1
|
Rega C, Kozik Z, Yu L, Tsitsa I, Martin LA, Choudhary J. Exploring the Spatial Landscape of the Estrogen Receptor Proximal Proteome With Antibody-Based Proximity Labeling. Mol Cell Proteomics 2024; 23:100702. [PMID: 38122900 PMCID: PMC10831774 DOI: 10.1016/j.mcpro.2023.100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/07/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023] Open
Abstract
Estrogen receptor α (ERα) drives the transcription of genes involved in breast cancer (BC) progression, relying on coregulatory protein recruitment for its transcriptional and biological activities. Mutation of ERα as well as aberrant recruitment of its regulatory proteins contribute to tumor adaptation and drug resistance. Therefore, understanding the dynamic changes in ERα protein interaction networks is crucial for elucidating drug resistance mechanisms in BC. Despite progress in studying ERα-associated proteins, capturing subcellular transient interactions remains challenging and, as a result, significant number of important interactions remain undiscovered. In this study, we employed biotinylation by antibody recognition (BAR), an innovative antibody-based proximity labeling (PL) approach, coupled with mass spectrometry to investigate the ERα proximal proteome and its changes associated with resistance to aromatase inhibition, a key therapy used in the treatment of ERα-positive BC. We show that BAR successfully detected most of the known ERα interactors and mainly identified nuclear proteins, using either an epitope tag or endogenous antibody to target ERα. We further describe the ERα proximal proteome rewiring associated with resistance applying BAR to a panel of isogenic cell lines modeling tumor adaptation in the clinic. Interestingly, we find that ERα associates with some of the canonical cofactors in resistant cells and several proximal proteome changes are due to increased expression of ERα. Resistant models also show decreased levels of estrogen-regulated genes. Sensitive and resistant cells harboring a mutation in the ERα (Y537C) revealed a similar proximal proteome. We provide an ERα proximal protein network covering several novel ERα-proximal partners. These include proteins involved in highly dynamic processes such as sumoylation and ubiquitination difficult to detect with traditional protein interaction approaches. Overall, we present BAR as an effective approach to investigate the ERα proximal proteome in a spatial context and demonstrate its application in different experimental conditions.
Collapse
Affiliation(s)
- Camilla Rega
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom.
| | - Zuzanna Kozik
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom
| | - Lu Yu
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom
| | - Ifigenia Tsitsa
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom
| | - Lesley-Ann Martin
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom
| | - Jyoti Choudhary
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
2
|
Elacestrant demonstrates strong anti-estrogenic activity in PDX models of estrogen-receptor positive endocrine-resistant and fulvestrant-resistant breast cancer. NPJ Breast Cancer 2022; 8:125. [PMID: 36446866 PMCID: PMC9709100 DOI: 10.1038/s41523-022-00483-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
The selective oestrogen receptor (ER) degrader (SERD), fulvestrant, is limited in its use for the treatment of breast cancer (BC) by its poor oral bioavailability. Comparison of the orally bioavailable investigational SERD elacestrant, versus fulvestrant, demonstrates both drugs impact tumour growth of ER+ patient-derived xenograft models harbouring several ESR1 mutations but that elacestrant is active after acquired resistance to fulvestrant. In cell line models of endocrine sensitive and resistant breast cancer both drugs impact the ER-cistrome, ER-interactome and transcription of oestrogen-regulated genes similarly, confirming the anti-oestrogenic activity of elacestrant. The addition of elacestrant to CDK4/6 inhibitors enhances the antiproliferative effect compared to monotherapy. Furthermore, elacestrant inhibits the growth of palbociclib-resistant cells. Lastly, resistance to elacestrant involves Type-I and Type-II receptor tyrosine kinases which are amenable to therapeutic targeting. Our data support the wider clinical testing of elacestrant.
Collapse
|
3
|
Barone I, Caruso A, Gelsomino L, Giordano C, Bonofiglio D, Catalano S, Andò S. Obesity and endocrine therapy resistance in breast cancer: Mechanistic insights and perspectives. Obes Rev 2022; 23:e13358. [PMID: 34559450 PMCID: PMC9285685 DOI: 10.1111/obr.13358] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/07/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022]
Abstract
The incidence of obesity, a recognized risk factor for various metabolic and chronic diseases, including numerous types of cancers, has risen dramatically over the recent decades worldwide. To date, convincing research in this area has painted a complex picture about the adverse impact of high body adiposity on breast cancer onset and progression. However, an emerging but overlooked issue of clinical significance is the limited efficacy of the conventional endocrine therapies with selective estrogen receptor modulators (SERMs) or degraders (SERDs) and aromatase inhibitors (AIs) in patients affected by breast cancer and obesity. The mechanisms behind the interplay between obesity and endocrine therapy resistance are likely to be multifactorial. Therefore, what have we actually learned during these years and which are the main challenges in the field? In this review, we will critically discuss the epidemiological evidence linking obesity to endocrine therapeutic responses and we will outline the molecular players involved in this harmful connection. Given the escalating global epidemic of obesity, advances in understanding this critical node will offer new precision medicine-based therapeutic interventions and more appropriate dosing schedule for treating patients affected by obesity and with breast tumors resistant to endocrine therapies.
Collapse
Affiliation(s)
- Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
4
|
Effects of systemic inflammation on relapse in early breast cancer. NPJ Breast Cancer 2021; 7:7. [PMID: 33483516 PMCID: PMC7822844 DOI: 10.1038/s41523-020-00212-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic inflammation has been a proposed mechanism of resistance to aromatase inhibitors in breast cancer. Stratifying by HER2 status, a matched case-control study from the Wellness After Breast Cancer-II cohort was performed to assess whether or not elevated serum inflammatory biomarkers (C-Reactive protein [CRP], interleukin-6 [IL-6], and serum amyloid A [SAA]) and/or the presence of a high-risk IL-6 promoter genotype were associated with recurrence of hormone receptor positive (HR+) early breast cancer. Estrogen levels were also measured and correlated with biomarkers and disease outcomes. CRP and SAA were significantly associated with an increased risk of recurrence in the HR+/HER2− group, but not the HR+/HER2+ group. Mean serum estrogen levels were non-significantly elevated in patients who relapsed vs. non-relapsed patients. Surprisingly, high-risk IL-6 promoter polymorphisms were strongly associated with HER2+ breast cancer relapse, which has potential therapeutic implications, as elevated intracellular IL-6 has been associated with trastuzumab resistance in pre-clinical models.
Collapse
|
5
|
Ethier SP, Guest ST, Garrett-Mayer E, Armeson K, Wilson RC, Duchinski K, Couch D, Gray JW, Kappler C. Development and implementation of the SUM breast cancer cell line functional genomics knowledge base. NPJ Breast Cancer 2020; 6:30. [PMID: 32715085 PMCID: PMC7374090 DOI: 10.1038/s41523-020-0173-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Several years ago, the SUM panel of human breast cancer cell lines was developed, and these cell lines have been distributed to hundreds of labs worldwide. Our lab and others have developed extensive omics data sets from these cells. More recently, we performed genome-scale shRNA essentiality screens on the entire SUM line panel, as well as on MCF10A cells, MCF-7 cells, and MCF-7LTED cells. These gene essentiality data sets allowed us to perform orthogonal analyses that functionalize the otherwise descriptive genomic data obtained from traditional genomics platforms. To make these omics data sets available to users of the SUM lines, and to allow users to mine these data sets, we developed the SUM Breast Cancer Cell Line Knowledge Base. This knowledge base provides information on the derivation of each cell line, provides protocols for the proper maintenance of the cells, and provides a series of data mining tools that allow rapid identification of the oncogene signatures for each line, the enrichment of KEGG pathways with screen hit and gene expression data, an analysis of protein and phospho-protein expression for the cell lines, as well as a gene search tool and a functional-druggable signature tool. Recently, we expanded our database to include genomic data for an additional 27 commonly used breast cancer cell lines. Thus, the SLKBase provides users with deep insights into the biology of human breast cancer cell lines that can be used to develop strategies for the reverse engineering of individual breast cancer cell lines.
