1
|
Hwang J, Cho SM, Geocadin R, Ritzl EK. Methods of Evaluating EEG Reactivity in Adult Intensive Care Units: A Review. J Clin Neurophysiol 2024; 41:577-588. [PMID: 38857365 DOI: 10.1097/wnp.0000000000001078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
PURPOSE EEG reactivity (EEG-R) has become widely used in intensive care units for diagnosing and prognosticating patients with disorders of consciousness. Despite efforts toward standardization, including the establishment of terminology for critical care EEG in 2012, the processes of testing and interpreting EEG-R remain inconsistent. METHODS A review was conducted on PubMed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Inclusion criteria consisted of articles published between January 2012, and November 2022, testing EEG-R on adult intensive care unit patients. Exclusion criteria included articles focused on highly specialized stimulation equipment or animal, basic science, or small case report studies. The Quality In Prognostic Studies tool was used to assess risk of bias. RESULTS One hundred and five articles were identified, with 26 variables collected for each. EEG-R testing varied greatly, including the number of stimuli (range: 1-8; 26 total described), stimulus length (range: 2-30 seconds), length between stimuli (range: 10 seconds-5 minutes), frequency of stimulus application (range: 1-9), frequency of EEG-R testing (range: 1-3 times daily), EEG electrodes (range: 4-64), personnel testing EEG-R (range: neurophysiologists to nonexperts), and sedation protocols (range: discontinuing all sedation to no attempt). EEG-R interpretation widely varied, including EEG-R definitions and grading scales, personnel interpreting EEG-R (range: EEG specialists to nonneurologists), use of quantitative methods, EEG filters, and time to detect EEG-R poststimulation (range: 1-30 seconds). CONCLUSIONS This study demonstrates the persistent heterogeneity of testing and interpreting EEG-R over the past decade, and contributing components were identified. Further many institutional efforts must be made toward standardization, focusing on the reproducibility and unification of these methods, and detailed documentation in the published literature.
Collapse
Affiliation(s)
- Jaeho Hwang
- Division of Epilepsy, Department of Neurology, Johns Hopkins Hospital, Baltimore, Maryland, U.S.A
| | - Sung-Min Cho
- Division of Neurosciences Critical Care, Departments of Anesthesiology and Critical Care Medicine and Neurology, Johns Hopkins Hospital, Baltimore, Maryland, U.S.A.; and
| | - Romergryko Geocadin
- Division of Neurosciences Critical Care, Departments of Anesthesiology and Critical Care Medicine and Neurology, Johns Hopkins Hospital, Baltimore, Maryland, U.S.A.; and
| | - Eva K Ritzl
- Division of Epilepsy, Department of Neurology, Johns Hopkins Hospital, Baltimore, Maryland, U.S.A
- Division of Neurosciences Critical Care, Departments of Anesthesiology and Critical Care Medicine and Neurology, Johns Hopkins Hospital, Baltimore, Maryland, U.S.A.; and
- Division of Intraoperative Monitoring, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
| |
Collapse
|
2
|
Duarte S, Ou Z, Cao M, Cho SM, Thakor NV, Ritzl EK, Geocadin RG. High frequency oscillations may improve somatosensory evoked potential detection of good outcomes in disorders of consciousness secondary to acute neurologic injury. Resuscitation 2024; 203:110377. [PMID: 39187152 DOI: 10.1016/j.resuscitation.2024.110377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Somatosensory evoked potentials (SEPs) are highly specific predictors of poor prognosis in hypoxic-ischemic coma when cortical responses (N20s) are absent. However, bilateral N20 presence is nonspecific for good outcomes. High-frequency oscillations (HFOs) in the SEP waveform predict neurologic recovery in animals, but clinical applications are poorly understood. We sought to develop a clinical measure of HFOs to potentially improve detection of good outcomes in coma. MATERIALS AND METHODS We collected SEP waveform data from all comatose inpatients (GCS<=8) who underwent neurologic prognostication from 2020 to 2022 at Johns Hopkins Hospital. We developed a novel measure - HFO evoked to spontaneous ratios (HFO-ESRs) - and applied this to those patients with bilaterally present N20s using both standard univariate classification and cubic kernal vector machine (SVM) models to predict the last documented in-hospital Glasgow Coma Scale (GCS) prior to discharge or death. RESULTS Of 58 total patients, 34 (58.6%) had bilaterally present N20s. Of these, 14 had final GCS>=9, and 20 had final GCS<=8. Mean age was 52 (+/- 17) years, 20.1% female. Etiologies of coma were primarily global hypoxic-ischemic brain injury (79.4%), intracranial hemorrhage (11.8%), and traumatic brain injury (2.9%). In univariate classification, the addition of averaged HFO-ESRs to bilaterally present N20s predicted final GCS>=9 with 68% specificity. The SVM model further improved specificity to 85%. CONCLUSIONS In this pilot investigation, we developed a novel clinical measure of SEP HFOs. Incorporation of this measure may improve the specificity of the SEP to predict in-hospital GCS outcomes in coma, but requires further validation in specific neurologic injuries and with longitudinal outcomes.
