1
|
Guo F, Wang J, Wu M, Yang S, He C, Lu M, Zhao X, Jiang H, Liao Q, Li S. Novel insight into neurofilament light chain and rhythm outcomes after catheter ablation of new-onset atrial fibrillation: A prospective cohort study. Heart Rhythm 2024:S1547-5271(24)03266-1. [PMID: 39197737 DOI: 10.1016/j.hrthm.2024.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is an age-related disorder closely linked to autonomic nervous system dysfunction. Neurofilament light chain (NFL) protein is a biomarker for neurodegenerative diseases. OBJECTIVE The purpose of this study was to evaluate the predictive value of NFL in forecasting AF recurrence after ablation. METHODS Patients newly diagnosed with AF who underwent catheter ablation were included. Serum NFL levels were measured using enzyme-linked immunosorbent assay. The primary outcome was AF recurrence during follow-up. RESULTS A total of 215 consecutive patients were enrolled, with average follow-up period of 10.69 months. During this period, 29 patients experienced AF recurrence. Multivariate Cox regression analysis revealed that high NFL levels (≥300 pg/mL) were an independent predictor of recurrence risk (adjusted hazard ratio [HR] 3.756; 95% confidence interval [CI] 1.392-10.136). The associations between NFL levels and AF recurrence were consistent across subgroups defined by age (>65 years), gender, hypertension, and paroxysmal AF. Restricted cubic spline analysis showed a consistent linear relationship across the entire range of NFL levels. Furthermore, incorporating NFL into the CHA2DS2-VASc score model significantly improved the prediction of recurrent AF risk, as demonstrated by time-dependent area under the curve and decision curve analysis. Notable enhancements were also observed in terms of net reclassification improvement (HR 0.464; 95% CI 0.226-0.675; P <.05) and integrated discrimination improvement (HR 0.087; 95% CI 0.017-0.183; P = .08). CONCLUSION NFL may serve as an effective biomarker for risk stratification and therapeutic decision-making in patients with new-onset AF who have undergone catheter ablation.
Collapse
Affiliation(s)
- Fuding Guo
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Clinical Medicine Center for Cardiovascular Disease of Yunnan Province, Department of Cardiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Jun Wang
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, People's Republic of China
| | - Min Wu
- Department of Oncology, Third People's Hospital of Honghe Prefecture, Gejiu, Yunnan, People's Republic of China
| | - Seng Yang
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Clinical Medicine Center for Cardiovascular Disease of Yunnan Province, Department of Cardiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Chende He
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Clinical Medicine Center for Cardiovascular Disease of Yunnan Province, Department of Cardiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Mei Lu
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Clinical Medicine Center for Cardiovascular Disease of Yunnan Province, Department of Cardiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Xiaohua Zhao
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Clinical Medicine Center for Cardiovascular Disease of Yunnan Province, Department of Cardiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China; Hubei Key Laboratory of Autonomic Nervous System Modulation, Wuhan, People's Republic of China; Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, People's Republic of China.
| | - Qiwei Liao
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Clinical Medicine Center for Cardiovascular Disease of Yunnan Province, Department of Cardiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China.
| | - Shaolong Li
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Clinical Medicine Center for Cardiovascular Disease of Yunnan Province, Department of Cardiology, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China.
| |
Collapse
|
2
|
Khalil M, Teunissen CE, Lehmann S, Otto M, Piehl F, Ziemssen T, Bittner S, Sormani MP, Gattringer T, Abu-Rumeileh S, Thebault S, Abdelhak A, Green A, Benkert P, Kappos L, Comabella M, Tumani H, Freedman MS, Petzold A, Blennow K, Zetterberg H, Leppert D, Kuhle J. Neurofilaments as biomarkers in neurological disorders - towards clinical application. Nat Rev Neurol 2024; 20:269-287. [PMID: 38609644 DOI: 10.1038/s41582-024-00955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Neurofilament proteins have been validated as specific body fluid biomarkers of neuro-axonal injury. The advent of highly sensitive analytical platforms that enable reliable quantification of neurofilaments in blood samples and simplify longitudinal follow-up has paved the way for the development of neurofilaments as a biomarker in clinical practice. Potential applications include assessment of disease activity, monitoring of treatment responses, and determining prognosis in many acute and chronic neurological disorders as well as their use as an outcome measure in trials of novel therapies. Progress has now moved the measurement of neurofilaments to the doorstep of routine clinical practice for the evaluation of individuals. In this Review, we first outline current knowledge on the structure and function of neurofilaments. We then discuss analytical and statistical approaches and challenges in determining neurofilament levels in different clinical contexts and assess the implications of neurofilament light chain (NfL) levels in normal ageing and the confounding factors that need to be considered when interpreting NfL measures. In addition, we summarize the current value and potential clinical applications of neurofilaments as a biomarker of neuro-axonal damage in a range of neurological disorders, including multiple sclerosis, Alzheimer disease, frontotemporal dementia, amyotrophic lateral sclerosis, stroke and cerebrovascular disease, traumatic brain injury, and Parkinson disease. We also consider the steps needed to complete the translation of neurofilaments from the laboratory to the management of neurological diseases in clinical practice.
Collapse
Affiliation(s)
- Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Simon Thebault
- Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Ari Green
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Pascal Benkert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Manuel Comabella
- Neurology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hayrettin Tumani
- Department of Neurology, CSF Laboratory, Ulm University Hospital, Ulm, Germany
| | - Mark S Freedman
- Department of Medicine, University of Ottawa, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Axel Petzold
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Centre and Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
- Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery and the Queen Square Institute of Neurology, UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P. R. China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David Leppert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland.