Collapse
Affiliation(s)
- Stephen P Ethier
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC USA
| | - Stephen T Guest
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC USA
- Present Address: Department of Biomedical Informatics, University of Michigan Medical School, Ann Arbor, MI USA
| | - Elizabeth Garrett-Mayer
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC USA
- Present Address: American Society for Clinical Oncology, Charleston, SC USA
| | - Kent Armeson
- Biostatistics Core, Hollings Cancer Center, Charleston, SC USA
| | - Robert C Wilson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC USA
| | - Kathryn Duchinski
- Department of Computer Science, The College of Charleston, Charleston, SC USA
- Present Address: Program in Bioinformatics and Integrative Genomics, Harvard University, Cambridge, MA USA
| | - Daniel Couch
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC USA
| | - Joe W Gray
- Department of Biomedical Engineering, Oregon Health and Sciences University, Portland, OR USA
| | - Christiana Kappler
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC USA
| |
Collapse
|
6
|
Xin Q, Sun Q, Zhang CS, Zhang Q, Li CJ. Functions and mechanisms of chemokine receptor 7 in tumors of the digestive system. World J Clin Cases 2020; 8:2448-2463. [PMID: 32607322 PMCID: PMC7322425 DOI: 10.12998/wjcc.v8.i12.2448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/12/2020] [Accepted: 06/02/2020] [Indexed: 02/05/2023] Open
Abstract
Chemokine (C-X-C motif) receptor 7 (CXCR7), recently termed ACKR3, belongs to the G protein-coupled cell surface receptor family, binds to stromal cell-derived factor-1 [SDF-1, or chemokine (C-X-C motif) ligand 12] or chemokine (C-X-C motif) ligand 11, and is the most common chemokine receptor expressed in a variety of cancer cells. SDF-1 binds to its receptor chemokine (C-X-C motif) receptor 4 (CXCR4) and regulates cell proliferation, survival, angiogenesis and migration. In recent years, another new receptor for SDF-1, CXCR7, has been discovered, and CXCR7 has also been found to be expressed in a variety of tumor cells and tumor-related vascular endothelial cells. Many studies have shown that CXCR7 can promote the growth and metastasis of a variety of malignant tumor cells. Unlike CXCR4, CXCR7 exhibits a slight modification in the DRYLAIV motif and does not induce intracellular Ca2+ release following ligand binding, which is essential for recruiting and activating G proteins. CXCR7 is generally thought to work in three ways: (1) Recruiting β-arrestin 2; (2) Heterodimerizing with CXCR4; and (3) Acting as a “scavenger” of SDF-1, thus lowering the level of SDF-1 to weaken the activity of CXCR4. In the present review, the expression and role of CXCR7, as well as its prognosis in cancers of the digestive system, were investigated.
Collapse
Affiliation(s)
- Qi Xin
- Department of Pathology, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Quan Sun
- Department of Hepatobiliary Surgery, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Chuan-Shan Zhang
- Department of Pathology, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Qin Zhang
- Department of Pathology, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Chun-Jun Li
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300121, China
| |
Collapse
|
7
|
Huang X. Rethinking the combination treatment of fulvestrant and anastrozole for metastatic breast cancer: an integrated reanalysis of aromatase-estrogen receptor axis. Clin Transl Med 2019; 8:29. [PMID: 31741086 PMCID: PMC6861394 DOI: 10.1186/s40169-019-0246-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/22/2019] [Indexed: 01/07/2023] Open
Abstract
Aberrant expression or hyperactivation of aromatase (CYP19A1)–estrogen receptor (ESR) axis is well identified as one of the major causes of breast cancer. Lots of drugs have been developed for targeting CYP19A1 or ESR respectively, such as anastrozole and fulvestrant. Recently, Mehta et al. reported in NEJM that the combined treatment of anastrozole and fulvestrant increased long-term survival of patients with metastatic breast cancer, especially for those without receiving endocrine therapy. However, the integrated prognostic analyses of CYP19A1 and ESR1/ESR2 indicated some contradictory outcomes to the recent clinical trial. Moreover, immunological investigation further revealed that targeting the whole CYP19A1–ESR axis might cause the inactivation of anti-tumor immune response, which largely attenuated its application prospects in breast cancer. Considered the pathophysiologic functions of CYP19A1 and ESR1/ESR2-mediated signaling pathway in breast cancer seem as more complicated than what we have already known, more precise evaluation will be needed in urgent.
Collapse
Affiliation(s)
- Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China. .,The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
8
|
Fan P, Jordan VC. New insights into acquired endocrine resistance of breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:198-209. [PMID: 31815253 PMCID: PMC6897388 DOI: 10.20517/cdr.2019.13] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The translational research strategy of targeting estrogen receptor α (ERα) positive breast cancer and then using long term anti-hormone adjuvant therapy (5-10 years) has reduced recurrences and mortality. However, resistance continues to occur and improvements are required to build on the success of tamoxifen and aromatase inhibitors (AIs) established over the past 40 years. Further translational research has described the evolution of acquired resistance of breast cancer cell lines to long term estrogen deprivation that parallels clinical experience over years. Additionally, recent reports have identified mutations in the ERα obtained from the recurrences of AI treated patients. These mutations allow the ERα to activate without ligands and auto stimulate metastatic tumor growth. Furthermore, the new biology of estrogen-induced apoptosis in acquired resistant models in vitro and in vivo has been interrogated and applied to clinical trials. Inflammation and stress are emerging concepts occurring in the process of acquired resistance and estrogen-induced apoptosis with different mechanisms. In this review, we will present progress in the understanding of acquired resistance, focus on stress and inflammatory responses in the development of acquired resistance, and consider approaches to create new treatments to improve the treatment of breast cancer with endocrine resistance.