Collapse
Affiliation(s)
- Siena Duarte
- Department of Neurology - Division of Neurocritical Care, University of California, San Francisco, USA.
| | - Ze Ou
- Medical Scientist Training Program, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.
| | - Mingfeng Cao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Sung-Min Cho
- Departments of Neurology, Anesthesiology, Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Eva K Ritzl
- Department of Neurology, Mass General Brigham, Boston, MA, USA.
| | - Romergryko G Geocadin
- Departments of Neurology, Anesthesiology, Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
3
|
Koek AY, Darpel KA, Mihaylova T, Kerr WT. Myoclonus After Cardiac Arrest did not Correlate with Cortical Response on Somatosensory Evoked Potentials. J Intensive Care Med 2024:8850666241287154. [PMID: 39344464 DOI: 10.1177/08850666241287154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
PURPOSE Myoclonus after anoxic brain injury is a marker of significant cerebral injury. Absent cortical signal (N20) on somatosensory evoked potentials (SSEPs) after cardiac arrest is a reliable predictor of poor neurological recovery when combined with an overall clinical picture consistent with severe widespread neurological injury. We evaluated a clinical question of if SSEP result could be predicted from other clinical and neurodiagnostic testing results in patients with post-anoxic myoclonus. METHODS Retrospective chart review of all adult patients with post-cardiac arrest myoclonus who underwent both electroencephalographic (EEG) monitoring and SSEPs for neuroprognostication. Myoclonus was categorized as "non-myoclonic movements," "myoclonus not captured on EEG," "myoclonus without EEG correlate," "myoclonus with EEG correlate," and "status myoclonus." SSEP results were categorized as all absent, all present, N18 and N20 absent bilaterally, and N20 only absent bilaterally. Cox proportional hazards with censoring was used to evaluate the association of myoclonus category, SSEP results, and confounding factors with survival. RESULTS In 56 patients, median time from arrest to either confirmed death or last follow up was 9 days. The category of myoclonus was not associated with SSEP result or length of survival. Absence of N20 s or N18 s was associated with shorter survival (N20 hazard ratio [HR] 4.4, p = 0.0014; N18 HR 5.5, p < 0.00001). CONCLUSIONS Category of myoclonus did not reliably predict SSEP result. SSEP result was correlated with outcome consistently, but goals of care transitioned to comfort measures only in all patients with present peripheral potentials and either absent N20 s only or absence of N18 s and N20 s. Our results suggest that SSEPs may retain prognostic value in patients with post-anoxic myoclonus.
Collapse
Affiliation(s)
- Adriana Y Koek
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Kyle A Darpel
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Temenuzhka Mihaylova
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Wesley T Kerr
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Departments of Neurology & Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Shulman Y, Finkelstein L, Levi Y, Kovalchuk D, Weksler A, Reichstein A, Kigel-Tsur K, Davidi M, Levi I, Schauder A, Rubin K, Achituv E, Castel D, Meilin S. A Novel Sensory Wave (P25) in Myelin Oligodendrocyte Glycoprotein-induced Experimental Autoimmune Encephalomyelitis Murine Model. THE JOURNAL OF PAIN 2024; 25:73-87. [PMID: 37524220 DOI: 10.1016/j.jpain.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) is a murine model for multiple sclerosis. This model is characterized by chronic and progressive demyelination, leading to impairment of motor function and paralysis. While the outcomes of the disease, including impaired motor function and immunological changes, are well-characterized, little is known about the impact of EAE on the electrophysiology of the motor and sensory systems. In this study, we assessed evoked potentials as a quantitative marker for in vivo monitoring of nervous system damage. Motor-evoked potentials (MEPs) and sensory-evoked potentials (SEPs) were first standardized in naïve C57BL mice and studied thoroughly in EAE mice. The duration of MEPs and the number of connotative potentials increased significantly alongside an increase in temporal SEP amplitudes. Moreover, a new SEP wave was identified in naïve animals, which significantly increased in MOG-induced EAE animals with no or mild symptoms (clinical score 0-2, 0-5 scale). This wave occurred ∼25 milliseconds poststimulation, thus named p25. P25 was correlated with increased vocalization and was also reduced in amplitude following treatment with morphine. As the EAE score progressed (clinical score 3-4, 0-5 scale), the amplitude of MEPs and SEPs decreased drastically. Our results demonstrate that desynchronized neural motor activity, along with hypersensitivity in the early stages of EAE, leads to a complete loss of motor and sensory functions in the late stages of the disease. The findings also suggest an increase in p25 amplitude before motor deficits appear, indicating SEP as a predictive marker for disease progression. PERSPECTIVE: This article assesses p25, a new sensory electrophysiology wave that correlates with pain-related behavior in MOG-induced EAE mice and appears prior to the clinical symptoms. Motor electrophysiology correlates with traditional motor behavior scoring and histology.
