1
|
Cardim D, Giardina A, Ciliberti P, Battaglini D, Berardino A, Uccelli A, Czosnyka M, Roccatagliata L, Matta B, Patroniti N, Rocco PRM, Robba C. Short-term mild hyperventilation on intracranial pressure, cerebral autoregulation, and oxygenation in acute brain injury patients: a prospective observational study. J Clin Monit Comput 2024; 38:753-762. [PMID: 38310592 PMCID: PMC11297838 DOI: 10.1007/s10877-023-01121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/18/2023] [Indexed: 02/06/2024]
Abstract
Current guidelines suggest a target of partial pressure of carbon dioxide (PaCO2) of 32-35 mmHg (mild hypocapnia) as tier 2 for the management of intracranial hypertension. However, the effects of mild hyperventilation on cerebrovascular dynamics are not completely elucidated. The aim of this study is to evaluate the changes of intracranial pressure (ICP), cerebral autoregulation (measured through pressure reactivity index, PRx), and regional cerebral oxygenation (rSO2) parameters before and after induction of mild hyperventilation. Single center, observational study including patients with acute brain injury (ABI) admitted to the intensive care unit undergoing multimodal neuromonitoring and requiring titration of PaCO2 values to mild hypocapnia as tier 2 for the management of intracranial hypertension. Twenty-five patients were included in this study (40% female), median age 64.7 years (Interquartile Range, IQR = 45.9-73.2). Median Glasgow Coma Scale was 6 (IQR = 3-11). After mild hyperventilation, PaCO2 values decreased (from 42 (39-44) to 34 (32-34) mmHg, p < 0.0001), ICP and PRx significantly decreased (from 25.4 (24.1-26.4) to 17.5 (16-21.2) mmHg, p < 0.0001, and from 0.32 (0.1-0.52) to 0.12 (-0.03-0.23), p < 0.0001). rSO2 was statistically but not clinically significantly reduced (from 60% (56-64) to 59% (54-61), p < 0.0001), but the arterial component of rSO2 (ΔO2Hbi, changes in concentration of oxygenated hemoglobin of the total rSO2) decreased from 3.83 (3-6.2) μM.cm to 1.6 (0.5-3.1) μM.cm, p = 0.0001. Mild hyperventilation can reduce ICP and improve cerebral autoregulation, with minimal clinical effects on cerebral oxygenation. However, the arterial component of rSO2 was importantly reduced. Multimodal neuromonitoring is essential when titrating PaCO2 values for ICP management.
Collapse
Affiliation(s)
- Danilo Cardim
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alberto Giardina
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV 16, Genova, Italy
| | - Pietro Ciliberti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV 16, Genova, Italy
| | - Denise Battaglini
- Department of Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Andrea Berardino
- Department of Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Antonio Uccelli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- DINOGMI, University of Genova, Genova, Italy
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Luca Roccatagliata
- Department of Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- DISSAL, University of Genova, Genova, Italy
| | - Basil Matta
- Neurocritical Care Unit, Addenbrooke's Hospital, Cambridge, UK
| | - Nicolo Patroniti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV 16, Genova, Italy
- Department of Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV 16, Genova, Italy
- Department of Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
2
|
Robba C, Battaglini D, Abbas A, Sarrió E, Cinotti R, Asehnoune K, Taccone FS, Rocco PR, Schultz MJ, Citerio G, Stevens RD, Badenes R. Clinical practice and effect of carbon dioxide on outcomes in mechanically ventilated acute brain-injured patients: a secondary analysis of the ENIO study. Intensive Care Med 2024; 50:234-246. [PMID: 38294526 PMCID: PMC10907416 DOI: 10.1007/s00134-023-07305-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/09/2023] [Indexed: 02/01/2024]
Abstract
PURPOSE The use of arterial partial pressure of carbon dioxide (PaCO2) as a target intervention to manage elevated intracranial pressure (ICP) and its effect on clinical outcomes remain unclear. We aimed to describe targets for PaCO2 in acute brain injured (ABI) patients and assess the occurrence of abnormal PaCO2 values during the first week in the intensive care unit (ICU). The secondary aim was to assess the association of PaCO2 with in-hospital mortality. METHODS We carried out a secondary analysis of a multicenter prospective observational study involving adult invasively ventilated patients with traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), intracranial hemorrhage (ICH), or ischemic stroke (IS). PaCO2 was collected on day 1, 3, and 7 from ICU admission. Normocapnia was defined as PaCO2 > 35 and to 45 mmHg; mild hypocapnia as 32-35 mmHg; severe hypocapnia as 26-31 mmHg, forced hypocapnia as < 26 mmHg, and hypercapnia as > 45 mmHg. RESULTS 1476 patients (65.9% male, mean age 52 ± 18 years) were included. On ICU admission, 804 (54.5%) patients were normocapnic (incidence 1.37 episodes per person/day during ICU stay), and 125 (8.5%) and 334 (22.6%) were mild or severe hypocapnic (0.52 and 0.25 episodes/day). Forced hypocapnia and hypercapnia were used in 40 (2.7%) and 173 (11.7%) patients. PaCO2 had a U-shape relationship with in-hospital mortality with only severe hypocapnia and hypercapnia being associated with increased probability of in-hospital mortality (omnibus p value = 0.0009). Important differences were observed across different subgroups of ABI patients. CONCLUSIONS Normocapnia and mild hypocapnia are common in ABI patients and do not affect patients' outcome. Extreme derangements of PaCO2 values were significantly associated with increased in-hospital mortality.
