1
|
Yasavoli‐Sharahi H, Shahbazi R, Alsadi N, Robichaud S, Kambli D, Izadpanah A, Mohsenifar Z, Matar C. Edodes Cultured Extract Regulates Immune Stress During Puberty and Modulates MicroRNAs Involved in Mammary Gland Development and Breast Cancer Suppression. Cancer Med 2024; 13:e70277. [PMID: 39382253 PMCID: PMC11462599 DOI: 10.1002/cam4.70277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Immune stressors, such as lipopolysaccharides (LPS), profoundly affect microbiota balance, leading to gut dysbiosis. This imbalance disrupts the metabolic phenotype and structural integrity of the gut, increasing intestinal permeability. During puberty, a critical surge in estrogen levels is crucial for mammary gland development. However, inflammation originating from the gut in this period may interfere with this development, potentially heightening breast cancer risk later. The long-term effects of pubertal inflammation on mammary development and breast cancer risk are underexplored. Such episodes can dysregulate cytokine levels and microRNA expression, altering mammary cell gene expression, and predisposing them to tumorigenesis. METHODS This study hypothesizes that prebiotics, specifically Lentinula edodes Cultured Extract (AHCC), can counteract LPS's adverse effects. Using BALB/c mice, an acute LPS dose was administered at puberty, and breast cancer predisposition was assessed at 13 weeks. Cytokine and tumor-related microRNA levels, tumor development, and cancer stem cells were explored through immunoassays and qRT-PCR. RESULTS Results show that LPS induces lasting effects on cytokine and microRNA expression in mammary glands and tumors. AHCC modulates cytokine expression, including IL-1β, IL-17A/F, and IL-23, and mitigates LPS-induced IL-6 in mammary glands. It also regulates microRNA expression linked to tumor progression and suppression, particularly counteracting the upregulation of oncogenic miR-21, miR-92, and miR-155. Although AHCC slightly alters some tumor-suppressive microRNAs, these changes are modest, highlighting a complex regulatory role that warrants further study. CONCLUSION These findings underscore the potential of dietary interventions like AHCC to mitigate pubertal LPS-induced inflammation on mammary gland development and tumor formation, suggesting a preventive strategy against breast cancer.
Collapse
Affiliation(s)
- Hamed Yasavoli‐Sharahi
- Cellular and Molecular Medicine Department, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Samuel Robichaud
- Department of PathologyUniversity of MontrealMontrealQuebecCanada
| | - Darshan Babu Kambli
- Cellular and Molecular Medicine Department, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Amirhossein Izadpanah
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Zhaleh Mohsenifar
- Department of PathologySchool of Medicine, Shahid Beheshti University of Medical SciencesTehranIran
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- School of Nutrition Sciences, Faculty of Health SciencesUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
2
|
Abu-Alghayth MH, Khan FR, Belali TM, Abalkhail A, Alshaghdali K, Nassar SA, Almoammar NE, Almasoudi HH, Hessien KBG, Aldossari MS, Binshaya AS. The emerging role of noncoding RNAs in the PI3K/AKT/mTOR signalling pathway in breast cancer. Pathol Res Pract 2024; 255:155180. [PMID: 38330621 DOI: 10.1016/j.prp.2024.155180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024]
Abstract
Breast cancer persists as a major problem for the world's healthcare, thus it is essential to fully understand the complex molecular processes that cause its growth and development. ncRNAs had been discovered to serve critical roles in a variety of cellular functions, including the regulation of signalling pathways. Within different pathways, the AKT/PI3K/mTOR signalling cascade has received a lot of interest because of its role in cancer. A complex interaction between ncRNAs, notably miRNAs, lncRNAs, and circRNAs, and the AKT/PI3K/mTOR signalling pathway exerts both oncogenic and tumor-suppressive activities by targeting critical components of the pathway directly or indirectly. Through miRNA-mediated post-transcriptional regulation, lncRNA-guided chromatin remodelling, and circRNA sequestration, ncRNAs modulate the activity of PI3K, AKT, and mTOR, influencing cell proliferation, survival, and metastasis. Furthermore, ncRNAs can serve as promising biomarkers for breast cancer prognosis, diagnosis, and treatment response, as their dysregulation is commonly observed in breast cancer patients. Harnessing the potential of ncRNAs as therapeutic targets or tools for restoring pathway homeostasis holds promise for innovative treatment strategies in breast cancer. Understanding the intricate regulatory networks orchestrated by ncRNAs in this context may pave the way for novel diagnostic approaches, therapeutic interventions, and a deeper comprehension of breast cancer's molecular landscape, ultimately improving patient outcomes. This abstract underscores the emerging significance of ncRNAs in the AKT/PI3K/mTOR signaling pathway in breast cancer.
Collapse
Affiliation(s)
- Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, P.O. Box 255, 67714, Saudi Arabia
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Tareg M Belali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, P.O. Box 255, 67714, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Qassim, Saudi Arabia
| | - Khalid Alshaghdali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, P.O Box 2440, Saudi Arabia
| | - Somia A Nassar
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Nasser Eissa Almoammar
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hassan H Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Khater Balatone G Hessien
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | | | - Abdulkarim S Binshaya
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| |
Collapse
|
3
|
Fattahi M, Rezaee D, Fakhari F, Najafi S, Aghaei-Zarch SM, Beyranvand P, Rashidi MA, Bagheri-Mohammadi S, Zamani-Rarani F, Bakhtiari M, Bakhtiari A, Falahi S, Kenarkoohi A, Majidpoor J, Nguyen PU. microRNA-184 in the landscape of human malignancies: a review to roles and clinical significance. Cell Death Discov 2023; 9:423. [PMID: 38001121 PMCID: PMC10673883 DOI: 10.1038/s41420-023-01718-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs (ncRNAs) with a short length of 19-22 nucleotides. miRNAs are posttranscriptional regulators of gene expression involved in various biological processes like cell growth, apoptosis, and angiogenesis. miR-184 is a well-studied miRNA, for which most studies report its downregulation in cancer cells and tissues and experiments support its role as a tumor suppressor inhibiting malignant biological behaviors of cancer cells in vitro and in vivo. To exert its functions, miR-184 affects some signaling pathways involved in tumorigenesis like Wnt and β-catenin, and AKT/mTORC1 pathway, oncogenic factors (e.g., c-Myc) or apoptotic proteins, such as Bcl-2. Interestingly, clinical investigations have shown miR-184 with good performance as a prognostic/diagnostic biomarker for various cancers. Additionally, exogenous miR-184 in cell and xenograft animal studies suggest it as a therapeutic anticancer target. In this review, we outline the studies that evaluated the roles of miR-184 in tumorigenesis as well as its clinical significance.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Fatemeh Fakhari
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Beyranvand
- Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mohammad Amin Rashidi
- Student Research Committee, Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Zamani-Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Abbas Bakhtiari
- Anatomical Sciences Department, Medical Faculty, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Azra Kenarkoohi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - P U Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
4
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
5
|
MicroRNAs: A Link between Mammary Gland Development and Breast Cancer. Int J Mol Sci 2022; 23:ijms232415978. [PMID: 36555616 PMCID: PMC9786715 DOI: 10.3390/ijms232415978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is among the most common cancers in women, second to skin cancer. Mammary gland development can influence breast cancer development in later life. Processes such as proliferation, invasion, and migration during mammary gland development can often mirror processes found in breast cancer. MicroRNAs (miRNAs), small, non-coding RNAs, can repress post-transcriptional RNA expression and can regulate up to 80% of all genes. Expression of miRNAs play a key role in mammary gland development, and aberrant expression can initiate or promote breast cancer. Here, we review the role of miRNAs in mammary development and breast cancer, and potential parallel roles. A total of 32 miRNAs were found to be expressed in both mammary gland development and breast cancer. These miRNAs are involved in proliferation, metastasis, invasion, and apoptosis in both processes. Some miRNAs were found to have contradictory roles, possibly due to their ability to target many genes at once. Investigation of miRNAs and their role in mammary gland development may inform about their role in breast cancer. In particular, by studying miRNA in development, mechanisms and potential targets for breast cancer treatment may be elucidated.