Collapse
Affiliation(s)
- Yoav Shulman
- Neurology Division, MD Biosciences Innovalora, Ltd, Rehovot, Israel
| | - Lena Finkelstein
- Neurology Division, MD Biosciences Innovalora, Ltd, Rehovot, Israel
| | - Yakir Levi
- Neurology Division, MD Biosciences Innovalora, Ltd, Rehovot, Israel
| | | | - Ayelet Weksler
- Neurology Division, MD Biosciences Innovalora, Ltd, Rehovot, Israel
| | | | - Keren Kigel-Tsur
- Neurology Division, MD Biosciences Innovalora, Ltd, Rehovot, Israel
| | - Mazal Davidi
- Neurology Division, MD Biosciences Innovalora, Ltd, Rehovot, Israel
| | - Isaac Levi
- Neurology Division, MD Biosciences Innovalora, Ltd, Rehovot, Israel
| | - Avital Schauder
- Neurology Division, MD Biosciences Innovalora, Ltd, Rehovot, Israel
| | - Keren Rubin
- Neurology Division, MD Biosciences Innovalora, Ltd, Rehovot, Israel
| | - Elhanan Achituv
- Neurology Division, MD Biosciences Innovalora, Ltd, Rehovot, Israel
| | - David Castel
- Neurology Division, MD Biosciences Innovalora, Ltd, Rehovot, Israel; The Neufeld Cardiac Research Institute and Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sigal Meilin
- Neurology Division, MD Biosciences Innovalora, Ltd, Rehovot, Israel
| |
Collapse
|
5
|
Bonin EAC, Lejeune N, Szymkowicz E, Bonhomme V, Martial C, Gosseries O, Laureys S, Thibaut A. Assessment and management of pain/nociception in patients with disorders of consciousness or locked-in syndrome: A narrative review. Front Syst Neurosci 2023; 17:1112206. [PMID: 37021037 PMCID: PMC10067681 DOI: 10.3389/fnsys.2023.1112206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
The assessment and management of pain and nociception is very challenging in patients unable to communicate functionally such as patients with disorders of consciousness (DoC) or in locked-in syndrome (LIS). In a clinical setting, the detection of signs of pain and nociception by the medical staff is therefore essential for the wellbeing and management of these patients. However, there is still a lot unknown and a lack of clear guidelines regarding the assessment, management and treatment of pain and nociception in these populations. The purpose of this narrative review is to examine the current knowledge regarding this issue by covering different topics such as: the neurophysiology of pain and nociception (in healthy subjects and patients), the source and impact of nociception and pain in DoC and LIS and, finally, the assessment and treatment of pain and nociception in these populations. In this review we will also give possible research directions that could help to improve the management of this specific population of severely brain damaged patients.
Collapse
Affiliation(s)
- Estelle A. C. Bonin
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
| | - Nicolas Lejeune
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre Hospitalier Neurologique (CHN) William Lennox, Saint-Luc Hospital Group, Ottignies-Louvain-la-Neuve, Belgium
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Emilie Szymkowicz
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
| | - Vincent Bonhomme
- Department of Anesthesia and Intensive Care Medicine, Liège University Hospital, Liège, Belgium
- Anesthesia and Perioperative Neuroscience Laboratory, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et Services Sociaux (CIUSS), University Laval, Québec City, QC, Canada
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness Thematic Unit, GIGA-Research, Liège, Belgium
- Centre du Cerveau, Liège University Hospital, Liège, Belgium
- *Correspondence: Aurore Thibaut,
| |
Collapse
|
6
|
Ou Z, Guo Y, Gharibani P, Slepyan A, Routkevitch D, Bezerianos A, Geocadin RG, Thakor NV. Time-Frequency Analysis of Somatosensory Evoked High-Frequency (600 Hz) Oscillations as an Early Indicator of Arousal Recovery after Hypoxic-Ischemic Brain Injury. Brain Sci 2022; 13:2. [PMID: 36671984 PMCID: PMC9855942 DOI: 10.3390/brainsci13010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiac arrest (CA) remains the leading cause of coma, and early arousal recovery indicators are needed to allocate critical care resources properly. High-frequency oscillations (HFOs) of somatosensory evoked potentials (SSEPs) have been shown to indicate responsive wakefulness days following CA. Nonetheless, their potential in the acute recovery phase, where the injury is reversible, has not been tested. We hypothesize that time-frequency (TF) analysis of HFOs can determine arousal recovery in the acute recovery phase. To test our hypothesis, eleven adult male Wistar rats were subjected to asphyxial CA (five with 3-min mild and six with 7-min moderate to severe CA) and SSEPs were recorded for 60 min post-resuscitation. Arousal level was quantified by the neurological deficit scale (NDS) at 4 h. Our results demonstrated that continuous wavelet transform (CWT) of SSEPs localizes HFOs in the TF domain under baseline conditions. The energy dispersed immediately after injury and gradually recovered. We proposed a novel TF-domain measure of HFO: the total power in the normal time-frequency space (NTFS) of HFO. We found that the NTFS power significantly separated the favorable and unfavorable outcome groups. We conclude that the NTFS power of HFOs provides earlier and objective determination of arousal recovery after CA.