Collapse
Affiliation(s)
- Chiara Robba
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
- Department of Surgical Science and Integrated Diagnostic, University of Genova, Genoa, Italy.
| | - Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Abbas Abbas
- Department of Surgical Science and Integrated Diagnostic, University of Genova, Genoa, Italy
| | - Ezequiel Sarrió
- Department of Surgery, University of Valencia, Valencia, Spain
| | - Raphael Cinotti
- Department of Anaesthesia and Critical Care, CHU Nantes, Nantes Université, Hôtel Dieu, 44000, Nantes, France
- UMR 1246 SPHERE "MethodS in Patients-Centered Outcomes and HEalth Research", INSERM, IRS2 22 Boulevard Benoni Goulin, University of Nantes, University of Tours, 44200, Nantes, France
| | - Karim Asehnoune
- Department of Anaesthesia and Critical Care, CHU Nantes, Nantes Université, Hôtel Dieu, 44000, Nantes, France
| | - Fabio S Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium
| | - Patricia R Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, Brazil
| | - Marcus J Schultz
- Department of Clinical Medicine, University of Oxford Nuffield, Oxford, Oxfordshire, 105596, UK
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Neurosciences, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Robert David Stevens
- Department of Anesthesiology and Critical Care, John Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
| | - Rafael Badenes
- Department of Surgery, University of Valencia, Valencia, Spain
- Department Anesthesiology and Surgical-Trauma Intensive Care, University Clinic Hospital, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| |
Collapse
|
3
|
Tagliabue S, Kacprzak M, Serra I, Maruccia F, Fischer JB, Riveiro-Vilaboa M, Rey-Perez A, Expósito L, Lindner C, Báguena M, Durduran T, Poca MA. Transcranial, Non-Invasive Evaluation of Potential Misery Perfusion During Hyperventilation Therapy of Traumatic Brain Injury Patients. J Neurotrauma 2023; 40:2073-2086. [PMID: 37125452 PMCID: PMC10541939 DOI: 10.1089/neu.2022.0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Hyperventilation (HV) therapy uses vasoconstriction to reduce intracranial pressure (ICP) by reducing cerebral blood volume. However, as HV also lowers cerebral blood flow (CBF), it may provoke misery perfusion (MP), in which the decrease in CBF is coupled with increased oxygen extraction fraction (OEF). MP may rapidly lead to the exhaustion of brain energy metabolites, making the brain vulnerable to ischemia. MP is difficult to detect at the bedside, which is where transcranial hybrid, near-infrared spectroscopies are promising because they non-invasively measure OEF and CBF. We have tested this technology during HV (∼30 min) with bilateral, frontal lobe monitoring to assess MP in 27 sessions in 18 patients with traumatic brain injury. In this study, HV did not lead to MP at a group level (p > 0.05). However, a statistical approach yielded 89 events with a high probability of MP in 19 sessions. We have characterized each statistically significant event in detail and its possible relationship to clinical and radiological status (decompressive craniectomy and presence of a cerebral lesion), without detecting any statistically significant difference (p > 0.05). However, MP detection stresses the need for personalized, real-time assessment in future clinical trials with HV, in order to provide an optimal evaluation of the risk-benefit balance of HV. Our study provides pilot data demonstrating that bedside transcranial hybrid near-infrared spectroscopies could be utilized to assess potential MP.
Collapse
Affiliation(s)
- Susanna Tagliabue
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Michał Kacprzak
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Isabel Serra
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Centre de Recerca Matemàtica (CRM), Bellaterra, Spain
| | - Federica Maruccia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Jonas B. Fischer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- HemoPhotonics S.L., Castelldefels (Barcelona), Spain
| | | | - Anna Rey-Perez
- Neurotrauma Intensive Care Unit, and Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lourdes Expósito
- Neurotrauma Intensive Care Unit, and Vall d'Hebron University Hospital, Barcelona, Spain
| | - Claus Lindner
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Marcelino Báguena
- Neurotrauma Intensive Care Unit, and Vall d'Hebron University Hospital, Barcelona, Spain
| | - Turgut Durduran
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - María Antonia Poca
- Centre de Recerca Matemàtica (CRM), Bellaterra, Spain
- Department of Neurosurgery, Vall d'Hebron University Hospital, Barcelona, Spain
- Department of Surgery, Universidad Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Bossers SM, Mansvelder F, Loer SA, Boer C, Bloemers FW, Van Lieshout EMM, Den Hartog D, Hoogerwerf N, van der Naalt J, Absalom AR, Schwarte LA, Twisk JWR, Schober P. Association between prehospital end-tidal carbon dioxide levels and mortality in patients with suspected severe traumatic brain injury. Intensive Care Med 2023; 49:491-504. [PMID: 37074395 DOI: 10.1007/s00134-023-07012-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/19/2023] [Indexed: 04/20/2023]
Abstract
PURPOSE Severe traumatic brain injury is a leading cause of mortality and morbidity, and these patients are frequently intubated in the prehospital setting. Cerebral perfusion and intracranial pressure are influenced by the arterial partial pressure of CO2 and derangements might induce further brain damage. We investigated which lower and upper limits of prehospital end-tidal CO2 levels are associated with increased mortality in patients with severe traumatic brain injury. METHODS The BRAIN-PROTECT study is an observational multicenter study. Patients with severe traumatic brain injury, treated by Dutch Helicopter Emergency Medical Services between February 2012 and December 2017, were included. Follow-up continued for 1 year after inclusion. End-tidal CO2 levels were measured during prehospital care and their association with 30-day mortality was analyzed with multivariable logistic regression. RESULTS A total of 1776 patients were eligible for analysis. An L-shaped association between end-tidal CO2 levels and 30-day mortality was observed (p = 0.01), with a sharp increase in mortality with values below 35 mmHg. End-tidal CO2 values between 35 and 45 mmHg were associated with better survival rates compared to < 35 mmHg. No association between hypercapnia and mortality was observed. The odds ratio for the association between hypocapnia (< 35 mmHg) and mortality was 1.89 (95% CI 1.53-2.34, p < 0.001) and for hypercapnia (≥ 45 mmHg) 0.83 (0.62-1.11, p = 0.212). CONCLUSION A safe zone of 35-45 mmHg for end-tidal CO2 guidance seems reasonable during prehospital care. Particularly, end-tidal partial pressures of less than 35 mmHg were associated with a significantly increased mortality.
