1
|
Ardila CM, González-Arroyave D, Zuluaga-Gómez M. Predicting intensive care unit-acquired weakness: A multilayer perceptron neural network approach. World J Clin Cases 2024; 12:2023-2030. [PMID: 38680255 PMCID: PMC11045505 DOI: 10.12998/wjcc.v12.i12.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/09/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024] Open
Abstract
In this editorial, we comment on the article by Wang and Long, published in a recent issue of the World Journal of Clinical Cases. The article addresses the challenge of predicting intensive care unit-acquired weakness (ICUAW), a neuromuscular disorder affecting critically ill patients, by employing a novel processing strategy based on repeated machine learning. The editorial presents a dataset comprising clinical, demographic, and laboratory variables from intensive care unit (ICU) patients and employs a multilayer perceptron neural network model to predict ICUAW. The authors also performed a feature importance analysis to identify the most relevant risk factors for ICUAW. This editorial contributes to the growing body of literature on predictive modeling in critical care, offering insights into the potential of machine learning approaches to improve patient outcomes and guide clinical decision-making in the ICU setting.
Collapse
Affiliation(s)
| | | | - Mateo Zuluaga-Gómez
- Department of Emergency, Universidad Pontificia Bolivariana, Medellín 0057, Colombia
| |
Collapse
|
2
|
Zhao K, Li X, Zhang M, Tong F, Chen H, Wang X, Xiu N, Liu Z, Wang Y. microRNA-181a Promotes Mitochondrial Dysfunction and Inflammatory Reaction in a Rat Model of Intensive Care Unit-Acquired Weakness by Inhibiting IGFBP5 Expression. J Neuropathol Exp Neurol 2022; 81:553-564. [PMID: 35472240 DOI: 10.1093/jnen/nlac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study investigated mechanisms by which microRNA (miR)-181a orchestrates mitochondrial dysfunction and inflammation in a rat model of intensive care unit-acquired weakness (ICU-AW). Expression of miR-181a and insulin-like growth factor binding protein 5 (IGFBP5) was detected and then miR-181a was overexpressed or inhibited and IGFBP5 was overexpressed in the ICU-AW rats. The expression of UCP-3, metaphase chromosome protein 1 (MCP1), mitochondrial DNA (mtDNA), inflammatory factors, phosphorylation (p)-JAK1, p-STAT1, and p-STAT2 were measured in skeletal muscle tissues; binding of miR-181a to IGFBP5 was evaluated by a dual-luciferase reporter assay. The results demonstrated high expression of miR-181a and low expression of IGFBP5 in ICU-AW versus control rats; IGFBP5 was identified as a target gene of miR-181a. Further experiments demonstrated that ICU-AW rats suffered from marked loss of grip strength and decreased adenosine triphosphate production, mtDNA content, and UCP-3 mRNA expression in skeletal muscles; this was accompanied by elevated TNF-α, IL-6, IL-1β, MCP1, p-JAK1, p-STAT1, and p-STAT2 levels. Importantly, miR-181a suppression alleviated strength loss, inflammatory reaction, and mitochondrial dysfunction and diminished the phosphorylation levels of JAK1, STAT1, and STAT2 whereas IGFBP5 upregulation rescued the effect of miR-181a overexpression in ICU-AW rats. These results indicate that miR-181a promotes mitochondrial dysfunction and inflammation by activating the JAK/STAT pathway via IGFBP5 in ICU-AW model rats.
Collapse
Affiliation(s)
- Kun Zhao
- Intensive Care Unit, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Xuan Li
- Intensive Care Unit, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Manli Zhang
- Intensive Care Unit, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Fei Tong
- Intensive Care Unit, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Hui Chen
- Intensive Care Unit, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Xia Wang
- Intensive Care Unit, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Nan Xiu
- Intensive Care Unit, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Zhikuan Liu
- Intensive Care Unit, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Yi Wang
- Department of Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China (YW)
| |
Collapse
|