Collapse
Affiliation(s)
- Ze Ou
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yu Guo
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Payam Gharibani
- Departments of Neurology, Division of Neuroimmunology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ariel Slepyan
- Departments of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Denis Routkevitch
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anastasios Bezerianos
- Information Technologies Institute (ITI), Center for Research and Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Romergryko G. Geocadin
- Departments of Neurology, Anesthesiology, Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nitish V. Thakor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Abstract
Improved understanding of post-cardiac arrest syndrome and clinical practices such as targeted temperature management have led to improved mortality in this cohort. Attention has now been placed on development of tools to aid in predicting functional outcome in comatose cardiac arrest survivors. Current practice uses a multimodal approach including physical examination, neuroimaging, and electrophysiologic data, with a primary utility in predicting poor functional outcome. These modalities remain confounded by self-fulfilling prophecy and the withdrawal of life-sustaining therapies. To date, a reliable measure to predict good functional outcome has not been established or validated, but the use of quantitative somatosensory evoked potential (SSEP) shows potential for this use. MEDLINE and EMBASE search using words "Cardiac Arrest" and "SSEP," "Somato sensory evoked potentials," "qSSEP," "quantitative SSEP," "targeted temperature management in cardiac arrest" was conducted. Relevant recent studies on targeted temperature management in cardiac arrest, plus studies on SSEP in cardiac arrest in the setting of hypothermia and without hypothermia, were included. In addition, animal studies evaluating the role of different components of SSEP in cardiac arrest were reviewed. SSEP is a specific indicator of poor outcomes in post-cardiac arrest patients but lacks sensitivity and has not clinically been established to foresee good outcomes. Novel methods of analyzing quantitative SSEP (qSSEP) signals have shown potential to predict good outcomes in animal and human studies. In addition, qSSEP has potential to track cerebral recovery and guide treatment strategy in post-cardiac arrest patients. Lying beyond the current clinical practice of dichotomized absent/present N20 peaks, qSSEP has the potential to emerge as one of the earliest predictors of good outcome in comatose post-cardiac arrest patients. Validation of qSSEP markers in prospective studies to predict good and poor outcomes in the cardiac arrest population in the setting of hypothermia could advance care in cardiac arrest. It has the prospect to guide allocation of health care resources and reduce self-fulfilling prophecy.
Collapse
|
8
|
Developing an instrument for an early prediction model of long-term functional outcomes in people with acquired injuries of the central nervous system: protocol and methodological aspects. Neurol Sci 2020; 42:2441-2446. [PMID: 33078248 PMCID: PMC8159777 DOI: 10.1007/s10072-020-04821-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/10/2020] [Indexed: 11/24/2022]
Abstract
Severe acquired brain injury (ABI) is a major cause of long-term disability and is the main determinant of health and societal costs. Early identification of favourable long-term recovery would allow personalized rehabilitative programs and better health care resources allocation. In light of the higher survival rate from intensive care units (ICU) in recent years, there is a growing need for early prognostication markers of functional recovery; to date, these data have been mainly collected at rehabilitation unit admission and not during the acute phase. We present the protocol and methodology to develop prediction models in people with severe acquired brain injury (GCS at admission to ICU < 8) for the functional and cognitive outcome at 12 months from the event. Predictors will be collected during the acute stage. Participants will be recruited within the first 72 h from the event in the ICUs of two teaching hospitals (Padova and Treviso). Participants will be followed up at discharge from ICU, admission and discharge from Neurorehabilitation and after 12 months from the event. Clinical and functional scales, electroencephalography, evoked potentials, magnetic resonance imaging and serological markers will be entered into a digital registry. Survival will be estimated using the Cox proportional hazard model. A multivariate prediction model will be developed for each of the functional and cognitive outcomes at 12 months from the event.