Collapse
Affiliation(s)
- Sebastiaan M Bossers
- Department of Anesthesiology, Amsterdam University Medical Center, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Floor Mansvelder
- Department of Anesthesiology, Amsterdam University Medical Center, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Stephan A Loer
- Department of Anesthesiology, Amsterdam University Medical Center, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Christa Boer
- Department of Anesthesiology, Amsterdam University Medical Center, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Frank W Bloemers
- Department of Surgery, Amsterdam University Medical Center, Location VUmc, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Esther M M Van Lieshout
- Trauma Research Unit Dept. of Surgery, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, Rotterdam, The Netherlands
| | - Dennis Den Hartog
- Trauma Research Unit Dept. of Surgery, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, Rotterdam, The Netherlands
| | - Nico Hoogerwerf
- Department of Anesthesiology, Radboud Unversity Medical Center, Geert Grooteplein Zuid 10, Nijmegen, The Netherlands
- Helicopter Emergency Medical Service Lifeliner 3, Zeelandsedijk 10, Volkel, The Netherlands
| | - Joukje van der Naalt
- Department of Neurology, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| | - Anthony R Absalom
- Department of Anesthesiology, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| | - Lothar A Schwarte
- Department of Anesthesiology, Amsterdam University Medical Center, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Helicopter Emergency Medical Service Lifeliner 1, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Biostatistics, Amsterdam University Medical Center, De Boelelaan 1089a, Amsterdam, The Netherlands
| | - Patrick Schober
- Department of Anesthesiology, Amsterdam University Medical Center, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Helicopter Emergency Medical Service Lifeliner 1, De Boelelaan 1117, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Sharma H, McGinnis JP, Kabotyanski KE, Gopinath SP, Goodman JC, Robertson C, Cruz Navarro J. Cerebral microdialysis and glucopenia in traumatic brain injury: A review. Front Neurol 2023; 14:1017290. [PMID: 36779054 PMCID: PMC9911651 DOI: 10.3389/fneur.2023.1017290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Traditionally, intracranial pressure (ICP) and partial brain tissue oxygenation (PbtO2) have been the primary invasive intracranial measurements used to guide management in patients with severe traumatic brain injury (TBI). After injury however, the brain develops an increased metabolic demand which may require an increment in the oxidative metabolism of glucose. Simultaneously, metabolic, and electrical dysfunction can lead to an inability to meet these demands, even in the absence of ischemia or increased intracranial pressure. Cerebral microdialysis provides the ability to accurately measure local concentrations of various solutes including lactate, pyruvate, glycerol and glucose. Experimental and clinical data demonstrate that such measurements of cellular metabolism can yield critical missing information about a patient's physiologic state and help limit secondary damage. Glucose management in traumatic brain injury is still an unresolved question. As cerebral glucose metabolism may be uncoupled from systemic glucose levels due to the metabolic dysfunction, measurement of cerebral extracellular glucose concentrations could provide more predictive information and prove to be a better biomarker to avoid secondary injury of at-risk brain tissue. Based on data obtained from cerebral microdialysis, specific interventions such as ICP-directed therapy, blood glucose increment, seizure control, and/or brain oxygen optimization can be instituted to minimize or prevent secondary insults. Thus, microdialysis measurements of parenchymal metabolic function provides clinically valuable information that cannot be obtained by other monitoring adjuncts in the standard ICU setting.