Collapse
Affiliation(s)
- Ping Fan
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - V Craig Jordan
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
9
|
Fan H, Wang W, Yan J, Xiao L, Yang L. Prognostic significance of CXCR7 in cancer patients: a meta-analysis. Cancer Cell Int 2018; 18:212. [PMID: 30574021 PMCID: PMC6300004 DOI: 10.1186/s12935-018-0702-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
Background CXC chemokine receptor 7 (CXCR7) is frequently overexpressed in a variety of tumors. Nevertheless, whether CXCR7 can be used as a tumor prognosis marker has not been systematically assessed. The current meta-analysis was performed to obtain an accurate evaluation of the relationship between CXCR7 level and the prognosis of cancer patients. Methods Embase, Web of Science, and PubMed were systematically searched according to a defined search strategy up to June 11, 2018. Then, the required data were extracted from all qualified studies which were screened out based on the defined inclusion and exclusion criteria. Finally, the hazard ratios (HR) with 95% confidence intervals (CI) were used to evaluate the prognostic significance of CXCR7 in tumor patients. Results A total of 28 original research studies comprising 33 cohorts and 5685 patients were included in this meta-analysis. The results showed that CXCR7 overexpression was significantly related to worse overall survival (OS) (HR 1.72; 95% CI 1.49–1.99), disease-free survival (DFS) (HR 5.58; 95% CI 3.16–9.85), progression-free survival (PFS) (HR 2.83; 95% CI 1.66–4.85) and recurrence-free survival (RFS) (HR 1.58; 95% CI 1.34–1.88) in cancer patients. Furthermore, for certain types of cancer, significant associations between higher CXCR7 expression and worse OS of glioma (HR 1.77; 95% CI 1.43–2.19), breast cancer (HR 1.45; 95% CI 1.28–1.63), esophageal cancer (HR 2.72; 95% CI 1.11–6.66) and pancreatic cancer (HR 1.46; 95% CI 1.12–1.90) were found. However, for lung cancer and hepatocellular cancer, there was no significant relationship between CXCR7 expression level and OS, (HR 2.40; 95% CI 0.34–17.07) and (HR 1.37; 95% CI 0.84–2.24) respectively. Conclusions Increased CXCR7 level could predict poor prognosis of tumor patients and might be regarded as a novel prognostic biomarker for tumor patients.
Collapse
Affiliation(s)
- Huiqian Fan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Yan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xiao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Chemosensitivity is differentially regulated by the SDF-1/CXCR4 and SDF-1/CXCR7 axes in acute lymphoblastic leukemia with MLL gene rearrangements. Leuk Res 2018; 75:36-44. [PMID: 30453100 DOI: 10.1016/j.leukres.2018.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/28/2018] [Accepted: 11/01/2018] [Indexed: 12/28/2022]
Abstract
Although recent advances in chemotherapy have markedly improved outcome of acute lymphoblastic leukemia (ALL), infantile ALL with MLL gene rearrangements (MLL+ALL) is refractory to chemotherapy. We have shown that specific cytokines FLT3 ligand and TGFβ1 both of which are produced from bone marrow stromal cells synergistically induced MLL+ALL cells into chemo-resistant quiescence, and that treatment of MLL+ALL cells with inhibitors against FLT3 and/or TGFβ1 receptor partially but significantly converts them toward chemo-sensitive. In the present study, we showed that MLL+ALL cells expressed CXCR4 and CXCR7, both receptors for the same chemokine stromal cell derived factor-1 (SDF-1), but their biological events were differentially regulated by the SDF-1/CXCR4 and SDF-1/CXCR7 axes and particularly exerted an opposite effect for determining chemo-sensitivity of MLL+ALL cells; enhancement via the SDF-1/CXCR4 axis vs. suppression via the SDF-1/CXCR7 axis. Because cytosine-arabinoside-induced apoptosis of MLL+ALL cells was inhibited by pretreatment with the CXCR4 inhibitor but rather accelerated by pretreatment with the CXCR7 inhibitor, an application of the CXCR7 inhibitor may become a good treatment option in future for MLL+ALL patients. MLL+ALL has a unique gene profile distinguishable from other types of ALL and AML, and should be investigated separately in responses to biological active agents including chemokine inhibitors.
Collapse
|
11
|
Simigdala N, Pancholi S, Ribas R, Folkerd E, Liccardi G, Nikitorowicz-Buniak J, Johnston SR, Dowsett M, Martin LA. Abiraterone shows alternate activity in models of endocrine resistant and sensitive disease. Br J Cancer 2018; 119:313-322. [PMID: 29991699 PMCID: PMC6068155 DOI: 10.1038/s41416-018-0158-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Resistance to endocrine therapy remains a major clinical problem in the treatment of oestrogen-receptor positive (ER+) breast cancer. Studies show androgen-receptor (AR) remains present in 80-90% of metastatic breast cancers providing support for blockade of AR-signalling. However, clinical studies with abiraterone, which blocks cytochrome P450 17A1 (CYP17A1) showed limited benefit. METHODS In order to address this, we assessed the impact of abiraterone on cell-viability, cell-death, ER-mediated transactivation and recruitment to target promoters. together with ligand-binding assays in a panel of ER+ breast cancer cell lines that were either oestrogen-dependent, modelling endocrine-sensitive disease, or oestrogen-independent modelling relapse on an aromatase inhibitor. The latter, harboured wild-type (wt) or naturally occurring ESR1 mutations. RESULTS Similar to oestrogen, abiraterone showed paradoxical impact on proliferation by stimulating cell growth or death, depending on whether the cells are hormone-dependent or have undergone prolonged oestrogen-deprivation, respectively. Abiraterone increased ER-turnover, induced ER-mediated transactivation and ER-degradation via the proteasome. CONCLUSIONS Our study confirms the oestrogenic activity of abiraterone and highlights its differential impact on cells dependent on oestrogen for their proliferation vs. those that are ligand-independent and harbour wt or mutant ESR1. These properties could impact the clinical efficacy of abiraterone in breast cancer.
Collapse
Affiliation(s)
- Nikiana Simigdala
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Sunil Pancholi
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Ricardo Ribas
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Elizabeth Folkerd
- The Ralph Lauren Centre for Breast Cancer Research, The Royal Marsden Hospital, London, SW3 6JJ, UK
| | - Gianmaria Liccardi
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Joanna Nikitorowicz-Buniak
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | | | - Mitch Dowsett
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK.,The Ralph Lauren Centre for Breast Cancer Research, The Royal Marsden Hospital, London, SW3 6JJ, UK
| | - Lesley-Ann Martin
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK.
| |
Collapse
|
12
|
Puyang X, Furman C, Zheng GZ, Wu ZJ, Banka D, Aithal K, Agoulnik S, Bolduc DM, Buonamici S, Caleb B, Das S, Eckley S, Fekkes P, Hao MH, Hart A, Houtman R, Irwin S, Joshi JJ, Karr C, Kim A, Kumar N, Kumar P, Kuznetsov G, Lai WG, Larsen N, Mackenzie C, Martin LA, Melchers D, Moriarty A, Nguyen TV, Norris J, O'Shea M, Pancholi S, Prajapati S, Rajagopalan S, Reynolds DJ, Rimkunas V, Rioux N, Ribas R, Siu A, Sivakumar S, Subramanian V, Thomas M, Vaillancourt FH, Wang J, Wardell S, Wick MJ, Yao S, Yu L, Warmuth M, Smith PG, Zhu P, Korpal M. Discovery of Selective Estrogen Receptor Covalent Antagonists for the Treatment of ERα WT and ERα MUT Breast Cancer. Cancer Discov 2018; 8:1176-1193. [PMID: 29991605 DOI: 10.1158/2159-8290.cd-17-1229] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/11/2018] [Accepted: 06/19/2018] [Indexed: 11/16/2022]
Abstract
Mutations in estrogen receptor alpha (ERα) that confer resistance to existing classes of endocrine therapies are detected in up to 30% of patients who have relapsed during endocrine treatments. Because a significant proportion of therapy-resistant breast cancer metastases continue to be dependent on ERα signaling, there remains a critical need to develop the next generation of ERα antagonists that can overcome aberrant ERα activity. Through our drug-discovery efforts, we identified H3B-5942, which covalently inactivates both wild-type and mutant ERα by targeting Cys530 and enforcing a unique antagonist conformation. H3B-5942 belongs to a class of ERα antagonists referred to as selective estrogen receptor covalent antagonists (SERCA). In vitro comparisons of H3B-5942 with standard-of-care (SoC) and experimental agents confirmed increased antagonist activity across a panel of ERαWT and ERαMUT cell lines. In vivo, H3B-5942 demonstrated significant single-agent antitumor activity in xenograft models representing ERαWT and ERαY537S breast cancer that was superior to fulvestrant. Lastly, H3B-5942 potency can be further improved in combination with CDK4/6 or mTOR inhibitors in both ERαWT and ERαMUT cell lines and/or tumor models. In summary, H3B-5942 belongs to a class of orally available ERα covalent antagonists with an improved profile over SoCs.Significance: Nearly 30% of endocrine therapy-resistant breast cancer metastases harbor constitutively activating mutations in ERα. SERCA H3B-5942 engages C530 of both ERαWT and ERαMUT, promotes a unique antagonist conformation, and demonstrates improved in vitro and in vivo activity over SoC agents. Importantly, single-agent efficacy can be further enhanced by combining with CDK4/6 or mTOR inhibitors. Cancer Discov; 8(9); 1176-93. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 1047.