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Kiss B, Nagy R, Kói T, Harnos A, Édes IF, Ábrahám P, Mészáros H, Hegyi P, Zima E. Prediction performance of scoring systems after out-of-hospital cardiac arrest: A systematic review and meta-analysis. PLoS One 2024; 19:e0293704. [PMID: 38300929 PMCID: PMC10833585 DOI: 10.1371/journal.pone.0293704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/17/2023] [Indexed: 02/03/2024] Open
Abstract
INTRODUCTION Ongoing changes in post resuscitation medicine and society create a range of ethical challenges for clinicians. Withdrawal of life-sustaining treatment is a very sensitive, complex decision to be made by the treatment team and the relatives together. According to the guidelines, prognostication after cardiopulmonary resuscitation should be based on a combination of clinical examination, biomarkers, imaging, and electrophysiological testing. Several prognostic scores exist to predict neurological and mortality outcome in post-cardiac arrest patients. We aimed to perform a meta-analysis and systematic review of current scoring systems used after out-of-hospital cardiac arrest (OHCA). MATERIALS AND METHODS Our systematic search was conducted in four databases: Medline, Embase, Central and Scopus on 24th April 2023. The patient population consisted of successfully resuscitated adult patients after OHCA. We included all prognostic scoring systems in our analysis suitable to estimate neurologic function as the primary outcome and mortality as the secondary outcome. For each score and outcome, we collected the AUC (area under curve) values and their CIs (confidence iterval) and performed a random-effects meta-analysis to obtain pooled AUC estimates with 95% CI. To visualize the trade-off between sensitivity and specificity achieved using different thresholds, we created the Summary Receiver Operating Characteristic (SROC) curves. RESULTS 24,479 records were identified, 51 of which met the selection criteria and were included in the qualitative analysis. Of these, 24 studies were included in the quantitative synthesis. The performance of CAHP (Cardiac Arrest Hospital Prognosis) (0.876 [0.853-0.898]) and OHCA (0.840 [0.824-0.856]) was good to predict neurological outcome at hospital discharge, and TTM (Targeted Temperature Management) (0.880 [0.844-0.916]), CAHP (0.843 [0.771-0.915]) and OHCA (0.811 [0.759-0.863]) scores predicted good the 6-month neurological outcome. We were able to confirm the superiority of the CAHP score especially in the high specificity range based on our sensitivity and specificity analysis. CONCLUSION Based on our results CAHP is the most accurate scoring system for predicting the neurological outcome at hospital discharge and is a bit less accurate than TTM score for the 6-month outcome. We recommend the use of the CAHP scoring system in everyday clinical practice not only because of its accuracy and the best performance concerning specificity but also because of the rapid and easy availability of the necessary clinical data for the calculation.
Collapse
Affiliation(s)
- Boldizsár Kiss
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Rita Nagy
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Heim Pál National Pediatric Insitute, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Kói
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Mathematical Institute, Budapest University of Technology and Economics, Budapest, Hungary
| | - Andrea Harnos
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Biostatistics, University of Veterinary Medicine, Budapest, Hungary
| | | | - Pál Ábrahám
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
| | - Henriette Mészáros
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Institute for Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Endre Zima
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Fu Y, Fan XT, Li H, Zhang R, Zhang DD, Jiang H, Chen ZG, Zhang JT. Neuroprognostication value of serum neurofilament light chain for out-of-hospital cardiac arrest: A systematic review and meta-analysis. PLoS One 2023; 18:e0290619. [PMID: 37713399 PMCID: PMC10503738 DOI: 10.1371/journal.pone.0290619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 08/12/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Neurofilament light chain (NfL) is a novel biomarker for the assessment of neurological function after cardiac arrest (CA). Although meta-analysis has confirmed its predictive value, it has not conducted a more detailed analysis of its research. We conducted a meta-analysis to evaluate the relationship between serum NfL level and neurological prognosis in patients with spontaneous circulation recovery after CA, and subgroup analysis was conducted according to sample collection time, time to assess neurological function, study design, whether TTM was received, the method of specimen determination, and the presence of neurological disease in patients. To analyze the influence of these factors on the predictive value of serum NfL. METHODS Published Cochrane reviews and an updated, extended search of MEDLINE, Cochrane Library, Embase, Scopus, ClinicalKey, CINAHL, and Web of Science for relevant studies until March 2022 were assessed through inclusion and exclusion criteria. The standard mean difference and 95% confidence interval were calculated using the random-effects model or fixed-effects model to assess the association between one variable factor NfL level and the outcome of CA patients. Subgroup analysis according to sample collection time was performed. The prognosis analysis and publication bias were also assessed using Egger's and Begg's tests. RESULTS Among 1209 related articles for screening, 6 studies (1360 patients) met the inclusion criteria and were selected for meta-analysis. The level of serum NfL in the good prognosis group (CPC1-2, CPC: cerebral performance category score) was significantly lower than that in the poor prognosis group (CPC3-5)SMD(standardized mean difference) = 0.553, 95%CI(confidence interval) = 0.418-0.687, I2 = 65.5% P<0.05). And this relationship also exists at each sampling time point (NfL specimens were collected on admission: SMD:0.48,95%CI:0.24-0.73; Samples were collected 24 hours after CA: SMD:0.60,95%CI:0.32-0.88;Specimens were obtained 48 hours after CA: SMD:0.51, 95%CI:0.18-0.85;Specimens were obtained 72 hours after CA: SMD:0.59, 95%CI:0.38-0.81). CONCLUSION NfL may play a potential neuroprognostication role in postcardiac arrest patients with spontaneous circulation, regardless of when the sample was collected after CA.