Collapse
Affiliation(s)
- Himanshu Sharma
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States,*Correspondence: Himanshu Sharma ✉
| | - John P. McGinnis
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | | | - Shankar P. Gopinath
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Jerry C. Goodman
- Department of Pathology, Baylor College of Medicine, Houston, TX, United States
| | - Claudia Robertson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Jovany Cruz Navarro
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States,Department of Anesthesiology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Chen L, Xia S, Zuo Y, Lin Y, Qiu X, Chen Q, Feng T, Xia X, Shao Q, Wang S. Systemic immune inflammation index and peripheral blood carbon dioxide concentration at admission predict poor prognosis in patients with severe traumatic brain injury. Front Immunol 2023; 13:1034916. [PMID: 36700228 PMCID: PMC9868584 DOI: 10.3389/fimmu.2022.1034916] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Background Recent studies have shown that systemic inflammation responses and hyperventilation are associated with poor outcomes in patients with severe traumatic brain injury (TBI). The aim of this retrospective study was to investigate the relationships between the systemic immune inflammation index (SII = platelet × neutrophil/lymphocyte) and peripheral blood CO2 concentration at admission with the Glasgow Outcome Score (GOS) at 6 months after discharge in patients with severe TBI. Methods We retrospectively analyzed the clinical data for 1266 patients with severe TBI at three large medical centers from January 2016 to December 2021, and recorded the GOS 6 months after discharge. The receiver operating characteristic (ROC) curve was used to determine the best cutoff values for SII, CO2, neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), and lymphocyte to monocyte ratio (LMR), and chi-square tests were used to evaluate the relationships among SII, CO2 and the basic clinical characteristics of patients with TBI. Multivariate logistic regression analysis was used to determine the independent prognostic factors for GOS in patients with severe TBI. Finally, ROC curve, nomogram, calibration curve and decision curve analyses were used to evaluate the value of SII and coSII-CO2 in predicting the prognosis of patients with severe TBI. And we used the multifactor regression analysis method to build the CRASH model and the IMPACT model. The CRASH model included age, GCS score (GCS, Glasgow Coma Scale) and Pupillary reflex to light: one, both, none. The IMPACT model includes age, motor score and Pupillary reflex to light: one, both, none. Results The ROC curves indicated that the best cutoff values of SII, CO2, PLR, NLR and LMR were 2651.43×109, 22.15mmol/L, 190.98×109, 9.66×109 and 1.5×109, respectively. The GOS at 6 months after discharge of patients with high SII and low CO2 were significantly poorer than those with low SII and high CO2. Multivariate logistic regression analysis revealed that age, systolic blood pressure (SBP), pupil size, subarachnoid hemorrhage (SAH), SII, PLR, serum potassium concentration [K+], serum calcium concentration [Ca2+], international normalized ratio (INR), C-reactive protein (CRP) and co-systemic immune inflammation index combined with carbon dioxide (coSII-CO2) (P < 0.001) were independent prognostic factors for GOS in patients with severe TBI. In the training group, the C-index was 0.837 with SII and 0.860 with coSII-CO2. In the external validation group, the C-index was 0.907 with SII and 0.916 with coSII-CO2. Decision curve analysis confirmed a superior net clinical benefit with coSII-CO2 rather than SII in most cases. Furthermore, the calibration curve for the probability of GOS 6 months after discharge showed better agreement with the observed results when based on the coSII-CO2 rather than the SII nomogram. According to machine learning, coSII-CO2 ranked first in importance and was followed by pupil size, then SII. Conclusions SII and CO2 have better predictive performance than NLR, PLR and LMR. SII and CO2 can be used as new, accurate and objective clinical predictors, and coSII-CO2, based on combining SII with CO2, can be used to improve the accuracy of GOS prediction in patients with TBI 6 months after discharge.
Collapse
Affiliation(s)
- Li Chen
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Shaohuai Xia
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yi Zuo
- Department of Geriatrics, Affiliated Huai’an No.2 People’s Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Yinghong Lin
- Department of Neurosurgery, 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xianshen Qiu
- Department of Neurosurgery, Ganzhou People's Hospital, No.16 Meiguan Avenue, Zhanggong District, Ganzhou, Jiangxi, China
| | - Qizuan Chen
- Department of Neurosurgery, 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Tianshun Feng
- Department of Neurosurgery, 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xuewei Xia
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China,*Correspondence: Xuewei Xia, ; Qixiang Shao, ; Shousen Wang,
| | - Qixiang Shao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, No.2 the Yellow River West Road Huai'an, Jiangsu, China,*Correspondence: Xuewei Xia, ; Qixiang Shao, ; Shousen Wang,
| | - Shousen Wang
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China,Department of Neurosurgery, 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China,*Correspondence: Xuewei Xia, ; Qixiang Shao, ; Shousen Wang,
| |
Collapse
|
7
|
Tas J, Czosnyka M, van der Horst ICC, Park S, van Heugten C, Sekhon M, Robba C, Menon DK, Zeiler FA, Aries MJH. Cerebral multimodality monitoring in adult neurocritical care patients with acute brain injury: A narrative review. Front Physiol 2022; 13:1071161. [PMID: 36531179 PMCID: PMC9751622 DOI: 10.3389/fphys.2022.1071161] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/07/2022] [Indexed: 07/27/2023] Open
Abstract
Cerebral multimodality monitoring (MMM) is, even with a general lack of Class I evidence, increasingly recognized as a tool to support clinical decision-making in the neuroscience intensive care unit (NICU). However, literature and guidelines have focused on unimodal signals in a specific form of acute brain injury. Integrating unimodal signals in multiple signal monitoring is the next step for clinical studies and patient care. As such, we aimed to investigate the recent application of MMM in studies of adult patients with traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), intracerebral hemorrhage (ICH), acute ischemic stroke (AIS), and hypoxic ischemic brain injury following cardiac arrest (HIBI). We identified continuous or daily updated monitoring modalities and summarized the monitoring setting, study setting, and clinical characteristics. In addition, we discussed clinical outcome in intervention studies. We identified 112 MMM studies, including 11 modalities, over the last 7 years (2015-2022). Fifty-eight studies (52%) applied only two modalities. Most frequently combined were ICP monitoring (92 studies (82%)) together with PbtO2 (63 studies (56%). Most studies included patients with TBI (59 studies) or SAH (53 studies). The enrollment period of 34 studies (30%) took more than 5 years, whereas the median sample size was only 36 patients (q1- q3, 20-74). We classified studies as either observational (68 studies) or interventional (44 studies). The interventions were subclassified as systemic (24 studies), cerebral (10 studies), and interventions guided by MMM (11 studies). We identified 20 different systemic or cerebral interventions. Nine (9/11, 82%) of the MMM-guided studies included clinical outcome as an endpoint. In 78% (7/9) of these MMM-guided intervention studies, a significant improvement in outcome was demonstrated in favor of interventions guided by MMM. Clinical outcome may be improved with interventions guided by MMM. This strengthens the belief in this application, but further interdisciplinary collaborations are needed to overcome the heterogeneity, as illustrated in the present review. Future research should focus on increasing sample sizes, improved data collection, refining definitions of secondary injuries, and standardized interventions. Only then can we proceed with complex outcome studies with MMM-guided treatment.