Collapse
Affiliation(s)
| | | | | | | | | | - Kiran Aithal
- Aurigene Discovery Technologies Ltd., Bangalore, Karnataka, India
| | | | | | | | | | | | | | | | | | | | - René Houtman
- PamGene International, Den Bosch, the Netherlands
| | - Sean Irwin
- H3 Biomedicine, Inc., Cambridge, Massachusetts
| | | | - Craig Karr
- H3 Biomedicine, Inc., Cambridge, Massachusetts
| | - Amy Kim
- H3 Biomedicine, Inc., Cambridge, Massachusetts
| | | | - Pavan Kumar
- H3 Biomedicine, Inc., Cambridge, Massachusetts
| | | | | | | | | | - Lesley-Ann Martin
- Breast Cancer Now, Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | | | | | | | | | | | - Sunil Pancholi
- Breast Cancer Now, Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | | | | | | | | | | | - Ricardo Ribas
- Breast Cancer Now, Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Amy Siu
- Eisai Inc., Andover, Massachusetts
| | | | | | | | | | - John Wang
- H3 Biomedicine, Inc., Cambridge, Massachusetts
| | | | | | - Shihua Yao
- H3 Biomedicine, Inc., Cambridge, Massachusetts
| | - Lihua Yu
- H3 Biomedicine, Inc., Cambridge, Massachusetts
| | | | | | - Ping Zhu
- H3 Biomedicine, Inc., Cambridge, Massachusetts.
| | | |
Collapse
|
13
|
Ribas R, Pancholi S, Rani A, Schuster E, Guest SK, Nikitorowicz-Buniak J, Simigdala N, Thornhill A, Avogadri-Connors F, Cutler RE, Lalani AS, Dowsett M, Johnston SR, Martin LA. Targeting tumour re-wiring by triple blockade of mTORC1, epidermal growth factor, and oestrogen receptor signalling pathways in endocrine-resistant breast cancer. Breast Cancer Res 2018; 20:44. [PMID: 29880014 PMCID: PMC5992820 DOI: 10.1186/s13058-018-0983-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/10/2018] [Indexed: 12/19/2022] Open
Abstract
Background Endocrine therapies are the mainstay of treatment for oestrogen receptor (ER)-positive (ER+) breast cancer (BC). However, resistance remains problematic largely due to enhanced cross-talk between ER and growth factor pathways, circumventing the need for steroid hormones. Previously, we reported the anti-proliferative effect of everolimus (RAD001-mTORC1 inhibitor) with endocrine therapy in resistance models; however, potential routes of escape from treatment via ERBB2/3 signalling were observed. We hypothesised that combined targeting of three cellular nodes (ER, ERBB, and mTORC1) may provide enhanced long-term clinical utility. Methods A panel of ER+ BC cell lines adapted to long-term oestrogen deprivation (LTED) and expressing ESR1wt or ESR1Y537S, modelling acquired resistance to an aromatase-inhibitor (AI), were treated in vitro with a combination of RAD001 and neratinib (pan-ERBB inhibitor) in the presence or absence of oestradiol (E2), tamoxifen (4-OHT), or fulvestrant (ICI182780). End points included proliferation, cell signalling, cell cycle, and effect on ER-mediated transactivation. An in-vivo model of AI resistance was treated with monotherapies and combinations to assess the efficacy in delaying tumour progression. RNA-seq analysis was performed to identify changes in global gene expression as a result of the indicated therapies. Results Here, we show RAD001 and neratinib (pan-ERBB inhibitor) caused a concentration-dependent decrease in proliferation, irrespective of the ESR1 mutation status. The combination of either agent with endocrine therapy further reduced proliferation but the maximum effect was observed with a triple combination of RAD001, neratinib, and endocrine therapy. In the absence of oestrogen, RAD001 caused a reduction in ER-mediated transcription in the majority of the cell lines, which associated with a decrease in recruitment of ER to an oestrogen-response element on the TFF1 promoter. Contrastingly, neratinib increased both ER-mediated transactivation and ER recruitment, an effect reduced by the addition of RAD001. In-vivo analysis of an LTED model showed the triple combination of RAD001, neratinib, and fulvestrant was most effective at reducing tumour volume. Gene set enrichment analysis revealed that the addition of neratinib negated the epidermal growth factor (EGF)/EGF receptor feedback loops associated with RAD001. Conclusions Our data support the combination of therapies targeting ERBB2/3 and mTORC1 signalling, together with fulvestrant, in patients who relapse on endocrine therapy and retain a functional ER. Electronic supplementary material The online version of this article (10.1186/s13058-018-0983-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ricardo Ribas
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Sunil Pancholi
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Aradhana Rani
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Eugene Schuster
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Stephanie K Guest
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Joanna Nikitorowicz-Buniak
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Nikiana Simigdala
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Allan Thornhill
- Centre for Cancer Imaging, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | | | | | | | - Mitch Dowsett
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK.,The Ralph Lauren Centre for Breast Cancer Research, The Royal Marsden Hospital, London, SW3 6JJ, UK
| | | | - Lesley-Ann Martin
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK.
| |
Collapse
|
14
|
Martin LA, Ribas R, Simigdala N, Schuster E, Pancholi S, Tenev T, Gellert P, Buluwela L, Harrod A, Thornhill A, Nikitorowicz-Buniak J, Bhamra A, Turgeon MO, Poulogiannis G, Gao Q, Martins V, Hills M, Garcia-Murillas I, Fribbens C, Patani N, Li Z, Sikora MJ, Turner N, Zwart W, Oesterreich S, Carroll J, Ali S, Dowsett M. Discovery of naturally occurring ESR1 mutations in breast cancer cell lines modelling endocrine resistance. Nat Commun 2017; 8:1865. [PMID: 29192207 PMCID: PMC5709387 DOI: 10.1038/s41467-017-01864-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/20/2017] [Indexed: 12/18/2022] Open
Abstract
Resistance to endocrine therapy remains a major clinical problem in breast cancer. Genetic studies highlight the potential role of estrogen receptor-α (ESR1) mutations, which show increased prevalence in the metastatic, endocrine-resistant setting. No naturally occurring ESR1 mutations have been reported in in vitro models of BC either before or after the acquisition of endocrine resistance making functional consequences difficult to study. We report the first discovery of naturally occurring ESR1 Y537C and ESR1 Y537S mutations in MCF7 and SUM44 ESR1-positive cell lines after acquisition of resistance to long-term-estrogen-deprivation (LTED) and subsequent resistance to fulvestrant (ICIR). Mutations were enriched with time, impacted on ESR1 binding to the genome and altered the ESR1 interactome. The results highlight the importance and functional consequence of these mutations and provide an important resource for studying endocrine resistance.