Collapse
|
6
|
Dynamic miRNA Landscape Links Mammary Gland Development to the Regulation of Milk Protein Expression in Mice. Animals (Basel) 2022; 12:ani12060727. [PMID: 35327124 PMCID: PMC8944794 DOI: 10.3390/ani12060727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Milk synthesis is vital for maintaining the normal growth of newborn animals. Abnormal mammary gland development leads to a decrease in female productivity and the overall productivity of animal husbandry. This study characterized the dynamic miRNA expression profile during the process of mammary gland development, and identified a novel miRNA regulating expression of β-casein—an important milk protein. The results are valuable for studying mammary gland development, increasing milk production, improving the survival rate of pups, and promoting the development of animal husbandry. Abstract Mammary gland morphology varies considerably between pregnancy and lactation status, e.g., virgin to pregnant and lactation to weaning. Throughout these critical developmental phases, the mammary glands undergo remodeling to accommodate changes in milk production capacity, which is positively correlated with milk protein expression. The purpose of this study was to investigate the microRNA (miRNA) expression profiles in female ICR mice’s mammary glands at the virgin stage (V), day 16 of pregnancy (P16d), day 12 of lactation (L12d), day 1 of forced weaning (FW1d), and day 3 of forced weaning (FW3d), and to identify the miRNAs regulating milk protein gene expression. During the five stages of testing, 852 known miRNAs and 179 novel miRNAs were identified in the mammary glands. Based on their expression patterns, the identified miRNAs were grouped into 12 clusters. The expression pattern of cluster 1 miRNAs was opposite to that of milk protein genes in mammary glands in all five different stages. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the predicted target genes of cluster 1 miRNAs were related to murine mammary gland development and lactation. Furthermore, fluorescence in situ hybridization (FISH) analysis revealed that the novel-mmu-miR424-5p, which belongs to the cluster 1 miRNAs, was expressed in murine mammary epithelial cells. The dual-luciferase reporter assay revealed that an important milk protein gene—β-casein (CSN2)—was regarded as one of the likely targets for the novel-mmu-miR424-5p. This study analyzed the expression patterns of miRNAs in murine mammary glands throughout five critical developmental stages, and discovered a novel miRNA involved in regulating the expression of CSN2. These findings contribute to an enhanced understanding of the developmental biology of mammary glands, providing guidelines for increasing lactation efficiency and milk quality.
Collapse
|
7
|
Tan GG, Xu C, Zhong WK, Wang CY. miR-184 delays cell proliferation, migration and invasion in prostate cancer by directly suppressing DLX1. Exp Ther Med 2021; 22:1163. [PMID: 34504608 PMCID: PMC8393589 DOI: 10.3892/etm.2021.10597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 09/04/2019] [Indexed: 11/25/2022] Open
Abstract
A number of previous studies have reported that dysregulated miR-184 expression is associated with the development of cancer. The aim of the present study was to investigate the role of miR-184 in prostate cancer (PC) and the mechanism underlying its effects. Data from human tumor tissue samples were collected from The CEancer Genome Atlas to determine the expression levels of miR-184 and DLX1. The miR-184 mimic and pcDNA3.1-DLX1 plasmid were utilized to induce overexpression of miR-184 and DLX1 in Du145 cells, respectively. Cell Counting Kit-8, wound healing and Transwell assays were performed to examine the effects of miR-184 on the aggressiveness of PC cells. Dual-luciferase reporter gene assay was used to investigate the association between miR-184 and DLX1, and reverse transcription-quantitative PCR and western blot analyses were utilized to determine the mRNA and protein levels. miR-184 expression was found to be downregulated whereas DLX1 was upregulated in PC tissues compared with normal prostate tissues. Cell propagation, migration and invasion were all inhibited by miR-184 upregulation in Du145 cells. Dual luciferase reporter assay confirmed the association between miR-184 and DLX1. The inhibitory effect of miR-184 mimic on cell behaviors was reversed by upregulation of DLX1. These findings suggest that miR-184 plays a beneficial role in suppressing the tumorigenesis of PC by directly targeting DLX1, and it may represent a potential therapeutic strategy for PC.
Collapse
Affiliation(s)
- Gui-Geng Tan
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272100, P.R. China
| | - Chang Xu
- Department of Urology, Yanzhou People's Hospital, Jining, Shandong 272100, P.R. China
| | - Wei-Kang Zhong
- Operating Room Department, Affiliated Hospital of Jining Medical University, Jining, Shandong 272100, P.R. China
| | - Chuan-Yun Wang
- Department of Urinary Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
8
|
The Anticancer Effects of Flavonoids through miRNAs Modulations in Triple-Negative Breast Cancer. Nutrients 2021; 13:nu13041212. [PMID: 33916931 PMCID: PMC8067583 DOI: 10.3390/nu13041212] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/31/2022] Open
Abstract
Triple- negative breast cancer (TNBC) incidence rate has regularly risen over the last decades and is expected to increase in the future. Finding novel treatment options with minimum or no toxicity is of great importance in treating or preventing TNBC. Flavonoids are new attractive molecules that might fulfill this promising therapeutic option. Flavonoids have shown many biological activities, including antioxidant, anti-inflammatory, and anticancer effects. In addition to their anticancer effects by arresting the cell cycle, inducing apoptosis, and suppressing cancer cell proliferation, flavonoids can modulate non-coding microRNAs (miRNAs) function. Several preclinical and epidemiological studies indicate the possible therapeutic potential of these compounds. Flavonoids display a unique ability to change miRNAs' levels via different mechanisms, either by suppressing oncogenic miRNAs or activating oncosuppressor miRNAs or affecting transcriptional, epigenetic miRNA processing in TNBC. Flavonoids are not only involved in the regulation of miRNA-mediated cancer initiation, growth, proliferation, differentiation, invasion, metastasis, and epithelial-to-mesenchymal transition (EMT), but also control miRNAs-mediated biological processes that significantly impact TNBC, such as cell cycle, immune system, mitochondrial dysregulation, modulating signaling pathways, inflammation, and angiogenesis. In this review, we highlighted the role of miRNAs in TNBC cancer progression and the effect of flavonoids on miRNA regulation, emphasizing their anticipated role in the prevention and treatment of TNBC.
Collapse
|
9
|
Ivanova E, Le Guillou S, Hue-Beauvais C, Le Provost F. Epigenetics: New Insights into Mammary Gland Biology. Genes (Basel) 2021; 12:genes12020231. [PMID: 33562534 PMCID: PMC7914701 DOI: 10.3390/genes12020231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
The mammary gland undergoes important anatomical and physiological changes from embryogenesis through puberty, pregnancy, lactation and involution. These steps are under the control of a complex network of molecular factors, in which epigenetic mechanisms play a role that is increasingly well described. Recently, studies investigating epigenetic modifications and their impacts on gene expression in the mammary gland have been performed at different physiological stages and in different mammary cell types. This has led to the establishment of a role for epigenetic marks in milk component biosynthesis. This review aims to summarize the available knowledge regarding the involvement of the four main molecular mechanisms in epigenetics: DNA methylation, histone modifications, polycomb protein activity and non-coding RNA functions.
Collapse
|
10
|
Raza SHA, Abdelnour SA, Dhshan AIM, Hassanin AA, Noreldin AE, Albadrani GM, Abdel-Daim MM, Cheng G, Zan L. Potential role of specific microRNAs in the regulation of thermal stress response in livestock. J Therm Biol 2021; 96:102859. [PMID: 33627286 DOI: 10.1016/j.jtherbio.2021.102859] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/07/2023]
Abstract
Thermal stress is known to have harmful effects on livestock productivity and can cause livestock enterprises considerable financial loss. These effects may be aggravated by climate change. Stress responses to nonspecific systemic actions lead to perturbation of molecular pathways in the organism. The molecular response is regulated in a dynamic and synchronized manner that assurances robustness and flexibility for the restoration of functional and structural homeostasis in stressed cells and tissues. MicroRNAs (miRNAs) are micro molecules of small non-coding RNA that control gene expression at the post-transcriptional level. Recently, various studies have discovered precise types of miRNA that regulate cellular machinery and homeostasis under various types of stress, suggesting a significant role of miRNA in thermal stress responses in animals. The miRNAs revealed in this paper could serve as promising candidates and biomarkers for heat stress and could be used as potential pharmacological targets for mitigating the consequences of thermal stress. Stress miRNA pathways may be associated with thermal stress, which offers some potential approaches to combat the negative impacts of thermal stress in livestock. The review provides new data that can assist the elucidation of the miRNA mechanisms that mediate animals' responses to thermal stress.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Aya I M Dhshan
- Ministry of Health and Population, Health Affairs Directorate in Sharkia, Zagazig, Egypt
| | - Abdallah A Hassanin
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, The Scientific Campus, Damanhour University, 22511, Damanhour, Egypt
| | - Ghadeer M Albadrani
- 1Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
11
|
Ma L, Liu L, Zhao Y, Yang L, Chen C, Li Z, Lu Z. JNK pathway plays a key role in the immune system of the pea aphid and is regulated by microRNA-184. PLoS Pathog 2020; 16:e1008627. [PMID: 32584915 PMCID: PMC7343183 DOI: 10.1371/journal.ppat.1008627] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/08/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Different from holometabolous insects, the hemipteran species such as pea aphid Acyrthosiphon pisum exhibit reduced immune responses with the absence of the genes coding for antimicrobial peptide (AMP), immune deficiency (IMD), peptidoglycan recognition proteins (PGRPs), and other immune-related molecules. Prior studies have proved that phenoloxidase (PO)-mediated melanization, hemocyte-mediated phagocytosis, and reactive oxygen species (ROS) participate in pea aphid defense against bacterial infection. Also, the conserved signaling, Jun N-terminal kinase (JNK) pathway, has been suggested to be involved in pea aphid immune defense. However, the precise role of the JNK signaling, its interplay with other immune responses and its regulation in pea aphid are largely unknown. In this study, using in vitro biochemical assays and in vivo bioassays, we demonstrated that the JNK pathway regulated hemolymph PO activity, hydrogen peroxide concentration and hemocyte phagocytosis in bacteria infected pea aphids, suggesting that the JNK pathway plays a central role in regulating immune responses in pea aphid. We further revealed the JNK pathway is regulated by microRNA-184 in response to bacterial infection. It is possible that in common the JNK pathway plays a key role in immune system of hemipteran insects and microRNA-184 regulates the JNK pathway in animals.