Collapse
|
9
|
Sandroni C, D'Arrigo S, Cacciola S, Hoedemaekers CWE, Kamps MJA, Oddo M, Taccone FS, Di Rocco A, Meijer FJA, Westhall E, Antonelli M, Soar J, Nolan JP, Cronberg T. Prediction of poor neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensive Care Med 2020; 46:1803-1851. [PMID: 32915254 PMCID: PMC7527362 DOI: 10.1007/s00134-020-06198-w] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022]
Abstract
Purpose To assess the ability of clinical examination, blood biomarkers, electrophysiology, or neuroimaging assessed within 7 days from return of spontaneous circulation (ROSC) to predict poor neurological outcome, defined as death, vegetative state, or severe disability (CPC 3–5) at hospital discharge/1 month or later, in comatose adult survivors from cardiac arrest (CA). Methods PubMed, EMBASE, Web of Science, and the Cochrane Database of Systematic Reviews (January 2013–April 2020) were searched. Sensitivity and false-positive rate (FPR) for each predictor were calculated. Due to heterogeneities in recording times, predictor thresholds, and definition of some predictors, meta-analysis was not performed. Results Ninety-four studies (30,200 patients) were included. Bilaterally absent pupillary or corneal reflexes after day 4 from ROSC, high blood values of neuron-specific enolase from 24 h after ROSC, absent N20 waves of short-latency somatosensory-evoked potentials (SSEPs) or unequivocal seizures on electroencephalogram (EEG) from the day of ROSC, EEG background suppression or burst-suppression from 24 h after ROSC, diffuse cerebral oedema on brain CT from 2 h after ROSC, or reduced diffusion on brain MRI at 2–5 days after ROSC had 0% FPR for poor outcome in most studies. Risk of bias assessed using the QUIPS tool was high for all predictors. Conclusion In comatose resuscitated patients, clinical, biochemical, neurophysiological, and radiological tests have a potential to predict poor neurological outcome with no false-positive predictions within the first week after CA. Guidelines should consider the methodological concerns and limited sensitivity for individual modalities. (PROSPERO CRD42019141169) Electronic supplementary material The online version of this article (10.1007/s00134-020-06198-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.,Institute of Anesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sonia D'Arrigo
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.
| | - Sofia Cacciola
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy
| | | | - Marlijn J A Kamps
- Intensive Care Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Mauro Oddo
- Department of Intensive Care Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabio S Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Arianna Di Rocco
- Department of Public Health and Infectious Disease, Sapienza University, Rome, Italy
| | - Frederick J A Meijer
- Department of Radiology and Nuclear Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Erik Westhall
- Department of ClinicalSciences, Clinical Neurophysiology, Lund University, Skane University Hospital, Lund, Sweden
| | - Massimo Antonelli
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli"- IRCCS, Largo Francesco Vito, 1, 00168, Rome, Italy.,Institute of Anesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Jasmeet Soar
- Critical Care Unit, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Jerry P Nolan
- Department of Anaesthesia and Intensive Care Medicine, Royal United Hospital, Bath, UK
| | - Tobias Cronberg
- Department of Clinical Sciences Lund, Neurology, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
10
|
Comanducci A, Boly M, Claassen J, De Lucia M, Gibson RM, Juan E, Laureys S, Naccache L, Owen AM, Rosanova M, Rossetti AO, Schnakers C, Sitt JD, Schiff ND, Massimini M. Clinical and advanced neurophysiology in the prognostic and diagnostic evaluation of disorders of consciousness: review of an IFCN-endorsed expert group. Clin Neurophysiol 2020; 131:2736-2765. [PMID: 32917521 DOI: 10.1016/j.clinph.2020.07.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 07/06/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022]
Abstract
The analysis of spontaneous EEG activity and evoked potentialsis a cornerstone of the instrumental evaluation of patients with disorders of consciousness (DoC). Thepast few years have witnessed an unprecedented surge in EEG-related research applied to the prediction and detection of recovery of consciousness after severe brain injury,opening up the prospect that new concepts and tools may be available at the bedside. This paper provides a comprehensive, critical overview of bothconsolidated and investigational electrophysiological techniquesfor the prognostic and diagnostic assessment of DoC.We describe conventional clinical EEG approaches, then focus on evoked and event-related potentials, and finally we analyze the potential of novel research findings. In doing so, we (i) draw a distinction between acute, prolonged and chronic phases of DoC, (ii) attempt to relate both clinical and research findings to the underlying neuronal processes and (iii) discuss technical and conceptual caveats.The primary aim of this narrative review is to bridge the gap between standard and emerging electrophysiological measures for the detection and prediction of recovery of consciousness. The ultimate scope is to provide a reference and common ground for academic researchers active in the field of neurophysiology and clinicians engaged in intensive care unit and rehabilitation.