Collapse
Affiliation(s)
- Lesley-Ann Martin
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK.
| | - Ricardo Ribas
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Nikiana Simigdala
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Eugene Schuster
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Sunil Pancholi
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Tencho Tenev
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Pascal Gellert
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Laki Buluwela
- Division of Cancer, CRUK Labs, University of London Imperial College, London, W12 0NN, UK
| | - Alison Harrod
- Division of Cancer, CRUK Labs, University of London Imperial College, London, W12 0NN, UK
| | - Allan Thornhill
- Centre for Cancer Imaging, Institute of Cancer Research, Sutton, SM2 5NG, UK
| | | | - Amandeep Bhamra
- Proteomic Unit, Institute of Cancer Research, London, SW7 3RP, UK
| | - Marc-Olivier Turgeon
- Division of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - George Poulogiannis
- Division of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK
| | - Qiong Gao
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Vera Martins
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, SW3 6JB, UK
| | - Margaret Hills
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, SW3 6JB, UK
| | - Isaac Garcia-Murillas
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Charlotte Fribbens
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Neill Patani
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Zheqi Li
- Department of Pharmacology and Chemical biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Matthew J Sikora
- Department of Pharmacology and Chemical biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Nicholas Turner
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
| | - Wilbert Zwart
- Department of Molecular Pathology, Netherlands Cancer Institute, 1066CX, Amsterdam, Netherlands
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jason Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Simak Ali
- Division of Cancer, CRUK Labs, University of London Imperial College, London, W12 0NN, UK
| | - Mitch Dowsett
- Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW7 3RP, UK
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, SW3 6JB, UK
| |
Collapse
|
15
|
Targeting CXCR7 improves the efficacy of breast cancer patients with tamoxifen therapy. Biochem Pharmacol 2017; 147:128-140. [PMID: 29175422 DOI: 10.1016/j.bcp.2017.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 01/09/2023]
Abstract
Chemokine (C-X-C motif) receptor 7 (CXCR7) has been established to be involved in breast cancer (BCa) progression. However, the role of CXCR7 in different subtype of BCa still remains unclear. Here we note that CXCR7 expression is significantly amplified in Luminal type BCa tissues as compared with Her2 and TNBC types through data-mining in TCGA datasets, and its protein level positively correlates with ERα expression by staining of human BCa tissue. Interestingly, alteration of CXCR7 expression in Luminal type BCa cells is able to modulate the expression of ERα through ubiquitination at post-translational level. Additionally, overexpression of CXCR7 in these cells greatly induces 4-OHT insensitivity in vitro and is associated with earlier recurrence in patients with tamoxifen therapy. Notably, silencing ERα expression potentially rescues the sensitivity of the above cells to 4-OHT, suggesting that elevated level of ERα is responsible for CXCR7-induced 4-OHT insensitivity in Luminal type BCa. Finally, mechanistic analyses show that the reduced BRCA1 (ubiquitin E3 ligase) and elevated OTUB1 (deubiquitinase) expression, which are regulated by CXCR7/ERK1/2 signaling pathway, are responsible for stabilizing ERα protein. In conclusion, our results suggest that targeting CXCR7 may serve as a potential therapeutic strategy for improving the efficacy of BCa patients with tamoxifen therapy.
Collapse
|
16
|
Lui AJ, Geanes ES, Ogony J, Behbod F, Marquess J, Valdez K, Jewell W, Tawfik O, Lewis-Wambi J. IFITM1 suppression blocks proliferation and invasion of aromatase inhibitor-resistant breast cancer in vivo by JAK/STAT-mediated induction of p21. Cancer Lett 2017; 399:29-43. [PMID: 28411130 DOI: 10.1016/j.canlet.2017.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/23/2017] [Accepted: 04/04/2017] [Indexed: 12/19/2022]
Abstract
Interferon induced transmembrane protein 1 (IFITM1) belongs to a family of interferon stimulated genes (ISGs) that is associated with tumor progression and DNA damage resistance; however, its role in endocrine resistance is not known. Here, we correlate IFITM1 expression with clinical stage and poor response to endocrine therapy in a tissue microarray consisting of 94 estrogen receptor (ER)-positive breast tumors. IFITM1 overexpression is confirmed in the AI-resistant MCF-7:5C cell line and not found in AI-sensitive MCF-7 cells. In this study, the orthotopic (mammary fat pad) and mouse mammary intraductal (MIND) models of breast cancer are used to assess tumor growth and invasion in vivo. Lentivirus-mediated shRNA knockdown of IFITM1 in AI-resistant MCF-7:5C cells diminished tumor growth and invasion and induced cell death, whereas overexpression of IFITM1 in wild-type MCF-7 cells promoted estrogen-independent growth and enhanced their aggressive phenotype. Mechanistic studies indicated that loss of IFITM1 in MCF-7:5C cells markedly increased p21 transcription, expression and nuclear localization which was mediated by JAK/STAT activation. These findings suggest IFITM1 overexpression contributes to breast cancer progression and that targeting IFITM1 may be therapeutically beneficial to patients with endocrine-resistant disease.
Collapse
Affiliation(s)
- Asona J Lui
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, USA; The University of Kansas Cancer Center, Kansas City, KS 66160, USA.
| | - Eric S Geanes
- Department of Cancer Biology, University of Kansas Medical Center, USA; The University of Kansas Cancer Center, Kansas City, KS 66160, USA.
| | - Joshua Ogony
- Department of Cancer Biology, University of Kansas Medical Center, USA; The University of Kansas Cancer Center, Kansas City, KS 66160, USA.
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, USA; The University of Kansas Cancer Center, Kansas City, KS 66160, USA.
| | - Jordan Marquess
- University of Kansas Medical Center School of Medicine, USA.
| | - Kelli Valdez
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, USA; The University of Kansas Cancer Center, Kansas City, KS 66160, USA.
| | - William Jewell
- The University of Kansas Cancer Center, Kansas City, KS 66160, USA.
| | - Ossama Tawfik
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, USA.
| | - Joan Lewis-Wambi
- Department of Cancer Biology, University of Kansas Medical Center, USA; The University of Kansas Cancer Center, Kansas City, KS 66160, USA.
