal carcinoma, glioma, retinoblastoma and osteosarcoma. Conclusion When the expression of miRNA‐433 was up‐regulated, the proliferation, metastasis and invasion abilities of the malignant tumor cells were significantly inhibited. At the same time, the potential mechanisms through which miRNA‐433 can suppress the growth and metastasis of the cancer cells were found to be basically the same, and involved modulation of the specific signaling pathways or target genes in the malignant tumors. Overall, it can be concluded that miRNA‐433 can serve as potential and valuable therapeutic target.
Collapse
Affiliation(s)
- Jie Tang
- General Surgery The Second Affiliated Hospital of Bengbu Medical College Bengbu China
| | - Jiawei Chen
- General Surgery The Second Affiliated Hospital of Bengbu Medical College Bengbu China
| | - Yongqiang Wang
- General Surgery The Second Affiliated Hospital of Bengbu Medical College Bengbu China
| | - Shaobo Zhou
- General Surgery The Second Affiliated Hospital of Bengbu Medical College Bengbu China
| |
Collapse
|
18
|
Chen L, Kong C. LINC00173 regulates polycystic ovarian syndrome progression by promoting apoptosis and repressing proliferation in ovarian granulosa cells via the microRNA-124-3p (miR-124-3p)/jagged canonical Notch ligand 1 (JAG1) pathway. Bioengineered 2022; 13:10373-10385. [PMID: 35441583 PMCID: PMC9161924 DOI: 10.1080/21655979.2022.2053797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
As an endocrine and metabolic disorder, polycystic ovarian syndrome (PCOS) is common in females at childbearing age. Our work was intended to uncover the underlying role of LINC00173 and its potential regulatory mechanism in PCOS based on two cell lines (PCOS granulosa cells and KGN cells) and an in vivo model established from Sprague Dawley rats. It was revealed that LINC00173 and JAG1 expressions were upregulated, while miR-124-3p was poorly expressed in PCOS patients and PCOS rats. Functional assays showed that LINC00173 overexpression repressed proliferation and stimulated apoptosis in granulosa cells and KGN cells, while LINC00173 downregulation exhibited the opposite effects. Besides, it was verified that LINC00173 upregulated JAG1 expression in KGN cells via competitively binding to miR-124-3p. Similarly, miR-124-3p abundance was inversely related to LINC00173 and JAG1 level in PCOS. Subsequently, rescue assays elucidated that miR-124-3p upregulation or downregulation eliminated the effects on KGN cell proliferation and apoptosis mediated by LINC00173 overexpression or knockdown. In addition, it was found that the JAG1 level in KGN cells was adversely modulated by miR-124-3p and positively modulated by LINC00173. Moreover, it was further demonstrated that the reduced cell vitality and increased apoptosis of KGN cells induced by overexpressing LINC00173 could be relieved by JAG1 deletion. These findings suggested that LINC00173 could be a latent regulating factor for PCOS progression via modulating the miR-124-3p/JAG1 cascade.
Collapse
Affiliation(s)
- Lan Chen
- Department of Gynecology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Caixia Kong
- Department of Gynecology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| |
Collapse
|
19
|
Tamaddon M, Azimzadeh M, Tavangar SM. microRNAs and long non-coding RNAs as biomarkers for polycystic ovary syndrome. J Cell Mol Med 2022; 26:654-670. [PMID: 34989136 PMCID: PMC8817139 DOI: 10.1111/jcmm.17139] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/05/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is known as the most common metabolic/endocrine disorder among women of reproductive age. Its complicated causality assessment and diagnostic emphasized the role of non‐coding regulatory RNAs as molecular biomarkers in studying, diagnosing and even as therapeutics of PCOS. This review discusses a comparative summary of research into microRNAs (miRNAs) and long non‐coding RNAs (lncRNAs) that are molecularly or statistically related to PCOS. We categorize the literature in terms of centering on either miRNAs or lncRNAs and discuss the combinatory studies and promising ideas as well. Additionally, we compare the pros and cons of the prominent research methodologies used for each of the abovementioned research themes and discuss how errors can be stopped from propagation by selecting correct methodologies for future research. Finally, it can be concluded that research into miRNAs and lncRNAs has the potential for identifying functional networks of regulation with multiple mRNAs (and hence, functional proteins). This new understanding may eventually afford clinicians to control the molecular course of the pathogenesis better. With further research, RNA (with statistical significance and present in the blood) may be used as biomarkers for the disease, and more possibilities for RNA therapy agents can be identified.
Collapse
Affiliation(s)
- Mona Tamaddon
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Azimzadeh
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Pei CZ, Jin L, Baek KH. Pathogenetic analysis of polycystic ovary syndrome from the perspective of omics. Biomed Pharmacother 2021; 142:112031. [PMID: 34411918 DOI: 10.1016/j.biopha.2021.112031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 12/17/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common gynecological endocrine disease, involving multiple genes, multiple pathways, and complex hormone secretion processes. Hence, the pathogenesis of PCOS cannot be explained by a single factor. Omics analysis includes genomics, transcriptomics, and proteomics, which are fast and effective methods for studying the pathogenesis of diseases. PCOS is primarily characterized by androgen excess, and reproductive and metabolic dysfunctions. The application of omics analysis in the body fluids, blood, cells or tissues of women with PCOS offers the potential for unexpected molecular advantages in explaining new mechanisms of PCOS etiology and pathophysiology, and provides new perspectives for identifying potential biomarkers and developing new therapeutic targets. At present, several omics analyses have been applied to produce complex datasets. In this manuscript, the recent advances in omics research on PCOS are summarized, aiming at an important and parallel review of the newly published research.
Collapse
Affiliation(s)
- Chang-Zhu Pei
- Department of Biomedical Science, Cell and Gene Therapy Research Institute, CHA University, Bundang CHA Hospital, Gyeonggi-Do 13488, Republic of Korea
| | - Lan Jin
- Department of Clinical Laboratory, Yanbian Maternity and Child Health Care Hospital, Jilin Provincial Yanji-Shi, 133000, China
| | - Kwang-Hyun Baek
- Department of Biomedical Science, Cell and Gene Therapy Research Institute, CHA University, Bundang CHA Hospital, Gyeonggi-Do 13488, Republic of Korea.
| |
Collapse
|