Collapse
Affiliation(s)
- Yu Fu
- Graduate School of Chengde Medical University, Chengde, He Bei Provence, China
- Department of Emergency, Chengde Central Hospital, Chengde, He Bei Provence, China
| | - Xiao-Tian Fan
- Graduate School of Chengde Medical University, Chengde, He Bei Provence, China
- Department of Emergency, Chengde Central Hospital, Chengde, He Bei Provence, China
| | - Hui Li
- Graduate School of Chengde Medical University, Chengde, He Bei Provence, China
- Department of Neurology, Chengde Central Hospital, Chengde, He Bei Provence, China
| | - Ran Zhang
- Department of Neurology, Chengde Central Hospital, Chengde, He Bei Provence, China
| | - Ding-Ding Zhang
- Medical Research Center, Peking Union Medical College Hospital, Beijing, China
| | - Hao Jiang
- Medical Research Center, Chengde Central Hospital, Chengde, He Bei Provence, China
| | - Zhi-Guo Chen
- Department of Emergency, Chengde Central Hospital, Chengde, He Bei Provence, China
| | - Jiang-Tao Zhang
- Department of Neurology, Chengde Central Hospital, Chengde, He Bei Provence, China
| |
Collapse
|
5
|
Wang SL, Li N, Feng SY, Li Y. Serum neurofilament light chain as a predictive marker of neurologic outcome after cardiac arrest: a meta-analysis. BMC Cardiovasc Disord 2023; 23:193. [PMID: 37061702 PMCID: PMC10105388 DOI: 10.1186/s12872-023-03220-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/31/2023] [Indexed: 04/17/2023] Open
Abstract
OBJECTIVE Recently, an increasing number of studies have suggested using serum neurofilament light (NfL) chain to predict the neurologic outcome after cardiac arrest. However, the predictive ability of this approach remains inconclusive. Meta-analysis was performed on related studies to assess the ability of serum NfL to predict the neurologic outcome after cardiac arrest. MATERIALS AND METHODS PubMed, ScienceDirect and Embase were systematically searched from the date of their inception until June 2022. Data were extracted to calculate the area under the receiver operating characteristic curve (AUC), the sensitivity, the specificity and the publication bias to evaluate the predictive power of serum NfL using Stata 14.0. RESULTS Nine studies were included in the present meta-analysis. Seven studies involving 1296 participants reported serum NfL 24 h post arrest for predicting the neurological outcome, and the AUC was 0.92 (77% sensitivity and 96% specificity). Seven studies involving 1020 participants reported serum NfL 48 h post arrest for predicting the neurological outcome, and the AUC was 0.94 (78% sensitivity and 98% specificity). Four studies involving 804 participants reported serum NfL 72 h post arrest for predicting the neurological outcome, and the AUC was 0.96 (90% sensitivity and 98% specificity). No significant publication bias was observed among the included studies. CONCLUSION The present meta-analysis results support the potential use of serum NfL as an early biomarker of neurologic outcome, especially 72 h post arrest.
Collapse
Affiliation(s)
- Shu Li Wang
- Emergency Deparment, Cangzhou Central Hospital, No.16 Xinhua Road, Yunhe Qu, Cangzhou City, 061000, China
| | - Nan Li
- Emergency Deparment, Cangzhou Central Hospital, No.16 Xinhua Road, Yunhe Qu, Cangzhou City, 061000, China
| | - Shun Yi Feng
- Emergency Deparment, Cangzhou Central Hospital, No.16 Xinhua Road, Yunhe Qu, Cangzhou City, 061000, China
| | - Yong Li
- Emergency Deparment, Cangzhou Central Hospital, No.16 Xinhua Road, Yunhe Qu, Cangzhou City, 061000, China.
| |
Collapse
|
6
|
Levin H, Lybeck A, Frigyesi A, Arctaedius I, Thorgeirsdóttir B, Annborn M, Moseby-Knappe M, Nielsen N, Cronberg T, Ashton NJ, Zetterberg H, Blennow K, Friberg H, Mattsson-Carlgren N. Plasma neurofilament light is a predictor of neurological outcome 12 h after cardiac arrest. Crit Care 2023; 27:74. [PMID: 36829239 PMCID: PMC9960417 DOI: 10.1186/s13054-023-04355-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/12/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Previous studies have reported high prognostic accuracy of circulating neurofilament light (NfL) at 24-72 h after out-of-hospital cardiac arrest (OHCA), but performance at earlier time points and after in-hospital cardiac arrest (IHCA) is less investigated. We aimed to assess plasma NfL during the first 48 h after OHCA and IHCA to predict long-term outcomes. METHODS Observational multicentre cohort study in adults admitted to intensive care after cardiac arrest. NfL was retrospectively analysed in plasma collected on admission to intensive care, 12 and 48 h after cardiac arrest. The outcome was assessed at two to six months using the Cerebral Performance Category (CPC) scale, where CPC 1-2 was considered a good outcome and CPC 3-5 a poor outcome. Predictive performance was measured with the area under the receiver operating characteristic curve (AUROC). RESULTS Of 428 patients, 328 (77%) suffered OHCA and 100 (23%) IHCA. Poor outcome was found in 68% of OHCA and 55% of IHCA patients. The overall prognostic performance of NfL was excellent at 12 and 48 h after OHCA, with AUROCs of 0.93 and 0.97, respectively. The predictive ability was lower after IHCA than OHCA at 12 and 48 h, with AUROCs of 0.81 and 0.86 (p ≤ 0.03). AUROCs on admission were 0.77 and 0.67 after OHCA and IHCA, respectively. At 12 and 48 h after OHCA, high NfL levels predicted poor outcome at 95% specificity with 70 and 89% sensitivity, while low NfL levels predicted good outcome at 95% sensitivity with 71 and 74% specificity and negative predictive values of 86 and 88%. CONCLUSIONS The prognostic accuracy of NfL for predicting good and poor outcomes is excellent as early as 12 h after OHCA. NfL is less reliable for the prediction of outcome after IHCA.