| |
Collapse
|
17
|
Li W, Ding Q, Ding Y, Lu L, Wang X, Zhang Y, Zhang X, Guo Q, Zhao L. Oroxylin A reverses the drug resistance of chronic myelogenous leukemia cells to imatinib through CXCL12/CXCR7 axis in bone marrow microenvironment. Mol Carcinog 2016; 56:863-876. [PMID: 27533597 DOI: 10.1002/mc.22540] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/11/2016] [Accepted: 08/15/2016] [Indexed: 01/27/2023]
Abstract
Imatinib (IM), a tyrosine-kinase inhibitor, is used in treatment of multiple cancers, most notably Philadelphia chromosome-positive (Ph+ ) chronic myelogenous leukemia (CML). However, the majority of patients continue to present with minimal residual disease occurred in the bone marrow (BM) microenvironment. One of the key factors that contribute to leukemia cell drug resistance is chemokine CXCL12. In the current study, co-culturing CML cell K562 and KU812 with BM stromal cell M2-10B4 attenuated IM-induced apoptosis. CXCL12/CXCR7 pathway was activated in co-culture models, which was further proved to be related to drug resistance by silencing CXCR7. ERK phosphorylation and downstream apoptosis related proteins' activation were also observed in co-culture group after the activation of CXCR7. Moreover, oroxylin A, a bioactive flavonoid isolated from the root of Scutellaria baicalensis Georgi, was found to be effective in reversing BM stroma induced CML resistance to IM. After cells were treated with weakly toxic concentration of oroxylin A, cell apoptosis induced by IM in co-culture model was enhanced. And the activated CXCL12/CXCR7 pathway, the expression of p-ERK and downstream apoptosis related proteins were suppressed. The in vivo study also showed that oroxylin A increased apoptosis of CML cells with low systemic toxicity, and the mechanism was consistent with the in vitro study. In conclusion, oroxylin A improved sensitivity of CML cells to IM treatment in BM microenvironment through regulating CXCL12/CXCR7 pathway. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wenjun Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Qilong Ding
- Experimental and Teaching Center of Medical Basis for Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Youxiang Ding
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Lu Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiaoping Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yi Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiaobo Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Li Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
18
|
Di Maro S, Trotta AM, Brancaccio D, Di Leva FS, La Pietra V, Ieranò C, Napolitano M, Portella L, D'Alterio C, Siciliano RA, Sementa D, Tomassi S, Carotenuto A, Novellino E, Scala S, Marinelli L. Exploring the N-Terminal Region of C-X-C Motif Chemokine 12 (CXCL12): Identification of Plasma-Stable Cyclic Peptides As Novel, Potent C-X-C Chemokine Receptor Type 4 (CXCR4) Antagonists. J Med Chem 2016; 59:8369-80. [PMID: 27571038 DOI: 10.1021/acs.jmedchem.6b00695] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We previously reported the discovery of a CXCL12-mimetic cyclic peptide (2) as a selective CXCR4 antagonist showing promising in vitro and in vivo anticancer activity. However, further development of this peptide was hampered by its degradation in biological fluids as well as by its low micromolar affinity for the receptor. Herein, extensive chemical modifications led to the development of a new analogue (10) with enhanced potency, specificity, and plasma stability. A combined approach of Ala-amino acid scan, NMR, and molecular modeling unraveled the reasons behind the improved binding properties of 10 vs 2. Biological investigations on leukemia (CEM) and colon (HT29 and HCT116) cancer cell lines showed that 10 is able to impair CXCL12-mediated cell migration, ERK-phosphorylation, and CXCR4 internalization. These outcomes might pave the way for the future preclinical development of 10 in CXCR4 overexpressing leukemia and colon cancer.
Collapse
Affiliation(s)
- Salvatore Di Maro
- DiSTABiF, Second University of Naples , Via Vivaldi 43, 81100 Caserta, Italy
| | - Anna Maria Trotta
- Genomica Funzionale, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale", IRCCS-ITALY , Via M. Semmola, 80131 Naples, Italy
| | - Diego Brancaccio
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy.,Laboratory of Food Chemistry, Dipartimento di Agraria (QuaSic.A.Tec.), Università Mediterranea di Reggio Calabria , Reggio Calabria, loc. Feo di Vito, 89122 Reggio Calabria, Italy
| | - Francesco Saverio Di Leva
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Valeria La Pietra
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Caterina Ieranò
- Genomica Funzionale, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale", IRCCS-ITALY , Via M. Semmola, 80131 Naples, Italy
| | - Maria Napolitano
- Genomica Funzionale, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale", IRCCS-ITALY , Via M. Semmola, 80131 Naples, Italy
| | - Luigi Portella
- Genomica Funzionale, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale", IRCCS-ITALY , Via M. Semmola, 80131 Naples, Italy
| | - Crescenzo D'Alterio
- Genomica Funzionale, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale", IRCCS-ITALY , Via M. Semmola, 80131 Naples, Italy
| | - Rosa Anna Siciliano
- Istituto di Scienze dell'Alimentazione, CNR , Via Roma 64, 83100 Avellino, Italy
| | - Deborah Sementa
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Stefano Tomassi
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Alfonso Carotenuto
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Ettore Novellino
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| | - Stefania Scala
- Genomica Funzionale, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "Giovanni Pascale", IRCCS-ITALY , Via M. Semmola, 80131 Naples, Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
19
|
Tang X, Li X, Li Z, Liu Y, Yao L, Song S, Yang H, Li C. Downregulation of CXCR7 inhibits proliferative capacity and stem cell-like properties in breast cancer stem cells. Tumour Biol 2016; 37:13425-13433. [PMID: 27460092 DOI: 10.1007/s13277-016-5180-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 07/12/2016] [Indexed: 01/07/2023] Open
Abstract
Breast cancer stem cells (bCSCs) are considered an obstacle in breast cancer therapy because they exhibit long-term proliferative potential, phenotypic plasticity and high resistance to the current therapeutics. CXC chemokine receptor type 7 (CXCR7), which provides a growth advantage to breast cancer cells, has recently been demonstrated to play an important role in the maintenance of stem cell-like properties in the CSCs of glioblastoma and lung cancer, yet its role in bCSCs remains elusive. In this study, CD44+/CD24low bCSC-enriched cells (bCSCs for short) were isolated from MCF-7 cells, and CXCR7 was stably knocked down in bCSCs via lentivirus-mediated transduction with CXCR7 short hairpin RNA (shRNA). Knockdown of CXCR7 in bCSCs decreased the proportion of CD44+/CD24low cells, and markedly reduced the clonogenicity of the cells. Moreover, silencing of CXCR7 downregulated the expression of stem cell markers, such as aldehyde dehydrogenase 1 (ALDH1), Oct4, and Nanog. In addition, CXCR7 silencing in bCSCs suppressed cell proliferation and G1/S transition in vitro, and delayed tumor growth in vivo in a xenograft mouse model. In situ immunohistochemical analysis revealed a reduction in Ki-67 expression and enhanced apoptosis in the xenograft tumors as a result of CXCR7 silencing. Furthermore, combined treatment with CXCR7 silencing and epirubicin displayed an outstanding anti-tumor effect compared with either single treatment. Our study demonstrates that CXCR7 plays a critical role in the maintenance of stem cell-like properties and promotion of growth in bCSCs, and suggests that CXCR7 may be a candidate target for bCSCs in breast cancer therapy.