Collapse
Affiliation(s)
- Jeanette Tas
- Maastricht University Medical Center +, Department of Intensive Care Medicine, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - Marek Czosnyka
- Brain Physics Laboratory, Department of Clinical Neurosciences, Division of Neurosurgery, University of Cambridge, Cambridge, United Kingdom
| | - Iwan C. C. van der Horst
- Maastricht University Medical Center +, Department of Intensive Care Medicine, Maastricht University, Maastricht, Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, Netherlands
| | - Soojin Park
- Departments of Neurology and Biomedical Informatics, Columbia University, New York, NY, United States
| | - Caroline van Heugten
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Mypinder Sekhon
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Chiara Robba
- Department of Anaesthesia and Intensive Care, Policlinico Santino IRCCS for Oncology and Neuroscience, Dipartimento di Scienze Chirurgiche Diagnostiche Integrate, University of Genova, Genova, Italy
| | - David K. Menon
- University Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Frederick A. Zeiler
- University Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
- Department of Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Marcel J. H. Aries
- Maastricht University Medical Center +, Department of Intensive Care Medicine, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
8
|
Second- and Third-Tier Therapies for Severe Traumatic Brain Injury. J Clin Med 2022; 11:jcm11164790. [PMID: 36013029 PMCID: PMC9410180 DOI: 10.3390/jcm11164790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022] Open
Abstract
Intracranial hypertension is a common finding in patients with severe traumatic brain injury. These patients need treatment in the intensive care unit, where intracranial pressure monitoring and, whenever possible, multimodal neuromonitoring can be applied. A three-tier approach is suggested in current recommendations, in which higher-tier therapies have more significant side effects. In this review, we explain the rationale for this approach, and analyze the benefits and risks of each therapeutic modality. Finally, we discuss, based on the most recent recommendations, how this approach can be adapted in low- and middle-income countries, where available resources are limited.
Collapse
|
9
|
Klinzing S, Stretti F, Pagnamenta A, Bèchir M, Brandi G. Transcranial color-coded duplex sonography assessment of cerebrovascular reactivity to carbon dioxide: an interventional study. BMC Neurol 2021; 21:305. [PMID: 34364365 PMCID: PMC8349098 DOI: 10.1186/s12883-021-02310-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/06/2021] [Indexed: 01/15/2023] Open
Abstract
Background The investigation of CO2 reactivity (CO2-CVR) is used in the setting of, e.g., traumatic brain injury (TBI). Transcranial color-coded duplex sonography (TCCD) is a promising bedside tool for monitoring cerebral hemodynamics. This study used TCCD to investigate CO2-CVR in volunteers, in sedated and mechanically ventilated patients without TBI and in sedated and mechanically ventilated patients in the acute phase after TBI. Methods This interventional investigation was performed between March 2013 and February 2016 at the surgical ICU of the University Hospital of Zurich. Ten volunteers (group 1), ten sedated and mechanically ventilated patients (group 2), and ten patients in the acute phase (12–36 h) after severe TBI (group 3) were included. CO2-CVR to moderate hyperventilation (∆ CO2 -5.5 mmHg) was assessed by TCCD. Results CO2-CVR was 2.14 (1.20–2.70) %/mmHg in group 1, 2.03 (0.15–3.98) %/mmHg in group 2, and 3.32 (1.18–4.48)%/mmHg in group 3, without significant differences among groups. Conclusion Our data did not yield evidence for altered CO2-CVR in the early phase after TBI examined by TCCD. Trial registration Part of this trial was performed as preparation for the interventional trial in TBI patients (clinicaltrials.gov NCT03822026, 30.01.2019, retrospectively registered).
Collapse
Affiliation(s)
- Stephanie Klinzing
- Institute for Intensive Medicine, University Hospital of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
| | - Federica Stretti
- Intensive Care Unit, Westmead Hospital, Westmead, NSW, Australia
| | - Alberto Pagnamenta
- Intensive Care Unit, Regional Hospital of Mendrisio, Mendrisio, Switzerland.,Unit of Clinical Epidemiology, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Division of Pneumology, University of Geneva, Geneva, Switzerland
| | - Markus Bèchir
- Institute for Intensive Medicine, University Hospital of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
| | - Giovanna Brandi
- Institute for Intensive Medicine, University Hospital of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
| |
Collapse
|
10
|
Robba C, Iannuzzi F, Taccone FS. Tier-three therapies for refractory intracranial hypertension in adult head trauma. Minerva Anestesiol 2021; 87:1359-1366. [PMID: 34337922 DOI: 10.23736/s0375-9393.21.15827-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Refractory intracranial hypertension after traumatic brain injury (TBI) is defined as recurrent increase of intracranial pressure (ICP) above 20-22 mmHg for sustained period of time (10-15 min), despite conventional therapies, such as osmotic therapy, cerebral spinal fluid drainage and mild hyperventilation. As such, more aggressive treatments should be taken into consideration. In particular, therapeutic hypothermia, barbiturates administration and decompressive craniectomy are considered as tier-three or "salvage" interventions, as they have shown to be able to control refractory hypertension, but are also associated with an increased risk of significant side effects. The aim of this review is therefore to describe the evidence supporting the use of these tier-three therapies in the management of refractory intracranial hypertension in TBI patients.