Collapse
Affiliation(s)
- Helena Levin
- Anesthesia & Intensive Care, Department of Clinical Sciences, Lund University, Lund, Sweden. .,Department of Research & Education, Skane University Hospital, Lund, Sweden.
| | - Anna Lybeck
- grid.4514.40000 0001 0930 2361Anesthesia & Intensive Care, Department of Clinical Sciences, Skane University Hospital, Lund University, Lund, Sweden
| | - Attila Frigyesi
- grid.4514.40000 0001 0930 2361Anesthesia & Intensive Care, Department of Clinical Sciences, Skane University Hospital, Lund University, Lund, Sweden
| | - Isabelle Arctaedius
- grid.4514.40000 0001 0930 2361Anesthesia & Intensive Care, Department of Clinical Sciences, Skane University Hospital, Lund University, Lund, Sweden
| | - Bergthóra Thorgeirsdóttir
- grid.4514.40000 0001 0930 2361Anesthesia & Intensive Care, Department of Clinical Sciences, Skane University Hospital, Lund University, Malmö, Sweden
| | - Martin Annborn
- grid.4514.40000 0001 0930 2361Anesthesia & Intensive Care, Department of Clinical Sciences, Helsingborg Hospital, Lund University, Helsingborg, Sweden
| | - Marion Moseby-Knappe
- grid.4514.40000 0001 0930 2361Neurology, Department of Clinical Sciences Lund, Skane University Hospital, Lund University, Lund, Sweden
| | - Niklas Nielsen
- grid.4514.40000 0001 0930 2361Anesthesia & Intensive Care, Department of Clinical Sciences, Helsingborg Hospital, Lund University, Helsingborg, Sweden
| | - Tobias Cronberg
- grid.4514.40000 0001 0930 2361Neurology, Department of Clinical Sciences Lund, Skane University Hospital, Lund University, Lund, Sweden
| | - Nicholas J. Ashton
- grid.13097.3c0000 0001 2322 6764Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,grid.454378.9NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK ,grid.412835.90000 0004 0627 2891Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway ,grid.8761.80000 0000 9919 9582Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- grid.8761.80000 0000 9919 9582Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden ,grid.1649.a000000009445082XClinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden ,grid.83440.3b0000000121901201Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK ,grid.83440.3b0000000121901201UK Dementia Research Institute at UCL, London, UK ,grid.24515.370000 0004 1937 1450Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Kaj Blennow
- grid.8761.80000 0000 9919 9582Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden ,grid.1649.a000000009445082XClinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Hans Friberg
- grid.4514.40000 0001 0930 2361Anesthesia & Intensive Care, Department of Clinical Sciences, Skane University Hospital, Lund University, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- grid.4514.40000 0001 0930 2361Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden ,grid.411843.b0000 0004 0623 9987Department of Neurology, Skane University Hospital, Lund, Sweden ,grid.4514.40000 0001 0930 2361Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Abu-Rumeileh S, Abdelhak A, Foschi M, D'Anna L, Russo M, Steinacker P, Kuhle J, Tumani H, Blennow K, Otto M. The multifaceted role of neurofilament light chain protein in non-primary neurological diseases. Brain 2023; 146:421-437. [PMID: 36083979 PMCID: PMC9494370 DOI: 10.1093/brain/awac328] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The advancing validation and exploitation of CSF and blood neurofilament light chain protein as a biomarker of neuroaxonal damage has deeply changed the current diagnostic and prognostic approach to neurological diseases. Further, recent studies have provided evidence of potential new applications of this biomarker also in non-primary neurological diseases. In the present review we summarize the state of the art, future perspectives, but also limitations, of neurofilament light chain protein as a CSF and blood biomarker in several medical fields, including intensive care medicine, surgery, internal medicine and psychiatry. In particular, neurofilament light chain protein is associated with the degree of neurological impairment and outcome in patients admitted to intensive care units or in the perioperative phase and it seems to be highly interconnected with cardiovascular risk factors. Beyond that, interesting diagnostic and prognostic insights have been provided by the investigation of neurofilament light chain protein in psychiatric disorders as well as in the current coronavirus disease-19 pandemic and in normal ageing. Altogether, current data outline a multifaceted applicability of CSF and blood neurofilament light chain protein ranging from the critical clinical setting to the development of precision medicine models suggesting a strict interplay between the nervous system pathophysiology and the health-illness continuum.
Collapse
Affiliation(s)
- Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Ahmed Abdelhak
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, USA
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Matteo Foschi
- Department of Neuroscience, Neurology Unit – S. Maria delle Croci Hospital of Ravenna, AUSL Romagna, Ravenna, Italy
| | - Lucio D'Anna
- Department of Stroke and Neuroscience, Charing Cross Hospital, Imperial College London, NHS Healthcare Trust, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Michele Russo
- Department of Cardiology, S. Maria dei Battuti Hospital, AULSS 2 Veneto, Conegliano, Italy
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
8
|
Petzold A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J Neurochem 2022; 163:179-219. [PMID: 35950263 PMCID: PMC9826399 DOI: 10.1111/jnc.15682] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofilament proteins (Nf) have been validated and established as a reliable body fluid biomarker for neurodegenerative pathology. This review covers seven Nf isoforms, Nf light (NfL), two splicing variants of Nf medium (NfM), two splicing variants of Nf heavy (NfH),α -internexin (INA) and peripherin (PRPH). The genetic and epigenetic aspects of Nf are discussed as relevant for neurodegenerative diseases and oncology. The comprehensive list of mutations for all Nf isoforms covers Amyotrophic Lateral Sclerosis, Charcot-Marie Tooth disease, Spinal muscular atrophy, Parkinson Disease and Lewy Body Dementia. Next, emphasis is given to the expanding field of post-translational modifications (PTM) of the Nf amino acid residues. Protein structural aspects are reviewed alongside PTMs causing neurodegenerative pathology and human autoimmunity. Molecular visualisations of NF PTMs, assembly and stoichiometry make use of Alphafold2 modelling. The implications for Nf function on the cellular level and axonal transport are discussed. Neurofilament aggregate formation and proteolytic breakdown are reviewed as relevant for biomarker tests and disease. Likewise, Nf stoichiometry is reviewed with regard to in vitro experiments and as a compensatory mechanism in neurodegeneration. The review of Nf across a spectrum of 87 diseases from all parts of medicine is followed by a critical appraisal of 33 meta-analyses on Nf body fluid levels. The review concludes with considerations for clinical trial design and an outlook for future research.