Collapse
Affiliation(s)
- Li Ma
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lu Liu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yujie Zhao
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Yang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Caihua Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhaofei Li
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
12
|
Dissecting miRNA facilitated physiology and function in human breast cancer for therapeutic intervention. Semin Cancer Biol 2020; 72:46-64. [PMID: 32497683 DOI: 10.1016/j.semcancer.2020.05.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are key epigenomic regulators of biological processes in animals and plants. These small non coding RNAs form a complex networks that regulate cellular function and development. MiRNAs prevent translation by either inactivation or inducing degradation of mRNA, a major concern in post-transcriptional gene regulation. Aberrant regulation of gene expression by miRNAs is frequently observed in cancer. Overexpression of various 'oncomiRs' and silencing of tumor suppressor miRNAs are associated with various types of human cancers, although overall downregulation of miRNA expression is reported as a hallmark of cancer. Modulations of the total pool of cellular miRNA by alteration in genetic and epigenetic factors associated with the biogenesis of miRNA machinery. It also depends on the availability of cellular miRNAs from its store in the organelles which affect tumor development and cancer progression. Here, we have dissected the roles and pathways of various miRNAs during normal cellular and molecular functions as well as during breast cancer progression. Recent research works and prevailing views implicate that there are two major types of miRNAs; (i) intracellular miRNAs and (ii) extracellular miRNAs. Concept, that the functions of intracellular miRNAs are driven by cellular organelles in mammalian cells. Extracellular miRNAs function in cell-cell communication in extracellular spaces and distance cells through circulation. A detailed understanding of organelle driven miRNA function and the precise role of extracellular miRNAs, pre- and post-therapeutic implications of miRNAs in this scenario would open several avenues for further understanding of miRNA function and can be better exploited for the treatment of breast cancers.
Collapse
|
13
|
Chen Y, Fan D, Zhang X, Han S, Wei X, Wang Y, Song L. MicroRNA-184 is a key molecule responsible for the transforming growth factor-β 2 -induced epithelial-mesenchymal transition in human lens epithelial-B3 cells. Clin Exp Ophthalmol 2020; 48:821-829. [PMID: 32356563 DOI: 10.1111/ceo.13774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND TGF-β2-induced epithelial-mesenchymal transition (EMT) is an important mechanism for posterior capsule opacity (PCO) in lens epithelial cells (LECs). This study aimed to investigate if MicroRNA-184 (miR-184) plays a role in the TGF-β2-induced EMT in LECs. METHODS Human LECs (HLE-B3 cells) were used in this study. Quantitative real-time polymerase chain reaction (PCR) (qRT-PCR) was performed to analyse miR-184 expressions in HLE-B3 treated with TGF-β2 at different concentrations (0-15 ng/mL) and different time (10 ng/mL, 0-48 hours). After transfection of miR-184 mimics or miR-184 inhibitor, cells were treated with 10 ng/mL TGF-β2 for 24 hours, and the expression levels of miR-184, E-cadherin, vimentin, zinc finger E-box binding homeobox 2 (ZEB2), α-Smooth muscle actin (α-SMA), Collagen 1 and bin3 were determined by qRT-PCR and Western blot, respectively. RESULTS TGF-β2 treatment significantly downregulated E-cadherin and upregulated vimentin generally in a dose-dependent and time-dependent manner. TGF-β2 treatment significantly elevated the level of miR-184 in both dose- and time-dependent manners. In addition, transfection of miR-184 inhibitor RNA significantly attenuated TGF-β2-induced downregulation of E-cadherin as well as upregulation of vimentin, ZEB2, α-SMA and Collagen 1, whereas transfection of miR-184 mimic further enhanced the effects of TGF-β2 on the expressions of these markers. Furthermore, TGF-β2 treatment significantly downregulated bin3, and transfection of miR-184 mimic and miR-184 inhibitor significantly enhanced and attenuated the inhibition effect of TGF-β2 on bin3, respectively. CONCLUSIONS miR-184 plays a key role in the TGF-β2-induced EMT in LECs, and bin3 may be a downstream protein.
Collapse
Affiliation(s)
- Yang Chen
- Department of Ophthalmology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Dongsheng Fan
- Department of Ophthalmology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Xinli Zhang
- Department of Ophthalmology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Shaoping Han
- Department of Ophthalmology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Xiaoyue Wei
- Department of Ophthalmology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Yongshu Wang
- Department of Ophthalmology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Lili Song
- Department of Ophthalmology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| |
Collapse
|
14
|
Hu G, Xia Y, Zhang J, Chen Y, Yuan J, Niu X, Zhao B, Li Q, Wang Y, Deng Z. ESC-sEVs Rejuvenate Senescent Hippocampal NSCs by Activating Lysosomes to Improve Cognitive Dysfunction in Vascular Dementia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903330. [PMID: 32440476 PMCID: PMC7237844 DOI: 10.1002/advs.201903330] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 05/05/2023]
Abstract
Vascular dementia (VD) is one of the most common types of dementia, however, the intrinsic mechanism is unclear and there is still lack of effective medications. In this study, the VD rats exhibit a progressive cognitive impairment, as well as a time-related increasing in hippocampal neural stem cells (H-NSCs) senescence, lost and neurogenesis decline. Then, embryonic stem cell-derived small extracellular vesicles (ESC-sEVs) are intravenously injected into VD rats. ESC-sEVs treatment significantly alleviates H-NSCs senescence, recovers compromised proliferation and neuron differentiation capacity, and reverses cognitive impairment. By microarray analysis and RT-qPCR it is identified that several miRNAs including miR-17-5p, miR-18a-5p, miR-21-5p, miR-29a-3p, and let-7a-5p, that can inhibit mTORC1 activation, exist in ESC-sEVs. ESC-sEVs rejuvenate H-NSCs senescence partly by transferring these miRNAs to inhibit mTORC1 activation, promote transcription factor EB (TFEB) nuclear translocation and lysosome resumption. Taken together, these data indicate that H-NSCs senescence cause cell depletion, neurogenesis reduction, and cognitive impairment in VD. ESC-sEVs treatment ameliorates H-NSCs senescence by inhibiting mTORC1 activation, and promoting TFEB nuclear translocation and lysosome resumption, thereby reversing senescence-related neurogenesis dysfunction and cognitive impairment in VD. The application of ESC-sEVs may be a novel cell-free therapeutic tool for patients with VD, as well as other aging-related diseases.