Collapse
Affiliation(s)
- Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy - .,San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy -
| | - Francesca Iannuzzi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Fabio S Taccone
- Department of Intensive Care Medicine, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
11
|
Citerio G, Robba C, Rebora P, Petrosino M, Rossi E, Malgeri L, Stocchetti N, Galimberti S, Menon DK. Management of arterial partial pressure of carbon dioxide in the first week after traumatic brain injury: results from the CENTER-TBI study. Intensive Care Med 2021; 47:961-973. [PMID: 34302517 PMCID: PMC8308080 DOI: 10.1007/s00134-021-06470-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/26/2021] [Indexed: 11/24/2022]
Abstract
Purpose To describe the management of arterial partial pressure of carbon dioxide (PaCO2) in severe traumatic brain-injured (TBI) patients, and the optimal target of PaCO2 in patients with high intracranial pressure (ICP). Methods Secondary analysis of CENTER-TBI, a multicentre, prospective, observational, cohort study. The primary aim was to describe current practice in PaCO2 management during the first week of intensive care unit (ICU) after TBI, focusing on the lowest PaCO2 values. We also assessed PaCO2 management in patients with and without ICP monitoring (ICPm), and with and without intracranial hypertension. We evaluated the effect of profound hyperventilation (defined as PaCO2 < 30 mmHg) on long-term outcome. Results We included 1100 patients, with a total of 11,791 measurements of PaCO2 (5931 lowest and 5860 highest daily values). The mean (± SD) PaCO2 was 38.9 (± 5.2) mmHg, and the mean minimum PaCO2 was 35.2 (± 5.3) mmHg. Mean daily minimum PaCO2 values were significantly lower in the ICPm group (34.5 vs 36.7 mmHg, p < 0.001). Daily PaCO2 nadir was lower in patients with intracranial hypertension (33.8 vs 35.7 mmHg, p < 0.001). Considerable heterogeneity was observed between centers. Management in a centre using profound hyperventilation (HV) more frequently was not associated with increased 6 months mortality (OR = 1.06, 95% CI = 0.77–1.45, p value = 0.7166), or unfavourable neurological outcome (OR 1.12, 95% CI = 0.90–1.38, p value = 0.3138). Conclusions Ventilation is manipulated differently among centers and in response to intracranial dynamics. PaCO2 tends to be lower in patients with ICP monitoring, especially if ICP is increased. Being in a centre which more frequently uses profound hyperventilation does not affect patient outcomes. Supplementary Information The online version contains supplementary material available at 10.1007/s00134-021-06470-7.
Collapse
Affiliation(s)
- Giuseppe Citerio
- School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy. .,Neurointensive Care Unit, Ospedale San Gerardo, Azienda Socio-Sanitaria Territoriale Di Monza, Monza, Italy.
| | - Chiara Robba
- Anesthesia and Intensive Care, Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Surgical Science and Integrated Diagnostic, University of Genoa, Genoa, Italy
| | - Paola Rebora
- School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy.,Bicocca Bioinformatics Biostatistics and Bioimaging Center B4, School of Medicine and Surgery, University of Milano - Bicocca, Milan, Italy
| | - Matteo Petrosino
- Bicocca Bioinformatics Biostatistics and Bioimaging Center B4, School of Medicine and Surgery, University of Milano - Bicocca, Milan, Italy
| | - Eleonora Rossi
- Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, Unit of Anaesthesia and Intensive Care, University of Pavia, Pavia, Italy
| | - Letterio Malgeri
- Anesthesia and Intensive Care, School of Medicine, Messina, Italy
| | - Nino Stocchetti
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Physiopathology and Transplantation, Milan University, Milan, Italy
| | - Stefania Galimberti
- School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy.,Bicocca Bioinformatics Biostatistics and Bioimaging Center B4, School of Medicine and Surgery, University of Milano - Bicocca, Milan, Italy
| | - David K Menon
- Neurocritical Care Unit, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|
12
|
Association of Ventilation during Initial Trauma Resuscitation for Traumatic Brain Injury and Post-Traumatic Outcomes: A Systematic Review. Prehosp Disaster Med 2021; 36:460-465. [PMID: 34057405 DOI: 10.1017/s1049023x21000534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES In the absence of evidence of acute cerebral herniation, normal ventilation is recommended for patients with traumatic brain injury (TBI). Despite this recommendation, ventilation strategies vary during the initial management of patients with TBI and may impact outcome. The goal of this systematic review was to define the best evidence-based practice of ventilation management during the initial resuscitation period. METHODS A literature search of PubMed, CINAHL, and SCOPUS identified studies from 2009 through 2019 addressing the effects of ventilation during the initial post-trauma resuscitation on patient outcomes. RESULTS The initial search yielded 899 articles, from which 13 were relevant and selected for full-text review. Six of the 13 articles met the inclusion criteria, all of which reported on patients with TBI. Either end-tidal carbon dioxide (ETCO2) or partial pressure carbon dioxide (PCO2) were the independent variables associated with mortality. Decreased rates of mortality were reported in patients with normal PCO2 or ETCO2. CONCLUSIONS Normoventilation, as measured by ETCO2 or PCO2, is associated with decreased mortality in patients with TBI. Preventing hyperventilation or hypoventilation in patients with TBI during the early resuscitation phase could improve outcome after TBI.