Collapse
Affiliation(s)
- A Comanducci
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - M Boly
- Department of Neurology and Department of Psychiatry, University of Wisconsin, Madison, USA; Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, Madison, USA
| | - J Claassen
- Department of Neurology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - M De Lucia
- Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - R M Gibson
- The Brain and Mind Institute and the Department of Physiology and Pharmacology, Western Interdisciplinary Research Building, N6A 5B7 University of Western Ontario, London, Ontario, Canada
| | - E Juan
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, Madison, USA; Amsterdam Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - S Laureys
- Coma Science Group, Centre du Cerveau, GIGA-Consciousness, University and University Hospital of Liège, 4000 Liège, Belgium; Fondazione Europea per la Ricerca Biomedica Onlus, Milan 20063, Italy
| | - L Naccache
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Sorbonne Université, UPMC Université Paris 06, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | - A M Owen
- The Brain and Mind Institute and the Department of Physiology and Pharmacology, Western Interdisciplinary Research Building, N6A 5B7 University of Western Ontario, London, Ontario, Canada
| | - M Rosanova
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy; Fondazione Europea per la Ricerca Biomedica Onlus, Milan 20063, Italy
| | - A O Rossetti
- Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Schnakers
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - J D Sitt
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - N D Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - M Massimini
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy; Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| |
Collapse
|
11
|
Estimating the False Positive Rate of Absent Somatosensory Evoked Potentials in Cardiac Arrest Prognostication. Crit Care Med 2019; 46:e1213-e1221. [PMID: 30247243 DOI: 10.1097/ccm.0000000000003436] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Absence of somatosensory evoked potentials is considered a nearly perfect predictor of poor outcome after cardiac arrest. However, reports of good outcomes despite absent somatosensory evoked potentials and high rates of withdrawal of life-sustaining therapies have raised concerns that estimates of the prognostic value of absent somatosensory evoked potentials may be biased by self-fulfilling prophecies. We aimed to develop an unbiased estimate of the false positive rate of absent somatosensory evoked potentials as a predictor of poor outcome after cardiac arrest. DATA SOURCES PubMed. STUDY SELECTION We selected 35 studies in cardiac arrest prognostication that reported somatosensory evoked potentials. DATA EXTRACTION In each study, we identified rates of withdrawal of life-sustaining therapies and good outcomes despite absent somatosensory evoked potentials. We appraised studies for potential biases using the Quality in Prognosis Studies tool. Using these data, we developed a statistical model to estimate the false positive rate of absent somatosensory evoked potentials adjusted for withdrawal of life-sustaining therapies rate. DATA SYNTHESIS Two-thousand one-hundred thirty-three subjects underwent somatosensory evoked potential testing. Five-hundred ninety-four had absent somatosensory evoked potentials; of these, 14 had good functional outcomes. The rate of withdrawal of life-sustaining therapies for subjects with absent somatosensory evoked potential could be estimated in 14 of the 35 studies (mean 80%, median 100%). The false positive rate for absent somatosensory evoked potential in predicting poor neurologic outcome, adjusted for a withdrawal of life-sustaining therapies rate of 80%, is 7.7% (95% CI, 4-13%). CONCLUSIONS Absent cortical somatosensory evoked potentials do not infallibly predict poor outcome in patients with coma following cardiac arrest. The chances of survival in subjects with absent somatosensory evoked potentials, though low, may be substantially higher than generally believed.
Collapse
|
12
|
Azabou E, Navarro V, Kubis N, Gavaret M, Heming N, Cariou A, Annane D, Lofaso F, Naccache L, Sharshar T. Value and mechanisms of EEG reactivity in the prognosis of patients with impaired consciousness: a systematic review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:184. [PMID: 30071861 PMCID: PMC6091014 DOI: 10.1186/s13054-018-2104-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/22/2018] [Indexed: 12/21/2022]
Abstract
Background Electroencephalography (EEG) is a well-established tool for assessing brain function that is available at the bedside in the intensive care unit (ICU). This review aims to discuss the relevance of electroencephalographic reactivity (EEG-R) in patients with impaired consciousness and to describe the neurophysiological mechanisms involved. Methods We conducted a systematic search of the term “EEG reactivity and coma” using the PubMed database. The search encompassed articles published from inception to March 2018 and produced 202 articles, of which 42 were deemed relevant, assessing the importance of EEG-R in relationship to outcomes in patients with impaired consciousness, and were therefore included in this review. Results Although definitions, characteristics and methods used to assess EEG-R are heterogeneous, several studies underline that a lack of EEG-R is associated with mortality and unfavorable outcome in patients with impaired consciousness. However, preserved EEG-R is linked to better odds of survival. Exploring EEG-R to nociceptive, auditory, and visual stimuli enables a noninvasive trimodal functional assessment of peripheral and central sensory ascending pathways that project to the brainstem, the thalamus and the cerebral cortex. A lack of EEG-R in patients with impaired consciousness may result from altered modulation of thalamocortical loop activity by afferent sensory input due to neural impairment. Assessing EEG-R is a valuable tool for the diagnosis and outcome prediction of severe brain dysfunction in critically ill patients. Conclusions This review emphasizes that whatever the etiology, patients with impaired consciousness featuring a reactive electroencephalogram are more likely to have a favorable outcome, whereas those with a nonreactive electroencephalogram are prone to having an unfavorable outcome. EEG-R is therefore a valuable prognostic parameter and warrants a rigorous assessment. However, current assessment methods are heterogeneous, and no consensus exists. Standardization of stimulation and interpretation methods is needed.