Collapse
Affiliation(s)
- Guowen Hu
- Department of NeurosurgeryShanghai Jiaotong University Affiliated Sixth People's HospitalShanghai200233China
| | - Yuguo Xia
- Department of NeurosurgeryShanghai Jiaotong University Affiliated Sixth People's HospitalShanghai200233China
| | - Juntao Zhang
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People's HospitalShanghai200233China
| | - Yu Chen
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People's HospitalShanghai200233China
| | - Ji Yuan
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People's HospitalShanghai200233China
| | - Xin Niu
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People's HospitalShanghai200233China
| | - Bizeng Zhao
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Qing Li
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People's HospitalShanghai200233China
| | - Yang Wang
- Institute of Microsurgery on ExtremitiesShanghai Jiaotong University Affiliated Sixth People's HospitalShanghai200233China
| | - Zhifeng Deng
- Department of NeurosurgeryShanghai Jiaotong University Affiliated Sixth People's HospitalShanghai200233China
| |
Collapse
|
15
|
MicroRNA-31/184 is involved in transforming growth factor-β-induced apoptosis in A549 human alveolar adenocarcinoma cells. Life Sci 2019; 242:117205. [PMID: 31874165 DOI: 10.1016/j.lfs.2019.117205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022]
Abstract
AIMS TGF-β-induced alveolar epithelial cells apoptosis were involved in idiopathic pulmonary fibrosis (IPF). This study aimed to explore potential targets and mechanisms of IPF. MAIN METHODS mRNA and microRNA arrays were used to analyze differentially expressed genes and miRNAs. Several essential targets of TGF-β-SMADs and TGF-β-PI3K-AKT pathways were detected. KEY FINDINGS miR-31 and miR-184 expression levels were positively correlated with smad6 and smad2/akt expression levels in IPF patients. TGF-β could induce miR-31 and suppress miR-184 levels in A549 cells. miR-31 was confirmed to bind to the smad6-3'UTR and functionally suppress its expression. Down-regulated SMAD6 enhanced SMAD2/SMAD4 dimer formation and translocation due to its failure to prevent SMAD2 phosphorylation. In contrast, anti-fibrotic functions of miR-184 were abolished due to TGF-β directly suppressing miR-184 levels in A549 cells. When A549 was stimulated by TGF-β combined with or without miR-31 inhibitor/miR-184 mimic, it was showed that depleted miR-31 and/or increased miR-184 significantly ameliorated TGF-β-induced viability of A549 cells, as well as inhibited the expression of profibrotic factors, MMP7 and RUNX2. SIGNIFICANCE Inhibiting miR-31 and/or promoting miR-184 protect against TGF-β-induced fibrogenesis by respectively repressing the TGF-β-SMAD2 and TGF-β-PI3K-AKT signaling pathways, implying that miR-31/184 are potential targets and suggesting a new management strategy for IPF.
Collapse
|
16
|
He TG, Xiao ZY, Xing YQ, Yang HJ, Qiu H, Chen JB. Tumor Suppressor miR-184 Enhances Chemosensitivity by Directly Inhibiting SLC7A5 in Retinoblastoma. Front Oncol 2019; 9:1163. [PMID: 31803607 PMCID: PMC6876683 DOI: 10.3389/fonc.2019.01163] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
The expression patterns and functional roles of miRNAs in retinoblastoma (RB) are poorly understood, especially those involved in chemoresistance. Here, we validated the expression pattern of 20 potential RB-suppressive miRNAs and confirmed that miR-184 is the most significantly decreased miRNA in human RB tissues, as well as chemoresistant cell line. Bioinformatic and molecular analyses revealed that SLC7A5 has three binding sites of miR-184 and significantly increased in RB tissues. miR-184 negatively correlated with SLC7A5 expression in RB tissues and mainly target position 2494-2513 of the SLC7A5 3'UTR to inhibit its expression. Furthermore, enforced expression of miR-184 reversed the oncogenic roles of SLC7A5 on proliferation, migration, and invasion of RB cells. In addition, miR-184 also enhances chemosensitivity of RB cells via inducing apoptosis and G2/M cell cycle arrest. Molecular studies revealed that miR-184-decreased phosphorylation status of known DNA damage repair sensors of the ATR/ATM pathways and induced persistent formation of γH2AX foci depend on targeting SLC7A5, leading to persistent DNA damage. Thus, targeting the miR-184/SLC7A5 pathway will provide new opportunities for drug development to reverse chemotherapeutic resistance in RB.
Collapse
Affiliation(s)
- Tian-Geng He
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zi-Yun Xiao
- Department of Funds Disease, Enshi Huiyi Ophthalmology Hospital, Enshi, China.,Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi-Qiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua-Jing Yang
- Department of Ophthalmology, Tongji Medial College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Qiu
- Department of Oncology, Tongji Medial College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Bin Chen
- Department of Ophthalmology, Tongji Medial College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Abolghasemi M, Tehrani SS, Yousefi T, Karimian A, Mahmoodpoor A, Ghamari A, Jadidi-Niaragh F, Yousefi M, Kafil HS, Bastami M, Edalati M, Eyvazi S, Naghizadeh M, Targhazeh N, Yousefi B, Safa A, Majidinia M, Rameshknia V. MicroRNAs in breast cancer: Roles, functions, and mechanism of actions. J Cell Physiol 2019; 235:5008-5029. [PMID: 31724738 DOI: 10.1002/jcp.29396] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022]
Abstract
Breast cancer is one of the most lethal malignancies in women in the world. Various factors are involved in the development and promotion of the malignancy; most of them involve changes in the expression of certain genes, such as microRNAs (miRNAs). MiRNAs can regulate signaling pathways negatively or positively, thereby affecting tumorigenesis and various aspects of cancer progression, particularly breast cancer. Besides, accumulating data demonstrated that miRNAs are a novel tool for prognosis and diagnosis of breast cancer patients. Herein, we will review the roles of these RNA molecules in several important signaling pathways, such as transforming growth factor, Wnt, Notch, nuclear factor-κ B, phosphoinositide-3-kinase/Akt, and extracellular-signal-regulated kinase/mitogen activated protein kinase signaling pathways in breast cancer.
Collapse
Affiliation(s)
- Maryam Abolghasemi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Sadra Samavarchi Tehrani
- Departmant of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ansar Karimian
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Iran.,Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Ata Mahmoodpoor
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Ghamari
- Anesthesiology Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Department of Laboratory Sciences, Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Naghizadeh
- Departmant of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Babol University Of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Rameshknia
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
18
|
He Y, Liu C, Song P, Pang Z, Mo Z, Huang C, Yan T, Sun M, Fa X. Investigation of miRNA- and lncRNA-mediated competing endogenous RNA network in cholangiocarcinoma. Oncol Lett 2019; 18:5283-5293. [PMID: 31612038 PMCID: PMC6781644 DOI: 10.3892/ol.2019.10852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/08/2019] [Indexed: 12/17/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a biliary malignancy which is prone to lymphatic metastasis and has a high mortality rate. This disease lacks effective therapeutic targets and prognostic molecular biomarkers. The aim of the current study was to investigate differentially expressed genes and elucidate their association with CCA and the underlying mechanisms of action. mRNAs, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) obtained from 36 CCA samples and nine normal samples from The Cancer Genome Atlas were integrated. Subsequently, 1,095 differentially expressed (DE) mRNAs and 75 DE miRNAs were identified using a threshold of |log2 fold change|>2 and an adjusted P<0.01. Weighted gene co-expression network analysis was used to identify the DEmRNAs that could be key target genes in CCA. A total of 12 hub DEmRNAs were identified as targetable genes. Furthermore, the hub DEmRNAs-DElncRNAs pairs were identified using the miRTarBase and miRcode databases. Cytoscape software was used to construct and visualize the protein-protein interactions and the competing endogenous RNA network. Survival time analysis and correlation analysis were used to further evaluate the hub genes. The results obtained in the current study suggested that spalt like transcription factor 3 and OPCML intronic transcript 1 may serve an important role in the development and progression of CCA.