Collapse
|
13
|
Abstract
Carbon dioxide is a common gas in the air which has been widely used in medical treatment. A carbon dioxide molecule consists of two oxygen atoms and one carbon atom through a covalent bond. In the body, carbon dioxide reacts with water to produce carbonic acid. In healthy people, carbon dioxide is maintained within a narrow range (35–45 mmHg) by physiological mechanisms. The role of hypocapnia (partial pressure of carbon dioxide < 35 mmHg) and hypercapnia (partial pressure of carbon dioxide > 45 mmHg) in the nervous system is intricate. Past researches mainly focus on the effect of hypocapnia to nerve protection. Nevertheless, Hypercapnia seems to play an important role in neuroprotection. The mechanisms of hypocapnia and hypercapnia in the nervous system deserve our attention. The purpose of this review is to summarize the effect of hypocapnia and hypercapnia in stroke and traumatic brain injury.
Collapse
Affiliation(s)
- Ru-Ming Deng
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yong-Chun Liu
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jin-Quan Li
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jian-Guo Xu
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
14
|
Godoy DA, Badenes R, Robba C, Murillo Cabezas F. Hyperventilation in Severe Traumatic Brain Injury Has Something Changed in the Last Decade or Uncertainty Continues? A Brief Review. Front Neurol 2021; 12:573237. [PMID: 33776876 PMCID: PMC7991081 DOI: 10.3389/fneur.2021.573237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Daniel Agustín Godoy
- Neurointensive Care Unit, Sanatorio Pasteur, Catamarca, Argentina.,Intensive Care Unit, Hospital San Juan Bautista, Catamarca, Argentina
| | - Rafael Badenes
- Department Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari de Valencia, Valencia, Spain.,Department of Surgery, University of Valencia, Valencia, Spain.,INCLIVA Research Medical Institute, Valencia, Spain
| | - Chiara Robba
- Department of Anaesthesia and Intensive Care, Policlinico San Martino Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy.,School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | | |
Collapse
|
15
|
Battaglini D, Anania P, Rocco PRM, Brunetti I, Prior A, Zona G, Pelosi P, Fiaschi P. Escalate and De-Escalate Therapies for Intracranial Pressure Control in Traumatic Brain Injury. Front Neurol 2020; 11:564751. [PMID: 33324317 PMCID: PMC7724991 DOI: 10.3389/fneur.2020.564751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/30/2020] [Indexed: 12/22/2022] Open
Abstract
Severe traumatic brain injury (TBI) is frequently associated with an elevation of intracranial pressure (ICP), followed by cerebral perfusion pressure (CPP) reduction. Invasive monitoring of ICP is recommended to guide a step-by-step “staircase approach” which aims to normalize ICP values and reduce the risks of secondary damage. However, if such monitoring is not available clinical examination and radiological criteria should be used. A major concern is how to taper the therapies employed for ICP control. The aim of this manuscript is to review the criteria for escalating and withdrawing therapies in TBI patients. Each step of the staircase approach carries a risk of adverse effects related to the duration of treatment. Tapering of barbiturates should start once ICP control has been achieved for at least 24 h, although a period of 2–12 days is often required. Administration of hyperosmolar fluids should be avoided if ICP is normal. Sedation should be reduced after at least 24 h of controlled ICP to allow neurological examination. Removal of invasive ICP monitoring is suggested after 72 h of normal ICP. For patients who have undergone surgical decompression, cranioplasty represents the final step, and an earlier cranioplasty (15–90 days after decompression) seems to reduce the rate of infection, seizures, and hydrocephalus.
Collapse
Affiliation(s)
- Denise Battaglini
- Department of Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
| | - Pasquale Anania
- Department of Neurosurgery, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health-Nano SAÚDE/Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Iole Brunetti
- Department of Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
| | - Alessandro Prior
- Department of Neurosurgery, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
| | - Gianluigi Zona
- Department of Neurosurgery, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Paolo Pelosi
- Department of Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy.,Department of Surgical Sciences and Integral Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Pietro Fiaschi
- Department of Neurosurgery, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
16
|
Godoy DA, Rovegno M, Lazaridis C, Badenes R. The effects of arterial CO 2 on the injured brain: Two faces of the same coin. J Crit Care 2020; 61:207-215. [PMID: 33186827 DOI: 10.1016/j.jcrc.2020.10.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/08/2020] [Accepted: 10/29/2020] [Indexed: 01/14/2023]
Abstract
Serum levels of carbon dioxide (CO2) closely regulate cerebral blood flow (CBF) and actively participate in different aspects of brain physiology such as hemodynamics, oxygenation, and metabolism. Fluctuations in the partial pressure of arterial CO2 (PaCO2) modify the aforementioned variables, and at the same time influence physiologic parameters in organs such as the lungs, heart, kidneys, and the gastrointestinal tract. In general, during acute brain injury (ABI), maintaining normal PaCO2 is the target to be achieved. Both hypercapnia and hypocapnia may comprise secondary insults and should be avoided during ABI. The risks of hypocapnia mostly outweigh the potential benefits. Therefore, its therapeutic applicability is limited to transient and second-stage control of intracranial hypertension. On the other hand, inducing hypercapnia could be beneficial when certain specific situations require increasing CBF. The evidence supporting this claim is very weak. This review attempts providing an update on the physiology of CO2, its risks, benefits, and potential utility in the neurocritical care setting.