Collapse
Affiliation(s)
- Axel Petzold
- Department of NeurodegenerationQueen Square Insitute of Neurology, UCLLondonUK
| |
Collapse
|
9
|
Vammen L, Johannsen CM, Magnussen A, Povlsen A, Petersen SR, Azizi A, Pedersen M, Korshøj AR, Ringgaard S, Løfgren B, Andersen LW, Granfeldt A. Cerebral monitoring in a pig model of cardiac arrest with 48 h of intensive care. Intensive Care Med Exp 2022; 10:45. [PMID: 36284020 PMCID: PMC9596181 DOI: 10.1186/s40635-022-00475-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Neurological injury is the primary cause of death after out-of-hospital cardiac arrest. There is a lack of studies investigating cerebral injury beyond the immediate post-resuscitation phase in a controlled cardiac arrest experimental setting. METHODS The aim of this study was to investigate temporal changes in measures of cerebral injury and metabolism in a cardiac arrest pig model with clinically relevant post-cardiac arrest intensive care. A cardiac arrest group (n = 11) underwent 7 min of no-flow and was compared with a sham group (n = 6). Pigs underwent intensive care with 24 h of hypothermia at 33 °C. Blood markers of cerebral injury, cerebral microdialysis, and intracranial pressure (ICP) were measured. After 48 h, pigs underwent a cerebral MRI scan. Data are presented as median [25th; 75th percentiles]. RESULTS Return of spontaneous circulation was achieved in 7/11 pigs. Time to ROSC was 4.4 min [4.2; 10.9]. Both NSE and NfL increased over time (p < 0.001), and were higher in the cardiac arrest group at 48 h (NSE 4.2 µg/L [2.4; 6.1] vs 0.9 [0.7; 0.9], p < 0.001; NfL 63 ng/L [35; 232] vs 29 [21; 34], p = 0.02). There was no difference in ICP at 48 h (17 mmHg [14; 24] vs 18 [13; 20], p = 0.44). The cerebral lactate/pyruvate ratio had secondary surges in 3/7 cardiac arrest pigs after successful resuscitation. Apparent diffusion coefficient was lower in the cardiac arrest group in white matter cortex (689 × 10-6 mm2/s [524; 765] vs 800 [799; 815], p = 0.04) and hippocampus (854 [834; 910] vs 1049 [964; 1180], p = 0.03). N-Acetylaspartate was lower on MR spectroscopy in the cardiac arrest group (- 17.2 log [- 17.4; - 17.0] vs - 16.9 [- 16.9; - 16.9], p = 0.03). CONCLUSIONS We have developed a clinically relevant cardiac arrest pig model that displays cerebral injury as marked by NSE and NfL elevations, signs of cerebral oedema, and reduced neuron viability. Overall, the burden of elevated ICP was low in the cardiac arrest group. A subset of pigs undergoing cardiac arrest had persisting metabolic disturbances after successful resuscitation.
Collapse
Affiliation(s)
- Lauge Vammen
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Palle Juul Jensens Blvd. 99 G304, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Cecilie Munch Johannsen
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Palle Juul Jensens Blvd. 99 G304, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Andreas Magnussen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Amalie Povlsen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Cardiothoracic Anesthesia, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Arezo Azizi
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Michael Pedersen
- Comparative Medicine Laboratory, Aarhus University, Aarhus N, Denmark
| | - Anders Rosendal Korshøj
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Neurosurgery, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Bo Løfgren
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus N, Denmark
- Department of Medicine, Randers Regional Hospital, Randers, Denmark
| | - Lars W Andersen
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Palle Juul Jensens Blvd. 99 G304, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Prehospital Emergency Medical Services, Central Denmark Region, Aarhus N, Denmark
| | - Asger Granfeldt
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Palle Juul Jensens Blvd. 99 G304, 8200, Aarhus N, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.
| |
Collapse
|
10
|
Wihersaari L, Reinikainen M, Furlan R, Mandelli A, Vaahersalo J, Kurola J, Tiainen M, Pettilä V, Bendel S, Varpula T, Latini R, Ristagno G, Skrifvars MB. Neurofilament light compared to neuron-specific enolase as a predictor of unfavourable outcome after out-of-hospital cardiac arrest. Resuscitation 2022; 174:1-8. [PMID: 35245610 DOI: 10.1016/j.resuscitation.2022.02.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022]
Abstract
AIM We compared the prognostic abilities of neurofilament light (NfL) and neuron-specific enolase (NSE) in patients resuscitated from out-of-hospital cardiac arrest (OHCA) of various aetiologies. METHODS We analysed frozen blood samples obtained at 24 and 48 hours from OHCA patients treated in 21 Finnish intensive care units in 2010 and 2011. We defined unfavourable outcome as Cerebral Performance Category (CPC) 3-5 at 12 months after OHCA. We evaluated the prognostic ability of the biomarkers by calculating the area under the receiver operating characteristic curves (AUROCs [95% confidence intervals]) and compared these with a bootstrap method. RESULTS Out of 248 adult patients, 12-month outcome was unfavourable in 120 (48.4%). The median (interquartile range) NfL concentrations for patients with unfavourable and those with favourable outcome, respectively, were 688 (146-1804) pg/mL vs. 31 (17-61) pg/mL at 24 h and 1162 (147-4361) pg/mL vs. 36 (21-87) pg/mL at 48 h, p < 0.001 for both. The corresponding NSE concentrations were 13.3 (7.2-27.3) µg/L vs. 8.5 (5.8-13.2) µg/L at 24 h and 20.4 (8.1-56.6) µg/L vs. 8.2 (5.9-12.1) µg/L at 48 h, p < 0.001 for both. The AUROCs to predict an unfavourable outcome were 0.90 (0.86-0.94) for NfL vs. 0.65 (0.58-0.72) for NSE at 24 h, p < 0.001 and 0.88 (0.83-0.93) for NfL and 0.73 (0.66-0.81) for NSE at 48 h, p < 0.001. CONCLUSION Compared to NSE, NfL demonstrated superior accuracy in predicting long-term unfavourable outcome after OHCA.