Collapse
Affiliation(s)
- Yanxin He
- Department of Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Chao Liu
- Department of Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Pan Song
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Zhigang Pang
- Department of Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Zhuomao Mo
- College of Traditional Chinese Medicine of Jinan University, Institute of Integrated Traditional Chinese and Western Medicine of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Chuiguo Huang
- Department of Urology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Tingting Yan
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, P.R. China
| | - Meng Sun
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Xianen Fa
- Department of Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| |
Collapse
|
19
|
Salama AAK, Duque M, Wang L, Shahzad K, Olivera M, Loor JJ. Enhanced supply of methionine or arginine alters mechanistic target of rapamycin signaling proteins, messenger RNA, and microRNA abundance in heat-stressed bovine mammary epithelial cells in vitro. J Dairy Sci 2019; 102:2469-2480. [PMID: 30639019 DOI: 10.3168/jds.2018-15219] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
Heat stress (HS) causes reductions in milk production, but it is unclear whether this effect is due to reduced number or functional capacity (or both) of mammary cells. Methionine supplementation improves milk protein, whereas Arg is taken up in excess by mammary cells to produce energy and nonessential AA that can be incorporated into milk protein. To evaluate molecular mechanisms by which mammary functional capacity is affected by HS and Met or Arg, mammary alveolar (MAC-T) cells were incubated at thermal-neutral (37°C) or HS (42°C) temperatures. Treatments were optimal AA profiles (control; Lys:Met = 2.9:1.0; Lys:Arg = 2.1:1.0), control plus Met (Lys:Met = 2.5:1.0), or control plus Arg (Lys:Arg = 1.0:1.0). After incubation for 6 h, cells were harvested and RNA and protein were extracted for quantitative real-time PCR and Western blotting. Protein abundance of mechanistic target of rapamycin (MTOR), eukaryotic initiation factor 2a, serine-threonine protein kinase (AKT), 4E binding protein 1 (EIF4EBP1), and phosphorylated EIF4EBP1 was lower during HS. The lower phosphorylated EIF4EBP1 with HS would diminish translation initiation and reduce protein synthesis. Both Met and Arg had no effect on MTOR proteins, but the phosphorylated EIF4EBP1 decreased by AA, especially Arg. Additionally, Met but not Arg decreased the abundance of phosphorylated eukaryotic elongation factor 2, which could be positive for protein synthesis. Although HS upregulated the heat shock protein HSPA1A, the apoptotic gene BAX, and the translation inhibitor EIF4EBP1, the mRNA abundance of PPARG, FASN, ACACA (lipogenesis), and BCL2L1 (antiapoptotic) decreased. Greater supply of Met or Arg reversed most of the effects of HS occurring at the mRNA level and upregulated the abundance of HSPA1A. In addition, compared with the control, supply of Met or Arg upregulated genes related to transcription and translation (MAPK1, MTOR, SREBF1, RPS6KB1, JAK2), insulin signaling (AKT2, IRS1), AA transport (SLC1A5, SLC7A1), and cell proliferation (MKI67). Upregulation of microRNA related to cell growth arrest and apoptosis (miR-34a, miR-92a, miR-99, and miR-184) and oxidative stress (miR-141 and miR-200a) coupled with downregulation of fat synthesis-related microRNA (miR-27ab and miR-221) were detected with HS. Results suggest that HS has a direct negative effect on synthesis of protein and fat, mediated in part by coordinated changes in mRNA, microRNA, and protein abundance of key networks. The positive responses with Met and Arg raise the possibility that supplementation with these AA during HS might have a positive effect on mammary metabolism.
Collapse
Affiliation(s)
- A A K Salama
- Group of Research in Ruminants (G2R), Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - M Duque
- Grupo de Investigación Biogénesis, Facultad de Ciencias Agrarias, Universidad de Antioquia, Carrera 75 # 65-87, Medellín, Colombia
| | - L Wang
- Department of Animal Science, Southwest University, Rongchang, Chongqing 402460, China
| | - K Shahzad
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - M Olivera
- Grupo de Investigación Biogénesis, Facultad de Ciencias Agrarias, Universidad de Antioquia, Carrera 75 # 65-87, Medellín, Colombia
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
20
|
Jiao B, Zhang X, Wang S, Wang L, Luo Z, Zhao H, Khatib H, Wang X. MicroRNA-221 regulates proliferation of bovine mammary gland epithelial cells by targeting the STAT5a and IRS1 genes. J Dairy Sci 2019; 102:426-435. [DOI: 10.3168/jds.2018-15108] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/24/2018] [Indexed: 01/29/2023]
|
21
|
Role of mTORC1 and mTORC2 in Breast Cancer: Therapeutic Targeting of mTOR and Its Partners to Overcome Metastasis and Drug Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:283-292. [DOI: 10.1007/978-3-030-20301-6_15] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
22
|
Patel Y, Soni M, Awgulewitsch A, Kern MJ, Liu S, Shah N, Singh UP, Chen H. Overexpression of miR-489 derails mammary hierarchy structure and inhibits HER2/neu-induced tumorigenesis. Oncogene 2019; 38:445-453. [PMID: 30104710 PMCID: PMC6338493 DOI: 10.1038/s41388-018-0439-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/30/2018] [Accepted: 06/29/2018] [Indexed: 01/23/2023]
Abstract
Although it has been demonstrated that transformed progenitor cell population can contribute to tumor initiation, factors contributing to this malignant transformation are poorly known. Using in vitro and xenograft-based models, previous studies demonstrated that miR-489 acts as a tumor suppressor miRNA by targeting various oncogenic pathways. It has been demonstrated that miR-489 directly targets HER2 and inhibits the HER2 signaling pathway; however, its role in mammary gland development and HER2-induced tumor initiation hasn't been studied. To dissect the role of miR-489, we sorted different populations of mammary epithelial cells and determined that miR-489 was highly expressed in mammary stem cells. MMTV-miR-489 mice that overexpressed miR-489 in mammary epithelial cells were developed and these mice exhibited an inhibition of mammary gland development in early ages with a specific impact on highly proliferative cells. Double transgenic MMTV-Her2-miR489 mice were then generated to observe how miR-489 overexpression affects HER2-induced tumorigenesis. miR-489 overexpression delayed HER2-induced tumor initiation significantly. Moreover, miR-489 overexpression inhibited tumor growth and lung metastasis. miR-489 overexpression reduced mammary progenitor cell population significantly in preneoplastic mammary glands of MMTV-Her2 mice which showed a putative transformed population in HER2-induced tumorigenesis. The miR-489 overexpression reduced CD49fhiCD61hi populations in tumors that have stem-like properties, and miR-489 overexpression altered the HER2 signaling pathway in mammary tumors. Altogether, these data indicate that the inhibition of HER2-induced tumorigenesis by miR-489 overexpression was due to altering progenitor cell populations while decreasing tumor growth and metastasis via influencing tumor promoting genes DEK and SHP2.
Collapse
MESH Headings
- Animals
- Antigens, CD/analysis
- Cell Differentiation
- Cell Transformation, Neoplastic/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Epithelial Cells/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Lung Neoplasms/secondary
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/metabolism
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Transgenic
- MicroRNAs/biosynthesis
- MicroRNAs/genetics
- MicroRNAs/physiology
- Neoplastic Stem Cells/cytology
- Neoplastic Stem Cells/metabolism
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Poly-ADP-Ribose Binding Proteins/genetics
- Poly-ADP-Ribose Binding Proteins/metabolism
- Pregnancy
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- RNA, Neoplasm/physiology
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/physiology
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/metabolism
- Stem Cells/metabolism
- Tumor Stem Cell Assay
- Up-Regulation
Collapse
Affiliation(s)
- Y Patel
- Department of Biological Science, University of South Carolina, Columbia, SC, 29208, USA
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, 29208, USA
| | - M Soni
- Department of Biological Science, University of South Carolina, Columbia, SC, 29208, USA
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, 29208, USA
| | - A Awgulewitsch
- Department of Medicine and Department of Regenerative Medicine and Cell Biology, Transgenic and Genome Editing Core, Medical University of South Carolina (MUSC), Charleston, SC, 29425, USA
| | - M J Kern
- Department of Regenerative Medicine and Cell Biology, Director, Gene Function Core, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - S Liu
- Department of Biological Science, University of South Carolina, Columbia, SC, 29208, USA
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, 29208, USA
| | - N Shah
- Department of Biological Science, University of South Carolina, Columbia, SC, 29208, USA
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, 29208, USA
| | - U P Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, 29208, USA
| | - H Chen
- Department of Biological Science, University of South Carolina, Columbia, SC, 29208, USA.
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
23
|
Agostini D, Natalucci V, Baldelli G, De Santi M, Donati Zeppa S, Vallorani L, Annibalini G, Lucertini F, Federici A, Izzo R, Stocchi V, Barbieri E. New Insights into the Role of Exercise in Inhibiting mTOR Signaling in Triple-Negative Breast Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5896786. [PMID: 30363988 PMCID: PMC6186337 DOI: 10.1155/2018/5896786] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/03/2018] [Accepted: 08/12/2018] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) does not express estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 and is characterized by its aggressive nature, lack of targets for targeted therapies, and early peak of recurrence. Due to these specific characteristics, chemotherapy does not usually yield substantial improvements and new target therapies and alternative strategies are needed. The beneficial responses of TNBC survivors to regular exercise, including a reduction in the rate of tumor growth, are becoming increasingly apparent. Physiological adaptations to exercise occur in skeletal muscle but have an impact on the entire body through systemic control of energy homeostasis and metabolism, which in turn influence the TNBC tumor microenvironment. Gaining insights into the causal mechanisms of the therapeutic cancer control properties of regular exercise is important to improve the prescription and implementation of exercise and training in TNBC survivors. Here, we provide new evidence of the effects of exercise on TNBC prevention, control, and outcomes, based on the inhibition of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (PKB also known as Akt)/mammalian target of rapamycin (mTOR) (PI3K-Akt-mTOR) signaling. These findings have wide-ranging clinical implications for cancer treatment, including recurrence and case management.