Collapse
Affiliation(s)
- Xin Tang
- Department of Medical Ultrasonics, Hongqi Hospital of Mudanjiang Medical University, 5 Tongxiang Road, Mudanjiang, Heilongjiang, 157011, China
| | - Xiang Li
- Department of Medical Ultrasonics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zitao Li
- Department of Orthopaedic Surgery, Mudanjiang Forestry Central Hospital, Mudanjiang, Heilongjiang, 157000, China
| | - Yunshuang Liu
- Department of Medical Ultrasonics, Hongqi Hospital of Mudanjiang Medical University, 5 Tongxiang Road, Mudanjiang, Heilongjiang, 157011, China
| | - Lihong Yao
- Department of Medical Ultrasonics, Hongqi Hospital of Mudanjiang Medical University, 5 Tongxiang Road, Mudanjiang, Heilongjiang, 157011, China
| | - Shuang Song
- Department of Medical Ultrasonics, Hongqi Hospital of Mudanjiang Medical University, 5 Tongxiang Road, Mudanjiang, Heilongjiang, 157011, China
| | - Hongyan Yang
- Department of Medical Ultrasonics, Hongqi Hospital of Mudanjiang Medical University, 5 Tongxiang Road, Mudanjiang, Heilongjiang, 157011, China
| | - Caijuan Li
- Department of Medical Ultrasonics, Hongqi Hospital of Mudanjiang Medical University, 5 Tongxiang Road, Mudanjiang, Heilongjiang, 157011, China.
| |
Collapse
|
20
|
Behnam Azad B, Lisok A, Chatterjee S, Poirier JT, Pullambhatla M, Luker GD, Pomper MG, Nimmagadda S. Targeted Imaging of the Atypical Chemokine Receptor 3 (ACKR3/CXCR7) in Human Cancer Xenografts. J Nucl Med 2016; 57:981-8. [PMID: 26912435 PMCID: PMC5261856 DOI: 10.2967/jnumed.115.167932] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/08/2016] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The atypical chemokine receptor ACKR3 (formerly CXCR7), overexpressed in various cancers compared with normal tissues, plays a pivotal role in adhesion, angiogenesis, tumorigenesis, metastasis, and tumor cell survival. ACKR3 modulates the tumor microenvironment and regulates tumor growth. The therapeutic potential of ACKR3 has also been demonstrated in various murine models of human cancer. Literature findings underscore the importance of ACKR3 in disease progression and suggest it as an important diagnostic marker for noninvasive imaging of ACKR3-overexpressing malignancies. There are currently no reports on direct receptor-specific detection of ACKR3 expression. Here we report the evaluation of a radiolabeled ACKR3-targeted monoclonal antibody (ACKR3-mAb) for the noninvasive in vivo nuclear imaging of ACKR3 expression in human breast, lung, and esophageal squamous cell carcinoma cancer xenografts. METHODS ACKR3 expression data were extracted from Cancer Cell Line Encyclopedia, The Cancer Genome Atlas, and the Clinical Lung Cancer Genome Project. (89)Zr-ACKR3-mAb was evaluated in vitro and subsequently in vivo by PET and ex vivo biodistribution studies in mice xenografted with breast (MDA-MB-231-ACKR3 [231-ACKR3], MDA-MB-231 [231], MCF7), lung (HCC95), or esophageal (KYSE520) cancer cells. In addition, ACKR3-mAb was radiolabeled with (125)I and evaluated by SPECT imaging and ex vivo biodistribution studies. RESULTS ACKR3 transcript levels were highest in lung squamous cell carcinoma among the 21 cancer type data extracted from The Cancer Genome Atlas. Also, Clinical Lung Cancer Genome Project data showed that lung squamous cell carcinoma had the highest CXCR7 transcript levels compared with other lung cancer subtypes. The (89)Zr-ACKR3-mAb was produced in 80% ± 5% radiochemical yields with greater than 98% radiochemical purity. In vitro cell uptake of (89)Zr-ACKR3-mAb correlated with gradient levels of cell surface ACKR3 expression observed by flow cytometry. In vivo PET imaging and ex vivo biodistribution studies in mice with breast, lung, and esophageal cancer xenografts consistently showed enhanced (89)Zr-ACKR3-mAb uptake in high-ACKR3-expressing tumors. SPECT imaging of (125)I-ACKR3-mAb showed the versatility of ACKR3-mAb for in vivo monitoring of ACKR3 expression. CONCLUSION Data from this study suggest ACKR3 to be a viable diagnostic marker and demonstrate the utility of radiolabeled ACKR3-mAb for in vivo visualization of ACKR3-overexpressing malignancies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacokinetics
- Biological Transport
- Cell Line, Tumor
- Cell Transformation, Neoplastic
- Female
- Humans
- Mice
- Molecular Imaging/methods
- Positron-Emission Tomography
- Radioisotopes
- Receptors, CXCR/immunology
- Receptors, CXCR/metabolism
- Tissue Distribution
- Tomography, Emission-Computed, Single-Photon
- Zirconium/chemistry
Collapse
Affiliation(s)
- Babak Behnam Azad
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland
| | - Ala Lisok
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland
| | - Samit Chatterjee
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland
| | - John T Poirier
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mrudula Pullambhatla
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland
| | - Gary D Luker
- Department of Radiology, University of Michigan, Ann Arbor, Michigan; and
| | - Martin G Pomper
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Sridhar Nimmagadda
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
21
|
Simigdala N, Gao Q, Pancholi S, Roberg-Larsen H, Zvelebil M, Ribas R, Folkerd E, Thompson A, Bhamra A, Dowsett M, Martin LA. Cholesterol biosynthesis pathway as a novel mechanism of resistance to estrogen deprivation in estrogen receptor-positive breast cancer. Breast Cancer Res 2016; 18:58. [PMID: 27246191 PMCID: PMC4888666 DOI: 10.1186/s13058-016-0713-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023] Open
Abstract
Background Therapies targeting estrogenic stimulation in estrogen receptor-positive (ER+) breast cancer (BC) reduce mortality, but resistance remains a major clinical problem. Molecular studies have shown few high-frequency mutations to be associated with endocrine resistance. In contrast, expression profiling of primary ER+ BC samples has identified several promising signatures/networks for targeting. Methods To identify common adaptive mechanisms associated with resistance to aromatase inhibitors (AIs), we assessed changes in global gene expression during adaptation to long-term estrogen deprivation (LTED) in a panel of ER+ BC cell lines cultured in 2D on plastic (MCF7, T47D, HCC1428, SUM44 and ZR75.1) or in 3D on collagen (MCF7) to model the stromal compartment. Furthermore, dimethyl labelling followed by LC-MS/MS was used to assess global changes in protein abundance. The role of target genes/proteins on proliferation, ER-mediated transcription and recruitment of ER to target gene promoters was analysed. Results The cholesterol biosynthesis pathway was the common upregulated pathway in the ER+ LTED but not the ER– LTED cell lines, suggesting a potential mechanism dependent on continued ER expression. Targeting the individual genes of the cholesterol biosynthesis pathway with siRNAs caused a 30–50 % drop in proliferation. Further analysis showed increased expression of 25-hydroxycholesterol (HC) in the MCF7 LTED cells. Exogenous 25-HC or 27-HC increased ER-mediated transcription and expression of the endogenous estrogen-regulated gene TFF1 in ER+ LTED cells but not in the ER– LTED cells. Additionally, recruitment of the ER and CREB-binding protein (CBP) to the TFF1 and GREB1 promoters was increased upon treatment with 25-HC and 27-HC. In-silico analysis of two independent studies of primary ER+ BC patients treated with neoadjuvant AIs showed that increased expression of MSMO1, EBP, LBR and SQLE enzymes, required for cholesterol synthesis and increased in our in-vitro models, was significantly associated with poor response to endocrine therapy. Conclusion Taken together, these data provide support for the role of cholesterol biosynthesis enzymes and the cholesterol metabolites, 25-HC and 27-HC, in a novel mechanism of resistance to endocrine therapy in ER+ BC that has potential as a therapeutic target. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0713-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nikiana Simigdala
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Qiong Gao
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Sunil Pancholi
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | | | - Marketa Zvelebil
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Ricardo Ribas
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Elizabeth Folkerd
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.,Academic Department of Biochemistry, Royal Marsden Hospital, London, SW3 6JJ, UK
| | - Andrew Thompson
- Proteomics Core Facility, Institute of Cancer Research, London, SW3 6JB, UK
| | - Amandeep Bhamra
- Proteomics Core Facility, Institute of Cancer Research, London, SW3 6JB, UK
| | - Mitch Dowsett
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.,Academic Department of Biochemistry, Royal Marsden Hospital, London, SW3 6JJ, UK
| | - Lesley-Ann Martin
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|
22
|
Dieci MV, Griguolo G, Miglietta F, Guarneri V. The immune system and hormone-receptor positive breast cancer: Is it really a dead end? Cancer Treat Rev 2016; 46:9-19. [PMID: 27055087 DOI: 10.1016/j.ctrv.2016.03.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/21/2016] [Indexed: 01/08/2023]
Abstract
Even if breast cancer has not been traditionally considered an immunogenic tumor, recent data suggest that immunity, and its interaction with tumor cells and tumor microenvironment, might play an important role in this malignancy, in particular in triple negative and HER2+ subtypes. As no consistent data on the potential clinical relevance of tumor infiltrating lymphocytes have been produced in hormone receptor positive (HR+) HER2- breast cancer, the interest in studying immune aspects in this subtype has become less appealing. Nevertheless, some scattered evidence indicates that immunity and inflammation may be implicated in the biology of this subtype as well. In HR+ breast cancer, the interaction between tumor cells and the immune milieu might rely on different mechanisms than in other BC subtypes, involving the modulation of the tumor microenvironment by mutual interplays of endocrine factors, pro-inflammatory status and immune cells. These subtle mechanisms may require more refined methods of evaluation, such as the assessment of tumor infiltrating lymphocytes subpopulations or gene signatures. In this paper we aim to perform a comprehensive review of pre-clinical and clinical data on the interplay between the immune system and breast cancer in the HR+ subtype, to guide further research in the field.