Collapse
Affiliation(s)
- L Wihersaari
- Department of Anaesthesiology and Intensive Care, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland.
| | - M Reinikainen
- Department of Anaesthesiology and Intensive Care, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - R Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - A Mandelli
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - J Vaahersalo
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - J Kurola
- Centre for Prehospital Emergency Care, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - M Tiainen
- University of Helsinki and Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - V Pettilä
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - S Bendel
- Department of Anaesthesiology and Intensive Care, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - T Varpula
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - R Latini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - G Ristagno
- Department of Pathophysiology and Transplantation, University of Milan, Italy; Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - M B Skrifvars
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Emergency Care and Services, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Sandroni C, Cronberg T, Sekhon M. Brain injury after cardiac arrest: pathophysiology, treatment, and prognosis. Intensive Care Med 2021; 47:1393-1414. [PMID: 34705079 PMCID: PMC8548866 DOI: 10.1007/s00134-021-06548-2] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023]
Abstract
Post-cardiac arrest brain injury (PCABI) is caused by initial ischaemia and subsequent reperfusion of the brain following resuscitation. In those who are admitted to intensive care unit after cardiac arrest, PCABI manifests as coma, and is the main cause of mortality and long-term disability. This review describes the mechanisms of PCABI, its treatment options, its outcomes, and the suggested strategies for outcome prediction.
Collapse
Affiliation(s)
- Claudio Sandroni
- Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy. .,Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario "Agostino Gemelli", IRCCS, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168, Rome, Italy.
| | - Tobias Cronberg
- Department of Clinical Sciences Lund, Neurology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Mypinder Sekhon
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Henson T, Rawanduzy C, Salazar M, Sebastian A, Weber H, Al-Mufti F, Mayer SA. Outcome and prognostication after cardiac arrest. Ann N Y Acad Sci 2021; 1508:23-34. [PMID: 34580886 DOI: 10.1111/nyas.14699] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/17/2021] [Accepted: 08/29/2021] [Indexed: 11/27/2022]
Abstract
The outcome after out-of-hospital cardiac arrest has historically been grim at best. The current overall survival rate of patients admitted to a hospital is approximately 10%, making cardiac arrest one of the leading causes of death in the United States. The situation is improving with the incorporation of therapeutic temperature modulation, aggressive prevention of secondary brain injury, and improved access to advanced cardiovascular support, all of which have decreased mortality and allowed for better outcomes. Mortality after cardiac arrest is often the direct result of active withdrawal of life-sustaining therapy based on the perception that neurological recovery is not possible. This reality highlights the importance of providing accurate estimates of neurological prognosis to decision makers when discussing goals of care. The current standard of care for assessing neurological status in patients with hypoxic-ischemic encephalopathy emphasizes a multimodal approach that includes five elements: (1) neurological examination off sedation, (2) continuous electroencephalography, (3) serum neuron-specific enolase levels, (4) magnetic resonance brain imaging, and (5) somatosensory-evoked potential testing. Sophisticated decision support systems that can integrate these clinical, imaging, and biomarker and neurophysiologic data and translate it into meaningful projections of neurological outcome are urgently needed.
Collapse
Affiliation(s)
| | | | | | | | - Harli Weber
- New York Medical College, Valhalla, New York
| | - Fawaz Al-Mufti
- Westchester Medical Center, Valhalla, New York.,New York Medical College, Valhalla, New York
| | - Stephan A Mayer
- Westchester Medical Center, Valhalla, New York.,New York Medical College, Valhalla, New York
| |
Collapse
|
13
|
Moseby-Knappe M, Mattsson-Carlgren N, Stammet P, Backman S, Blennow K, Dankiewicz J, Friberg H, Hassager C, Horn J, Kjaergaard J, Lilja G, Rylander C, Ullén S, Undén J, Westhall E, Wise MP, Zetterberg H, Nielsen N, Cronberg T. Serum markers of brain injury can predict good neurological outcome after out-of-hospital cardiac arrest. Intensive Care Med 2021; 47:984-994. [PMID: 34417831 PMCID: PMC8421280 DOI: 10.1007/s00134-021-06481-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/13/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE The majority of unconscious patients after cardiac arrest (CA) do not fulfill guideline criteria for a likely poor outcome, their prognosis is considered "indeterminate". We compared brain injury markers in blood for prediction of good outcome and for identifying false positive predictions of poor outcome as recommended by guidelines. METHODS Retrospective analysis of prospectively collected serum samples at 24, 48 and 72 h post arrest within the Target Temperature Management after out-of-hospital cardiac arrest (TTM)-trial. Clinically available markers neuron-specific enolase (NSE) and S100B, and novel markers neurofilament light chain (NFL), total tau, ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) were analysed. Normal levels with a priori cutoffs specified by reference laboratories or defined from literature were used to predict good outcome (no to moderate disability, Cerebral Performance Category scale 1-2) at 6 months. RESULTS Seven hundred and seventeen patients were included. Normal NFL, tau and GFAP had the highest sensitivities (97.2-98% of poor outcome patients had abnormal serum levels) and NPV (normal levels predicted good outcome in 87-95% of patients). Normal S100B and NSE predicted good outcome with NPV 76-82.2%. Normal NSE correctly identified 67/190 (35.3%) patients with good outcome among those classified as "indeterminate outcome" by guidelines. Five patients with single pathological prognostic findings despite normal biomarkers had good outcome. CONCLUSION Low levels of brain injury markers in blood are associated with good neurological outcome after CA. Incorporating biomarkers into neuroprognostication may help prevent premature withdrawal of life-sustaining therapy.