Collapse
Affiliation(s)
- Eric Azabou
- Department of Physiology and Department of Critical Care Medicine, Raymond Poincaré Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Inserm UMR 1173 Infection and Inflammation, University of Versailles Saint Quentin (UVSQ), University Paris-Saclay, Garches, Paris, France. .,Clinical Neurophysiology Unit, Raymond Poincaré Hospital - Assistance - Publique Hôpitaux de Paris, INSERM U1173, University of Versailles-Saint Quentin (UVSQ), 104 Boulevard Raymond Poincaré, Garches, 92380, Paris, France.
| | - Vincent Navarro
- Department of Clinical Neurophysiology, Pitié-Salpêtrière Hospital, AP-HP, Inserm UMRS 1127, CNRS UMR 7225, Sorbonne Universities, Université Pierre et Marie Curie - UPMC Université Paris 06, Paris, France
| | - Nathalie Kubis
- Department of Clinical Physiology, Lariboisière Hospital, AP-HP, Inserm U965, University of Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Martine Gavaret
- Department of Clinical Neurophysiology, Sainte-Anne Hospital, Inserm U894, University Paris-Descartes, Paris, France
| | - Nicholas Heming
- Department of Physiology and Department of Critical Care Medicine, Raymond Poincaré Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Inserm UMR 1173 Infection and Inflammation, University of Versailles Saint Quentin (UVSQ), University Paris-Saclay, Garches, Paris, France
| | - Alain Cariou
- Medical ICU, Cochin Hospital, AP-HP, Paris Cardiovascular Research Center, INSERM U970, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Djillali Annane
- Department of Physiology and Department of Critical Care Medicine, Raymond Poincaré Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Inserm UMR 1173 Infection and Inflammation, University of Versailles Saint Quentin (UVSQ), University Paris-Saclay, Garches, Paris, France
| | - Fréderic Lofaso
- Department of Physiology and Department of Critical Care Medicine, Raymond Poincaré Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Inserm UMR 1173 Infection and Inflammation, University of Versailles Saint Quentin (UVSQ), University Paris-Saclay, Garches, Paris, France
| | - Lionel Naccache
- Department of Clinical Neurophysiology, Pitié-Salpêtrière Hospital, AP-HP, Inserm UMRS 1127, CNRS UMR 7225, Sorbonne Universities, Université Pierre et Marie Curie - UPMC Université Paris 06, Paris, France
| | - Tarek Sharshar
- Department of Neuro-Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, Paris, France
| |
Collapse
|
13
|
Pfeiffer C, Nguissi NAN, Chytiris M, Bidlingmeyer P, Haenggi M, Kurmann R, Zubler F, Accolla E, Viceic D, Rusca M, Oddo M, Rossetti AO, De Lucia M. Somatosensory and auditory deviance detection for outcome prediction during postanoxic coma. Ann Clin Transl Neurol 2018; 5:1016-1024. [PMID: 30250859 PMCID: PMC6144443 DOI: 10.1002/acn3.600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 11/26/2022] Open
Abstract
Objective Prominent research in patients with disorders of consciousness investigated the electrophysiological correlates of auditory deviance detection as a marker of consciousness recovery. Here, we extend previous studies by investigating whether somatosensory deviance detection provides an added value for outcome prediction in postanoxic comatose patients. Methods Electroencephalography responses to frequent and rare stimuli were obtained from 66 patients on the first and second day after coma onset. Results Multivariate decoding analysis revealed an above chance‐level auditory discrimination in 25 patients on the first day and in 31 patients on the second day. Tactile discrimination was significant in 16 patients on the first day and in 23 patients on the second day. Single‐day sensory discrimination was unrelated to patients’ outcome in both modalities. However, improvement of auditory discrimination from first to the second day was predictive of good outcome with a positive predictive power (PPV) of 0.73 (CI = 0.52–0.88). Analyses considering the improvement of tactile, auditory and tactile, or either auditory or tactile discrimination showed no significant prediction of good outcome (PPVs = 0.58–0.68). Interpretation Our results show that in the acute phase of coma deviance detection is largely preserved for both auditory and tactile modalities. However, we found no evidence for an added value of somatosensory to auditory deviance detection function for coma‐outcome prediction.