Collapse
Affiliation(s)
- Maria Vittoria Dieci
- Dept. of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Division of Medical Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy.
| | - Gaia Griguolo
- Dept. of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Division of Medical Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Federica Miglietta
- Division of Medical Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Valentina Guarneri
- Dept. of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Division of Medical Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| |
Collapse
|
23
|
Liang AL, Qian HL, Zhang TT, Zhou N, Wang HJ, Men XT, Qi W, Zhang PP, Fu M, Liang X, Lin C, Liu YJ. Bifunctional fused polypeptide inhibits the growth and metastasis of breast cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5671-86. [PMID: 26527862 PMCID: PMC4621185 DOI: 10.2147/dddt.s90082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Breast cancer is the most common cancer and the leading cause of cancer-related death among women worldwide, with urgent need to develop new therapeutics. Targeted therapy is a promising strategy for breast cancer therapy. Stromal-derived factor-1/CXC chemokine receptor 4 (CXCR4) has been implicated in the metastasis of breast cancer, which renders it to be therapeutic target. This study aimed to evaluate the anticancer effect of fused TAT- DV1-BH3 polypeptide, an antagonist of CXCR4, and investigate the underlying mechanism for the cancer cell-killing effect in the treatment of breast cancer in vitro and in vivo. This results in a potent inhibitory effect of fused TAT-DV1-BH3 polypeptide on tumor growth and metastasis in nude mice bearing established MDA-MB-231 tumors. Fused TAT-DV1-BH3 polypeptide inhibited the proliferation of MDA-MB-231 and MCF-7 cells but did not affect that of HEK-293 cells. The fused TAT-DV1-BH3 polypeptide colocalized with mitochondria and exhibited a proapoptotic effect through the regulation of caspase-9 and -3. Furthermore, the fused TAT-DV1-BH3 polypeptide suppressed the migration and invasion of the highly metastatic breast cancer cell line MDA-MB-231 in a concentration-dependent manner. Notably, the DV1-mediated inhibition of the stromal-derived factor-1/CXCR4 pathway contributed to the antimetastasis effect, evident from the reduction in the level of phosphoinositide 3 kinase and matrix metalloproteinase 9 in MDA-MB-231 cells. Collectively, these results indicate that the apoptosis-inducing effect and migration- and invasion-suppressing effect explain the tumor regression and metastasis inhibition in vivo, with the involvement of caspase- and CXCR4-mediated signaling pathway. The data suggest that the fused TAT-DV1-BH3 polypeptide is a promising agent for the treatment of breast cancer, and more studies are warranted to fully elucidate the therapeutic targets and molecular mechanism.
Collapse
Affiliation(s)
- Ai-Ling Liang
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hai-Li Qian
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ting-Ting Zhang
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Ning Zhou
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hai-Juan Wang
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xi-Ting Men
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wei Qi
- Electroencephalogram Room, Guangdong Medical University Affiliated Hospital, Zhanjiang, Guangdong, People's Republic of China
| | - Ping-Ping Zhang
- Department of Orthopedics, Guangdong Medical University Affiliated Hospital, Zhanjiang, Guangdong, People's Republic of China
| | - Ming Fu
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xiao Liang
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Chen Lin
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yong-Jun Liu
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China ; Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| |
Collapse
|
24
|
Yun HJ, Ryu H, Choi YS, Song IC, Jo DY, Kim S, Lee HJ. C-X-C motif receptor 7 in gastrointestinal cancer. Oncol Lett 2015; 10:1227-1232. [PMID: 26622655 DOI: 10.3892/ol.2015.3407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/22/2015] [Indexed: 02/06/2023] Open
Abstract
Chemokine receptors are key mediators of normal physiology and numerous pathological conditions, including inflammation and cancer. This receptor family is an emerging target for anticancer drug development. C-X-C motif receptor 7 (CXCR7) is an atypical chemokine receptor that was first cloned from a canine cDNA library as an orphan receptor and was initially named receptor dog cDNA 1 (RDC1). Shortly after demonstrating that RDC1 binds with its ligand, stromal cell-derived factor-1α and interferon-inducible T-cell α chemoattractant, RDC1 was officially deorphanized and renamed CXCR7, as the seventh receptor in the CXC class of the chemokine receptor family. Recent accumulating evidence has demonstrated that CXCR7 expression is augmented in the majority of tumor cells compared with their normal counterparts and is involved in cell proliferation, survival, migration, invasion and angiogenesis during the initiation and progression of breast, lung and prostate cancer. In the present review, the expression and role of CXCR7, as well as its clinical relevance in cancer of the gastrointestinal system, were investigated. In addition, the potential of this chemokine receptor as a therapeutic target in the treatment of gastrointestinal cancer was discussed.
Collapse
Affiliation(s)
- Hwan-Jung Yun
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea ; Cancer Research Institute, Chungnam National University School of Medicine, Daejeon 301-747, Republic of Korea
| | - Hyewon Ryu
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea
| | - Yoon Seok Choi
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea
| | - Ik-Chan Song
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea
| | - Deog-Yeon Jo
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea ; Cancer Research Institute, Chungnam National University School of Medicine, Daejeon 301-747, Republic of Korea
| | - Samyong Kim
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea ; Cancer Research Institute, Chungnam National University School of Medicine, Daejeon 301-747, Republic of Korea
| | - Hyo Jin Lee
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea ; Cancer Research Institute, Chungnam National University School of Medicine, Daejeon 301-747, Republic of Korea
| |
Collapse
|