Collapse
Affiliation(s)
- Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Valentina Natalucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giulia Baldelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mauro De Santi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Luciana Vallorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Francesco Lucertini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Ario Federici
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Riccardo Izzo
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Vilberto Stocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Elena Barbieri
- Interuniversity Institute of Myology (IIM), University of Urbino Carlo Bo, 61029 Urbino, PU, Italy
| |
Collapse
|
24
|
Identification of micro-RNA expression profile related to recurrence in women with ESMO low-risk endometrial cancer. J Transl Med 2018; 16:131. [PMID: 29783999 PMCID: PMC5963057 DOI: 10.1186/s12967-018-1515-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/12/2018] [Indexed: 12/15/2022] Open
Abstract
Background Actual European pathological classification of early-stage endometrial cancer (EC) may show insufficient accuracy to precisely stratify recurrence risk, leading to potential over or under treatment. Micro-RNAs are post-transcriptional regulators involved in carcinogenic mechanisms, with some micro-RNA patterns of expression associated with EC characteristics and prognosis. We previously demonstrated that downregulation of micro-RNA-184 was associated with lymph node involvement in low-risk EC (LREC). The aim of this study was to evaluate whether micro-RNA signature in tumor tissues from LREC women can be correlated with the occurrence of recurrences. Methods MicroRNA expression was assessed by chip analysis and qRT-PCR in 7 formalin-fixed paraffin-embedded (FFPE) LREC primary tumors from women whose follow up showed recurrences (R+) and in 14 FFPE LREC primary tumors from women whose follow up did not show any recurrence (R−), matched for grade and age. Various statistical analyses, including enrichment analysis and a minimum p-value approach, were performed. Results The expression levels of micro-RNAs-184, -497-5p, and -196b-3p were significantly lower in R+ compared to R− women. Women with a micro-RNA-184 fold change < 0.083 were more likely to show recurrence (n = 6; 66%) compared to those with a micro-RNA-184 fold change > 0.083 (n = 1; 8%), p = 0.016. Women with a micro-RNA-196 fold change < 0.56 were more likely to show recurrence (n = 5; 100%) compared to those with a micro-RNA-196 fold change > 0.56 (n = 2; 13%), p = 0.001. Conclusions These findings confirm the great interest of micro-RNA-184 as a prognostic tool to improve the management of LREC women.
Collapse
|
25
|
Wang Y, Zhao X, Li G, Zheng J, Qiu W. Retracted
: MicroRNA‐184 inhibits proliferation and promotes apoptosis of human colon cancer SW480 and HCT116 cells by downregulating C‐MYC and BCL‐2. J Cell Biochem 2017; 119:1702-1715. [DOI: 10.1002/jcb.26330] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/04/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Yong‐Bing Wang
- Department of General SurgeryShanghai Pudong New Area People's HospitalShanghaiChina
| | - Xiao‐Hui Zhao
- Department of NeurologyShanghai Pudong New Area People's HospitalShanghaiChina
| | - Gang Li
- Department of General SurgeryShanghai Pudong New Area People's HospitalShanghaiChina
| | - Jun‐Hua Zheng
- Department of General SurgeryShanghai Pudong New Area People's HospitalShanghaiChina
| | - Wei Qiu
- Department of ProctologyShanghai Pudong New Area People's HospitalShanghaiChina
| |
Collapse
|
26
|
Cheng WT, Rosario R, Muthukaruppan A, Wilson MK, Payne K, Fong PC, Shelling AN, Blenkiron C. MicroRNA profiling of ovarian granulosa cell tumours reveals novel diagnostic and prognostic markers. Clin Epigenetics 2017; 9:72. [PMID: 28736583 PMCID: PMC5521084 DOI: 10.1186/s13148-017-0372-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/17/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The aim of this study was to explore the clinical utility of microRNAs (miRNAs) as improved markers of ovarian granulosa cell tumours (GCTs) for cancer diagnosis and prognosis prediction. Current histopathological and genetic markers, such as the presence of a FOXL2 gene mutation to distinguish between the two major subtypes are not wholly accurate and as such novel biomarkers are warranted. METHODS The miRNA expression profiles of five formalin-fixed, paraffin-embedded (FFPE) adult-GCTs and five juvenile-GCTs were assessed using Affymetrix miRNA 3.0 Arrays and compared for differential expression. Ten miRNAs were assessed in an additional 33 FFPE tumours and four normal granulosa cell samples by quantitative RT-PCR, and their expression correlated to clinical information. RESULTS MicroRNA array found 37 miRNAs as differentially expressed between the two GCT subtypes (p < 0.05, fold change ≥2 and among these, miRs -138-5p, -184, -204-5p, -29c-3p, -328-3p and -501-3p were validated by RT-qPCR as differentially expressed between the two GCT subtypes (p < 0.05). In addition, the expression of miR-184 was predictive of tumour recurrence in adult-GCTs, specifically for patients diagnosed with stage I and II and stage I only disease (p < 0.001 and p < 0.05, respectively). CONCLUSIONS This study is the first to report on global miRNA expression profiles of human ovarian GCTs using FFPE tumour samples. We have validated six miRNAs as novel markers for subtype classification in GCTs with low levels of miR-138-5p correlating with early tumour stage. Low miR-184 abundance was correlated with tumour recurrence in early stage adult-GCT patients as a candidate predictive biomarker. Further studies are now needed to confirm the clinical utility of these miRNAs as diagnostic and recurrence markers, and understand their possible roles in the pathogenesis of GCTs.
Collapse
Affiliation(s)
- Wei-Tzu Cheng
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Roseanne Rosario
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
- Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Anita Muthukaruppan
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Michelle K Wilson
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
- Department of Medical Oncology, Auckland City Hospital, Auckland, New Zealand
| | - Kathryn Payne
- Department of Pathology, Auckland City Hospital, Auckland, New Zealand
| | - Peter C. Fong
- Department of Medical Oncology, Auckland City Hospital, Auckland, New Zealand
| | - Andrew N. Shelling
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- Department of Molecular Medicine and Pathology, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142 New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
Abstract
Study on the role of microRNAs (miRs) as regulators of gene expression through posttranscriptional gene silencing is currently gaining much interest,due to their wide involvement in different physiological processes. Understanding mammary gland development, lactation, and neoplasia in relation to miRs is essential. miR expression profiling of the mammary gland from different species in various developmental stages shows their role as critical regulators of development. miRs such as miR-126, miR-150, and miR-145 have been shown to be involved in lipid metabolism during lactation. In addition, lactogenic hormones influence miR expression as evidenced by overexpression of miR-148a in cow mammary epithelial cells, leading to enhanced lactation. Similarly, the miR-29 family modulates lactation-related gene expression by regulating DNA methylation of their promoters. Besides their role in development, lactation and involution, miRs are responsible for breast cancer development. Perturbed estrogen (E2) signaling is one of the major causes of breast cancer. Increased E2 levels cause altered expression of ERα, and ERα-miR cross-talk promotes tumour progression. miRs, such as miR-206, miR-34a, miR-17-5p, and miR-125 a/b are found to be tumour suppressors; whereas miR-21, miR-10B, and miR-155 are oncogenes. Oncogenic miRs like miR-21, miR-221, and miR-210 are overexpressed in triple negative breast cancer cases which can be diagnostic biomarker for this subtype of cancer. This review focuses on the recent findings concerning the role of miRs in developmental stages of the mammary gland (mainly lactation and involution stages) and their involvement in breast cancer progression. Further studies in this area will help us to understand the molecular details of mammary gland biology, as well as miRs that could be therapeutic targets of breast cancer.
Collapse
Affiliation(s)
- Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab, 144411, India
| |
Collapse
|
28
|
Exosomal microRNAs in giant panda (Ailuropoda melanoleuca) breast milk: potential maternal regulators for the development of newborn cubs. Sci Rep 2017; 7:3507. [PMID: 28615713 PMCID: PMC5471263 DOI: 10.1038/s41598-017-03707-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/03/2017] [Indexed: 11/09/2022] Open
Abstract
The physiological role of miRNAs is widely understood to include fine-tuning the post-transcriptional regulation of a wide array of biological processes. Extensive studies have indicated that exosomal miRNAs in the bodily fluids of various organisms can be transferred between living cells for the delivery of gene silencing signals. Here, we illustrated the expression characteristics of exosomal miRNAs in giant panda breast milk during distinct lactation periods and highlighted the enrichment of immune- and development-related endogenous miRNAs in colostral and mature giant panda milk. These miRNAs are stable, even under certain harsh conditions, via the protection of extracellular vesicles. These findings indicate that breast milk may facilitate the dietary intake of maternal miRNAs by infants for the regulation of postnatal development. We also detected exogenous plant miRNAs from the primary food source of the giant panda (bamboo) in the exosomes of giant panda breast milk that were associated with regulatory roles in basic metabolism and neuron development. This result suggested that dietary plant miRNAs are absorbed by host cells and subsequently secreted into bodily fluids as potential cross-kingdom regulators. In conclusion, exosomal miRNAs in giant panda breast milk may be crucial maternal regulators for the development of intrinsic 'slink' newborn cubs.