Collapse
Affiliation(s)
- Marion Moseby-Knappe
- Department of Clinical Sciences Lund, Neurology, Skåne University Hospital, Lund University, Getingevägen 4, 222 41, Lund, Sweden.
| | - Niklas Mattsson-Carlgren
- Department of Clinical Sciences Lund, Neurology, Skåne University Hospital, Lund University, Getingevägen 4, 222 41, Lund, Sweden
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Pascal Stammet
- Medical and Health Department, National Fire and Rescue Corps, Luxembourg, Luxembourg
| | - Sofia Backman
- Department of Clinical Sciences Lund, Clinical Neurophysiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Josef Dankiewicz
- Department of Clinical Sciences Lund, Cardiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Hans Friberg
- Department of Clinical Sciences Lund, Anaesthesia and Intensive Care, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Christian Hassager
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Janneke Horn
- Department of Intensive Care, Amsterdam Neuroscience, Amsterdam UMC, Location Academic Medical Center, Amsterdam, The Netherlands
| | - Jesper Kjaergaard
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gisela Lilja
- Department of Clinical Sciences Lund, Neurology, Skåne University Hospital, Lund University, Getingevägen 4, 222 41, Lund, Sweden
| | - Christian Rylander
- Department of Anaesthesiology and Intensive Care Medicine, Sahlgrenska Academy, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Susann Ullén
- Clinical Studies Sweden-Forum South, Skane University Hospital, Lund, Sweden
| | - Johan Undén
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Operation and Intensive Care, Lund University, Hallands Hospital Halmstad, Halland, Sweden
| | - Erik Westhall
- Department of Clinical Sciences Lund, Clinical Neurophysiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Matt P Wise
- Adult Critical Care, University Hospital of Wales, Cardiff, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Niklas Nielsen
- Department of Clinical Sciences Lund, Anaesthesia and Intensive Care, Helsingborg Hospital, Lund University, Lund, Sweden
| | - Tobias Cronberg
- Department of Clinical Sciences Lund, Neurology, Skåne University Hospital, Lund University, Getingevägen 4, 222 41, Lund, Sweden
| |
Collapse
|
14
|
Bagnato S, D’Ippolito ME, Boccagni C, De Tanti A, Lucca LF, Nardone A, Salucci P, Fiorilla T, Pingue V, Gennaro S, Ursino M, Colombo V, Barone T, Rubino F, Andriolo M. Sustained Axonal Degeneration in Prolonged Disorders of Consciousness. Brain Sci 2021; 11:1068. [PMID: 34439687 PMCID: PMC8394581 DOI: 10.3390/brainsci11081068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/05/2022] Open
Abstract
(1) Background: Sustained axonal degeneration may play a critical role in prolonged disorder of consciousness (DOCs) pathophysiology. We evaluated levels of neurofilament light chain (NFL), an axonal injury marker, in patients with unresponsive wakefulness syndrome (UWS) and in the minimally conscious state (MCS) after traumatic brain injury (TBI) and hypoxic-ischemic brain injury (HIBI). (2) Methods: This prospective multicenter blinded study involved 70 patients with prolonged DOC and 70 sex-/age-matched healthy controls. Serum NFL levels were evaluated at 1-3 and 6 months post-injury and compared with those of controls. NFL levels were compared by DOC severity (UWS vs. MCS) and etiology (TBI vs. HIBI). (3) Results: Patients' serum NFL levels were significantly higher than those of controls at 1-3 and 6 months post-injury (medians, 1729 and 426 vs. 90 pg/mL; both p < 0.0001). NFL levels were higher in patients with UWS than in those in MCS at 1-3 months post-injury (p = 0.008) and in patients with HIBI than in those with TBI at 6 months post-injury (p = 0.037). (4) Conclusions: Patients with prolonged DOC present sustained axonal degeneration that is affected differently over time by brain injury severity and etiology.
Collapse
Affiliation(s)
- Sergio Bagnato
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Giuseppe Giglio Foundation, 90015 Cefalù, Italy; (C.B.); (T.F.); (F.R.)
| | - Maria Enza D’Ippolito
- Molecular Biology Laboratory, Giuseppe Giglio Foundation, 90015 Cefalù, Italy; (M.E.D.); (M.A.)
| | - Cristina Boccagni
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Giuseppe Giglio Foundation, 90015 Cefalù, Italy; (C.B.); (T.F.); (F.R.)
| | - Antonio De Tanti
- Cardinal Ferrari Center, 43012 Fontanellato, Italy; (A.D.T.); (S.G.)
| | - Lucia Francesca Lucca
- RAN (Research in Advanced Neuro-Rehabilitation), S. Anna Institute, 88900 Crotone, Italy; (L.F.L.); (M.U.)
| | - Antonio Nardone
- Neurorehabilitation and Spinal Units, ICS Maugeri, Institute of Pavia, 27100 Pavia, Italy; (A.N.); (V.P.)
| | - Pamela Salucci
- Montecatone Rehabilitation Institute, 40026 Imola, Italy; (P.S.); (V.C.)
| | - Teresa Fiorilla
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Giuseppe Giglio Foundation, 90015 Cefalù, Italy; (C.B.); (T.F.); (F.R.)
| | - Valeria Pingue
- Neurorehabilitation and Spinal Units, ICS Maugeri, Institute of Pavia, 27100 Pavia, Italy; (A.N.); (V.P.)
| | - Serena Gennaro
- Cardinal Ferrari Center, 43012 Fontanellato, Italy; (A.D.T.); (S.G.)
| | - Maria Ursino
- RAN (Research in Advanced Neuro-Rehabilitation), S. Anna Institute, 88900 Crotone, Italy; (L.F.L.); (M.U.)