Collapse
Affiliation(s)
- Christian Pfeiffer
- Laboratoire de Recherche en Neuroimagerie (LREN) University Hospital (CHUV) & University of Lausanne Lausanne Switzerland
| | - Nathalie Ata Nguepnjo Nguissi
- Laboratoire de Recherche en Neuroimagerie (LREN) University Hospital (CHUV) & University of Lausanne Lausanne Switzerland
| | - Magali Chytiris
- Laboratoire de Recherche en Neuroimagerie (LREN) University Hospital (CHUV) & University of Lausanne Lausanne Switzerland
| | - Phanie Bidlingmeyer
- Laboratoire de Recherche en Neuroimagerie (LREN) University Hospital (CHUV) & University of Lausanne Lausanne Switzerland
| | - Matthias Haenggi
- Department of Intensive Care Medicine Inselspital Bern University Hospital University of Bern Bern Switzerland
| | - Rebekka Kurmann
- Department of Neurology Inselspital Bern University Hospital University of Bern Bern Switzerland
| | - Frédéric Zubler
- Department of Neurology Inselspital Bern University Hospital University of Bern Bern Switzerland
| | - Ettore Accolla
- Neurology Unit Department of Medicine Hôpital Cantonal Fribourg (HFR) Fribourg Switzerland.,Laboratory for Cognitive and Neurological Sciences Department of Medicine University of Fribourg Fribourg Switzerland
| | | | - Marco Rusca
- Intensive Care Medicine Hôpital du Valais Sion Switzerland
| | - Mauro Oddo
- Department of Intensive Care Medicine University Hospital (CHUV) & University of Lausanne Lausanne Switzerland
| | - Andrea O Rossetti
- Neurology Service University Hospital (CHUV) & University of Lausanne Lausanne Switzerland
| | - Marzia De Lucia
- Laboratoire de Recherche en Neuroimagerie (LREN) University Hospital (CHUV) & University of Lausanne Lausanne Switzerland
| |
Collapse
|
14
|
Cerebral Pathophysiology in Extracorporeal Membrane Oxygenation: Pitfalls in Daily Clinical Management. Crit Care Res Pract 2018; 2018:3237810. [PMID: 29744226 PMCID: PMC5878897 DOI: 10.1155/2018/3237810] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/24/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is a life-saving technique that is widely being used in centers throughout the world. However, there is a paucity of literature surrounding the mechanisms affecting cerebral physiology while on ECMO. Studies have shown alterations in cerebral blood flow characteristics and subsequently autoregulation. Furthermore, the mechanical aspects of the ECMO circuit itself may affect cerebral circulation. The nature of these physiological/pathophysiological changes can lead to profound neurological complications. This review aims at describing the changes to normal cerebral autoregulation during ECMO, illustrating the various neuromonitoring tools available to assess markers of cerebral autoregulation, and finally discussing potential neurological complications that are associated with ECMO.
Collapse
|
15
|
Neuroprognostication after cardiac arrest in the light of targeted temperature management. Curr Opin Crit Care 2017; 23:244-250. [DOI: 10.1097/mcc.0000000000000406] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Rossetti AO. Clinical neurophysiology for neurological prognostication of comatose patients after cardiac arrest. Clin Neurophysiol Pract 2017; 2:76-80. [PMID: 30214976 PMCID: PMC6123903 DOI: 10.1016/j.cnp.2017.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 12/01/2022] Open
Abstract
A multimodal prognostic approach is recommended after cardiac arrest. EEG (background and, reactivity, repetitive epileptiform features) and SSEP are core assessments. Some outlook into long-latency evoked potentials is offered.
Early prognostication of outcome in comatose patients after cardiac arrest represents a daunting task for clinicians, also considering the nowadays commonly used targeted temperature management with sedation in the first 24–48 h. A multimodal approach is currently recommended, in order to minimize the risks of false-positive prediction of poor outcome, including clinical examination off sedation, EEG (background characterization and reactivity, occurrence of repetitive epileptiform features), and early-latency SSEP responses represent the core assessments in this setting; they may be complemented by biochemical markers and neuroimaging. This paper, which relies on a recent comprehensive review, focuses on an updated review of EEG and SSEP, and also offers some outlook into long-latency evoked potentials, which seem promising in clinical use.
Collapse
Affiliation(s)
- Andrea O Rossetti
- Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Université de Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
17
|
Neurological prognostication of outcome in patients in coma after cardiac arrest. Lancet Neurol 2016; 15:597-609. [PMID: 27017468 DOI: 10.1016/s1474-4422(16)00015-6] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/23/2015] [Accepted: 01/12/2016] [Indexed: 11/24/2022]
Abstract
Management of coma after cardiac arrest has improved during the past decade, allowing an increasing proportion of patients to survive, thus prognostication has become an integral part of post-resuscitation care. Neurologists are increasingly confronted with raised expectations of next of kin and the necessity to provide early predictions of long-term prognosis. During the past decade, as technology and clinical evidence have evolved, post-cardiac arrest prognostication has moved towards a multimodal paradigm combining clinical examination with additional methods, consisting of electrophysiology, blood biomarkers, and brain imaging, to optimise prognostic accuracy. Prognostication should never be based on a single indicator; although some variables have very low false positive rates for poor outcome, multimodal assessment provides resassurance about the reliability of a prognostic estimate by offering concordant evidence.
Collapse
|