Collapse
|
29
|
Fkih M'hamed I, Privat M, Trimeche M, Penault-Llorca F, Bignon YJ, Kenani A. miR-10b, miR-26a, miR-146a And miR-153 Expression in Triple Negative Vs Non Triple Negative Breast Cancer: Potential Biomarkers. Pathol Oncol Res 2017; 23:815-827. [PMID: 28101798 DOI: 10.1007/s12253-017-0188-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 01/02/2017] [Indexed: 12/31/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs composed of 18-25 nucleotides that can post-transcriptionally regulate gene expression and have key regulatory roles in cancer, acting as both oncogenes and tumor suppressors. About 1000 genes in humans encode miRNAs, which account for approximately 3% of the human genome, and up to 30% of human protein coding genes may be regulated by miRNAs. The objective of this article is to evaluate the expression profile of four miRNAs previously implicated in triple negative breast cancer: miR-10b, miR-26a, miR-146a and miR-153, and to determine their possible interaction in triple negative and non triple negative breast cancer based on clinical outcome and the expression of BRCA1. 24 triple-negative and 13 non triple negative breast cancer cases, were studied by q-RT-PCR and immunohistochemistry to determine the expression of the four studied miRNAs and the BRCA1 protein, respectively. We observed that the BRCA1 protein was absent in 62.5% of the triple negative cases. Besides, the miR-146a and miR-26a were over expressed in triple negative breast cancer. These two miRNAs, miR-10b and miR-153 were significantly associated to lymph node metastases occurrence in triple negative breast carcinoma. All the analyzed microRNAs were not associated with the expression of BRCA1 in our conditions. Our work provides evidence that miR-146a, miR-26a, miR-10b and miR-153 could be defined as biomarkers in triple negative breast cancer to predict lymph node metastases (LNM).
Collapse
Affiliation(s)
- Insaf Fkih M'hamed
- Departement of oncogenetics, Centre Jean Perrin, BP 392, 63011, Clermont-Ferrand, France.,EA4677 ERTICA, University of Auvergne, Clermont-Ferrand, France.,Laboratory of Biochemistry Research unit UR 12ES08 Cell Signaling and Disease, Faculty of Medicine of Monastir, University of Monastir, 5019, Monastir, Tunisia
| | - Maud Privat
- Departement of oncogenetics, Centre Jean Perrin, BP 392, 63011, Clermont-Ferrand, France.,EA4677 ERTICA, University of Auvergne, Clermont-Ferrand, France
| | - Mounir Trimeche
- Department of Pathology, Farhat Hached Hospital, 4000, Sousse, Tunisia
| | | | - Yves-Jean Bignon
- Departement of oncogenetics, Centre Jean Perrin, BP 392, 63011, Clermont-Ferrand, France.,EA4677 ERTICA, University of Auvergne, Clermont-Ferrand, France
| | - Abderraouf Kenani
- Laboratory of Biochemistry Research unit UR 12ES08 Cell Signaling and Disease, Faculty of Medicine of Monastir, University of Monastir, 5019, Monastir, Tunisia.
| |
Collapse
|
30
|
MiRNAs Predict the Prognosis of Patients with Triple Negative Breast Cancer: A Meta-Analysis. PLoS One 2017; 12:e0170088. [PMID: 28085956 PMCID: PMC5234799 DOI: 10.1371/journal.pone.0170088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/28/2016] [Indexed: 12/17/2022] Open
Abstract
PURPOSE miRNAs are stable and can be extracted from tissues, blood and other body fluid without degradation. miRNAs are abnormally expressed in the presence of a pathological status, including cancer. Therefore, miRNAs are ideal biomarkers for cancer diagnosis and prognosis. Patients with triple negative breast cancer (TNBC) suffer the worst prognosis, although great efforts have been made. Many studies have investigated the role of miRNAs in predicting the outcomes of TNBC patients for better adjustment of treatment. However, results were inconsistent. Thus, we performed a meta-analysis to summarize the published studies for conclusive results. METHODS Eligible studies from different database were retrieved from the online databases, and we used STSTA 12.0 to analysis the prognostic role of miRNAs in triple negative breast cancer. RESULTS Overall high miRNA expression indicated a worse survival with HR value of 1.78 (95% CI: 0.97-3.25). However, subtotal HRs of oncogenic miRNAs and tumor suppressive miRNAs were 2.73 (95% CI: 2.08-3.57; P<0.001) and 0.44 (95% CI: 0.21-0.90; P = 0.024), respectively, and no heterogeneity was observed within the subgroups. CONCLUSIONS The miRNAs showed a slightly stronger prognostic value for disease-free survival, relapse-free survival and distant metastasis-free survival compared to the overall survival of TNBC patients. Circulating miRNAs could serve as potential biomarkers for the prognosis of TNBC patients and need further investigation.
Collapse
|
31
|
Park JK, Peng H, Yang W, Katsnelson J, Volpert O, Lavker RM. miR-184 exhibits angiostatic properties via regulation of Akt and VEGF signaling pathways. FASEB J 2017; 31:256-265. [PMID: 27825105 PMCID: PMC5161520 DOI: 10.1096/fj.201600746r] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/22/2016] [Indexed: 11/11/2022]
Abstract
Corneal avascularity is critical for achieving transparency necessary for proper transmission of light to the lens and visual acuity. Although much is known about angiogenesis and angiostasis, the precise regulation of these processes in the cornea is unclear. MicroRNA (miR)-184, the most abundant corneal epithelial miRNA, has been suggested to function in corneal angiostasis by altering VEGF signaling; however, the mechanism(s) underlying this regulation have not been addressed. Using a combination of in vitro and in vivo assays to evaluate angiogenesis, we demonstrated that human limbal epithelial keratinocytes (HLEKs) engineered to overexpress miR-184 secreted lower amounts of angiogenic mitogens. Human dermal microvascular cells exposed to conditioned medium from miR-184-overexpressing HLEKs were less proliferative and failed to seal linear scratch wounds. The in vivo Matrigel plug assay showed that conditioned medium from miR-184-expressing HLEKs elicited a lesser degree of neovascularization compared with controls. We found that miR-184 directly targets and represses the proangiogenic factors, friend of Gata 2 (FOG2), platelet-derived growth factor (PDGF)-β, and phosphatidic acid phosphatase 2b (PPAP2B). FOG2 regulates VEGF expression, whereas PDGF-β and PPAP2B regulate Akt activity. By attenuating both VEGF and Akt signaling, miR-184 acts as a broad-spectrum negative regulator of corneal angiogenesis.-Park, J. K., Peng, H., Yang, W., Katsnelson, J., Volpert, O., Lavker, R. M. miR-184 exhibits angiostatic properties via regulation of Akt and VEGF signaling pathways.
Collapse
Affiliation(s)
- Jong Kook Park
- Department of Dermatology Northwestern University, Chicago, Illinois, USA
| | - Han Peng
- Department of Dermatology Northwestern University, Chicago, Illinois, USA
| | - Wending Yang
- Department of Dermatology Northwestern University, Chicago, Illinois, USA
| | - Julia Katsnelson
- Department of Dermatology, New York Metropolitan Hospital, New York, New York, USA; and
| | - Olga Volpert
- Department of Urology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Robert M Lavker
- Department of Dermatology Northwestern University, Chicago, Illinois, USA;
| |
Collapse
|
32
|
Anwar SL, Wulaningsih W, Watkins J. Profile of the breast cancer susceptibility marker rs4245739 identifies a role for miRNAs. Cancer Biol Med 2017; 14:387-395. [PMID: 29372105 PMCID: PMC5785168 DOI: 10.20892/j.issn.2095-3941.2017.0050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objective: To determine the influence of the single nucleotide polymorphism (SNP) rs4245739 on the binding and expression of microRNAs and subsequent MDM4 expression and the correlation of these factors with clinical determinants of ER-negative breast cancers.