| | - Valentina Colombo
- Montecatone Rehabilitation Institute, 40026 Imola, Italy; (P.S.); (V.C.)
| | - Teresa Barone
- Immunohematology and Transfusion Service, 90015 Cefalù, Italy;
| | - Francesca Rubino
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Giuseppe Giglio Foundation, 90015 Cefalù, Italy; (C.B.); (T.F.); (F.R.)
| | - Maria Andriolo
- Molecular Biology Laboratory, Giuseppe Giglio Foundation, 90015 Cefalù, Italy; (M.E.D.); (M.A.)
| |
Collapse
|
15
|
Wurm R, Arfsten H, Muqaku B, Ponleitner M, Bileck A, Altmann P, Rommer P, Seidel S, Hubner P, Sterz F, Heinz G, Gerner C, Adlbrecht C, Distelmaier K. Prediction of Neurological Recovery After Cardiac Arrest Using Neurofilament Light Chain is Improved by a Proteomics-Based Multimarker Panel. Neurocrit Care 2021; 36:434-440. [PMID: 34342833 DOI: 10.1007/s12028-021-01321-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/19/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Continuous advances in resuscitation care have increased survival, but the rate of favorable neurological outcome remains low. We have shown the usefulness of proteomics in identifying novel biomarkers to predict neurological outcome. Neurofilament light chain (NfL), a marker of axonal damage, has since emerged as a promising single marker. The aim of this study was to assess the predictive value of NfL in comparison with and in addition to our established model. METHODS NfL was measured in plasma samples drawn at 48 h after cardiac arrest using single-molecule assays. Neurological function was recorded on the cerebral performance category (CPC) scale at discharge from the intensive care unit and after 6 months. The ability to predict a dichotomized outcome (CPC 1-2 vs. 3-5) was assessed with receiver operating characteristic (ROC) curves. RESULTS Seventy patients were included in this analysis, of whom 21 (30%) showed a favorable outcome (CPC 1-2), compared with 49 (70%) with an unfavorable outcome (CPC 3-5) at discharge. NfL increased from CPC 1 to 5 (16.5 pg/ml to 641 pg/ml, p < 0.001). The addition of NfL to the existing model improved it significantly (Wald test, p < 0.001), and the combination of NfL with a multimarker model showed high areas under the ROC curve (89.7% [95% confidence interval 81.7-97.7] at discharge and 93.7% [88.2-99.2] at 6 months) that were significantly greater than each model alone. CONCLUSIONS The combination of NfL with other plasma and clinical markers is superior to that of either model alone and achieves high areas under the ROC curve in this relatively small sample.
Collapse
Affiliation(s)
- Raphael Wurm
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Henrike Arfsten
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Besnik Muqaku
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Markus Ponleitner
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Patrick Altmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Stefan Seidel
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Pia Hubner
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Fritz Sterz
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Gottfried Heinz
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | | | - Klaus Distelmaier
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Adler C, Onur OA, Braumann S, Gramespacher H, Bittner S, Falk S, Fink GR, Baldus S, Warnke C. Absolute serum neurofilament light chain levels and its early kinetics predict brain injury after out-of-hospital cardiac arrest. J Neurol 2021; 269:1530-1537. [PMID: 34328545 PMCID: PMC8857108 DOI: 10.1007/s00415-021-10722-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/22/2021] [Indexed: 11/30/2022]
Abstract
Objectives To test if the early kinetics of neurofilament light (NFL) in blood adds to the absolute values of NFL in the prediction of outcome, and to evaluate if NFL can discriminate individuals with severe hypoxic–ischemic brain injury (sHIBI) from those with other causes of poor outcome after out-of-hospital cardiac arrest (OHCA). Design and setting Monocentric retrospective study involving individuals following non-traumatic OHCA between April 2014 and April 2016. NFL concentrations were determined on a SiMoA HD-1 device using NF-Light Advantage Kits. Participants Of 73 patients screened, 53 had serum samples available for NFL measurement at three timepoints (after 3, 24, and 48 h of admission). Of these 53 individuals, 43.4% had poor neurologic outcome at discharge as assessed by Glasgow–Pittsburgh cerebral performance categories, and, according to a current prognostication algorithm, poor outcome due to sHIBI in 20.7%. Main outcome measure Blood NFL and its early kinetics for prognostication of outcome and prediction of sHIBI after OHCA. Results An absolute NFL > 508.6 pg/ml 48 h after admission, or a change in NFL > 494 pg/ml compared with an early baseline value predicted outcome, and discriminated severe sHIBI from other causes of unfavorable outcome after OHCA with high sensitivity (100%, 95%CI 70.0–100%) and specificity (91.7%, 95%CI 62.5–100%). Conclusions Not only absolute values of NFL, but also early changes in NFL predict the outcome following OHCA, and may differentiate sHIBI from other causes of poor outcome after OHCA with high sensitivity and specificity. Our study adds to published data, overall corroborating that NFL measured in blood should be implemented in prognostication algorithms used in clinical routine.
Collapse
Affiliation(s)
- Christoph Adler
- Department of Internal Medicine III, Division of Cardiology, Pneumology, Angiology and Intensive Care, University of Cologne, 50937, Cologne, Germany.,Fire Department City of Cologne, Institute for Security Science and Rescue Technology, Cologne, Germany
| | - Oezguer A Onur
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Simon Braumann
- Department of Internal Medicine III, Division of Cardiology, Pneumology, Angiology and Intensive Care, University of Cologne, 50937, Cologne, Germany
| | - Hannes Gramespacher
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Stefan Bittner
- Department of Neurology, University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Steffen Falk
- Department of Neurology, University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Stephan Baldus
- Department of Internal Medicine III, Division of Cardiology, Pneumology, Angiology and Intensive Care, University of Cologne, 50937, Cologne, Germany
| | - Clemens Warnke
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany.
| |
Collapse
|