Collapse
Affiliation(s)
- Daniel Agustin Godoy
- Neurointensive Care Unit, Sanatorio Pasteur, Catamarca, Argentina; Intensive Care Unit, Hospital San Juan Bautista, Catamarca, Argentina.
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Christos Lazaridis
- Neurocritical Care, Departments of Neurology and Neurosurgery, University of Chicago Medical Center, Chicago, IL, USA
| | - Rafael Badenes
- Anesthesiology and Surgical-Trauma Intensive Care, University Clinic Hospital, Valencia, Spain,; Department of Surgery, University of Valencia, Spain; INCLIVA Research Medical Institute, Valencia, Spain
| |
Collapse
|
17
|
Yang Z, Zhang S, Sun T. Response to Optic nerve sheath diameter in critically ill patients: nuances and interpretation. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:436. [PMID: 32664964 PMCID: PMC7362442 DOI: 10.1186/s13054-020-03149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/03/2020] [Indexed: 12/04/2022]
Affiliation(s)
- Ziyue Yang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, 450052, China
| | - Shuguang Zhang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, 450052, China
| | - Tongwen Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, 450052, China.
| |
Collapse
|
18
|
Picetti E, Pelosi P, Taccone FS, Citerio G, Mancebo J, Robba C. VENTILatOry strategies in patients with severe traumatic brain injury: the VENTILO Survey of the European Society of Intensive Care Medicine (ESICM). CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:158. [PMID: 32303255 PMCID: PMC7165367 DOI: 10.1186/s13054-020-02875-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
Background Severe traumatic brain injury (TBI) patients often develop acute respiratory failure. Optimal ventilator strategies in this setting are not well established. We performed an international survey to investigate the practice in the ventilatory management of TBI patients with and without respiratory failure. Methods An electronic questionnaire, including 38 items and 3 different clinical scenarios [arterial partial pressure of oxygen (PaO2)/inspired fraction of oxygen (FiO2) > 300 (scenario 1), 150–300 (scenario 2), < 150 (scenario 3)], was available on the European Society of Intensive Care Medicine (ESICM) website between November 2018 and March 2019. The survey was endorsed by ESICM. Results There were 687 respondents [472 (69%) from Europe], mainly intensivists [328 (48%)] and anesthesiologists [206 (30%)]. A standard protocol for mechanical ventilation in TBI patients was utilized by 277 (40%) respondents and a specific weaning protocol by 198 (30%). The most common tidal volume (TV) applied was 6–8 ml/kg of predicted body weight (PBW) in scenarios 1–2 (72% PaO2/FIO2 > 300 and 61% PaO2/FiO2 150–300) and 4–6 ml/kg/PBW in scenario 3 (53% PaO2/FiO2 < 150). The most common level of highest positive end-expiratory pressure (PEEP) used was 15 cmH2O in patients with a PaO2/FiO2 ≤ 300 without intracranial hypertension (41% if PaO2/FiO2 150–300 and 50% if PaO2/FiO2 < 150) and 10 cmH2O in patients with intracranial hypertension (32% if PaO2/FiO2 150–300 and 33% if PaO2/FiO2 < 150). Regardless of the presence of intracranial hypertension, the most common carbon dioxide target remained 36–40 mmHg whereas the most common PaO2 target was 81–100 mmHg in all the 3 scenarios. The most frequent rescue strategies utilized in case of refractory respiratory failure despite conventional ventilator settings were neuromuscular blocking agents [406 (88%)], recruitment manoeuvres [319 (69%)] and prone position [292 (63%)]. Conclusions Ventilatory management, targets and practice of adult severe TBI patients with and without respiratory failure are widely different among centres. These findings may be helpful to define future investigations in this topic.
Collapse
Affiliation(s)
- Edoardo Picetti
- Department of Anesthesia and Intensive Care, Parma University Hospital, Via Gramsci 14, 43100, Parma, Italy.
| | - Paolo Pelosi
- Department of Anesthesia and Intensive Care, IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan - Bicocca, Monza, Italy
| | - Jordi Mancebo
- Department of Intensive Care, Sant Pau Hospital, Barcelona, Spain
| | - Chiara Robba
- Department of Anesthesia and Intensive Care, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | | |
Collapse
|
19
|
Dynamic optic nerve sheath diameter changes upon moderate hyperventilation in patients with traumatic brain injury. J Crit Care 2020; 56:229-235. [DOI: 10.1016/j.jcrc.2020.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/14/2023]
|
20
|
Abstract
Hyperventilation is commonly used in neurological patients to decrease elevated intracranial pressure (ICP) or relax a tense brain. However, the potentially deleterious effects of hyperventilation may limit its clinical application. The aim of this review is to summarize the physiological and outcome evidence related to hyperventilation in neurological patients.
Collapse
|
21
|
Svedung Wettervik T, Howells T, Hillered L, Nilsson P, Engquist H, Lewén A, Enblad P, Rostami E. Mild Hyperventilation in Traumatic Brain Injury—Relation to Cerebral Energy Metabolism, Pressure Autoregulation, and Clinical Outcome. World Neurosurg 2020; 133:e567-e575. [DOI: 10.1016/j.wneu.2019.09.099] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 11/16/2022]
|
22
|
|