Methods: FindTar and miRanda were used to detect the manner in which potential microRNAs are affected by the SNP rs4245739-flanking sequence. RNA sequencing data for ER-negative breast cancer from The Cancer Genome Atlas (TCGA) were used to compare the expression of miR-184, miR-191, miR-193a, miR-378, and MDM4 in different rs4245739 genotypes.
Results: Comparison of ER-negative cancer patients with and without the expression of miR-191 as well as profile microRNAs (miR-184, miR-191, miR-193a and miR-378 altogether) can differentiate the expression of MDM4 among different rs4245739 genotypes. Although simple genotyping alone did not reveal significant clinical relationships, the combination of genotyping and microRNA profiles was able to significantly differentiate individuals with larger tumor size and lower number of involved lymph nodes (P < 0.05) in the risk group (A allele).
Conclusions: We present two novel methods to analyze SNPs within 3′UTRs that use: (i) a single miRNA marker expression and (ii) an expression profile of miRNAs predicted to bind to the SNP region. We demonstrate that the application of these two methods, in particular the miRNA profile approach, permits detection of new molecular and clinical features related to the rs4245739 variant in ER-negative breast cancer.
Collapse
Affiliation(s)
- Sumadi Lukman Anwar
- PILAR Research Network, Cambridgeshire CB1 2JD, UK.,Division of Surgical Oncology, Department of Surgery, Faculty of Medicine Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Wahyu Wulaningsih
- PILAR Research Network, Cambridgeshire CB1 2JD, UK.,Division of Surgical Oncology, Department of Surgery, Faculty of Medicine Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.,Division of Hemato-Oncology, Department of Internal Medicine, Faculty of Medicine Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Johnathan Watkins
- PILAR Research Network, Cambridgeshire CB1 2JD, UK.,Division of Surgical Oncology, Department of Surgery, Faculty of Medicine Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
33
|
Peng F, Xiong L, Tang H, Peng C, Chen J. Regulation of epithelial-mesenchymal transition through microRNAs: clinical and biological significance of microRNAs in breast cancer. Tumour Biol 2016; 37:14463-14477. [DOI: 10.1007/s13277-016-5334-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 09/06/2016] [Indexed: 12/16/2022] Open
|
34
|
Zhao L, Feng X, Song X, Zhou H, Zhao Y, Cheng L, Jia L. miR-493-5p attenuates the invasiveness and tumorigenicity in human breast cancer by targeting FUT4. Oncol Rep 2016; 36:1007-15. [PMID: 27375041 DOI: 10.3892/or.2016.4882] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/15/2016] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is a leading cause of cancer-related mortality among women. Altered fucosylation was found to be closely associated with tumorigenesis and metastasis of breast cancer. MicroRNAs (miRNAs) are important regulators of cell proliferation and metastasis, and aberrant miRNA expression has been observed in breast cancer. The present study aimed to evaluate the level of fucosyltransferase IV (FUT4) and miR-493-5p in breast cancer and investigate their relationship. In the present study, we demonstrated the differential expressional profiles of FUT4 and miR‑493-5p in 29 clinical breast cancer tissues, matched adjacent tissue samples and two breast carcinoma cell lines (MCF-7 and MDA-MB-231). Briefly, altered expression levels of FUT4 modified the invasive activities and tumorigenicity of the MCF-7 and MDA-MB-231 cells. Further study demonstrated that miR-493-5p plays a role as a suppressor in breast cancer cell invasion and tumorigenicity. Moreover, the expression levels of miR-493-5p were inversely proportional to those of FUT4 both at the mRNA and protein levels. Luciferase reporter assays confirmed that miR‑493-5p bound to the 3'-untranslated (3'-UTR) region of FUT4, and inhibited the expression of FUT4 in breast cancer cells. Taken together, our data suggest that FUT4 may have a potential role in the treatment of breast cancer, as well as miR-493-5p is a novel regulator of invasiveness and tumorigenicity of breast cancer cells through targeting FUT4. The miR-493-5p/FUT4 pathway has therapeutic potential in breast cancer.
Collapse
Affiliation(s)
- Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xiaobin Feng
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xiaobo Song
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Huimin Zhou
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yongfu Zhao
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Lei Cheng
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
35
|
Lin BC, Huang D, Yu CQ, Mou Y, Liu YH, Zhang DW, Shi FJ. MicroRNA-184 Modulates Doxorubicin Resistance in Osteosarcoma Cells by Targeting BCL2L1. Med Sci Monit 2016; 22:1761-5. [PMID: 27222034 PMCID: PMC4917317 DOI: 10.12659/msm.896451] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Early metastasis of osteosarcoma (OS) is highly lethal and responds poorly to drug and radiation therapies. MicroRNAs (miRNAs) are a class of small noncoding RNAs that modulate gene expression at the post-transcriptional level. However, the detailed functions of specific miRNAs are not entirely understood. The aim of the present study was to investigate the role of miR-184 as a mediator of drug resistance in human osteosarcoma. Material/Methods qRT-PCR was used to analyze the expression level of miR-184 in OS cell line U-2 OS and MG-63 treated with doxorubicin. MiR-184 agomir or miR-184 antagomir was transferred into cells to regulated miR-184. The target of miR-184 was predicted by TargetScan and confirmed by luciferase reporter assay. Bcl-2-like protein 1 (BCL2L1) expression was detected by Western blot. Cell apoptosis was determined by Annexin V staining and analysis by flow cytometry. Results Doxorubicin induced time-dependent expression of miR-184 in OS cell line U-2 OS and MG-63. Luciferase reporter assay identified BCL2L1 as the direct target gene of miR-184. Furthermore, doxorubicin reduced BCL2L1 expression, which was reversed by miR-184 overexpression and further decreased by miR-184 inhibition in OS cells. In addition, miR-184 agomir reduced doxorubicin-induced cell apoptosis, whereas miR-184 antagomir enhanced apoptosis in OS cells, suggesting that up-regulation of miR-184 contributes to chemoresistance of the OS cell line. Conclusions Our data show that miR-184 was up-regulated in OS patients treated with doxorubicin therapy and leads to poor response to drug therapy by targeting BCL2L1.
Collapse
Affiliation(s)
- Bo-Chuan Lin
- Department of Traumatology and Microsurgery, Second People's Hospital of Guangdong Province, The Third Clinical College, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Dong Huang
- Department of Traumatology and Microsurgery, Second People's Hospital of Guangdong Province, The Third Clinical College, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Chao-Qun Yu
- Department of Traumatology and Microsurgery, Second People's Hospital of Guangdong Province, The Third Clinical College, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yong Mou
- Department of Traumatology and Microsurgery, Second People's Hospital of Guangdong Province, The Third Clinical College, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yuan-Hang Liu
- Department of Traumatology and Microsurgery,, Second People's Hospital of Guangdong Province, The Third Clinical College, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Da-Wei Zhang
- Department of Traumatology and Microsurgery, Second People's Hospital of Guangdong Province, The Third Clinical College, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Feng-Jun Shi
- Department of Orthopedics, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China (mainland)
| |
Collapse
|
36
|
Lv ZD, Kong B, Liu XP, Jin LY, Dong Q, Li FN, Wang HB. miR-655 suppresses epithelial-to-mesenchymal transition by targeting Prrx1 in triple-negative breast cancer. J Cell Mol Med 2016; 20:864-73. [PMID: 26820102 PMCID: PMC4831358 DOI: 10.1111/jcmm.12770] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/28/2015] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype that lacks effective targeted therapies. The epithelial-to-mesenchymal transition (EMT) is a key contributor in the metastatic process. In this study, we found that miR-655 was down-regulated in TNBC, and its expression levels were associated with molecular-based classification and lymph node metastasis in breast cancer. These findings led us to hypothesize that miR-655 overexpression may inhibit EMT and its associated traits of TNBC. Ectopic expression of miR-655 not only induced the up-regulation of cytokeratin and decreased vimentin expression but also suppressed migration and invasion of mesenchymal-like cancer cells accompanied by a morphological shift towards the epithelial phenotype. In addition, we found that miR-655 was negatively correlated with Prrx1 in cell lines and clinical samples. Overexpression of miR-655 significantly suppressed Prrx1, as demonstrated by Prrx1 3'-untranslated region luciferase report assay. Our study demonstrated that miR-655 inhibits the acquisition of the EMT phenotype in TNBC by down-regulating Prrx1, thereby inhibiting cell migration and invasion during cancer progression.
Collapse
MESH Headings
- 3' Untranslated Regions
- Adult
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Cell Line, Tumor
- Cell Movement
- Epithelial-Mesenchymal Transition/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Keratins/genetics
- Keratins/metabolism
- Luciferases/genetics
- Luciferases/metabolism
- Lymphatic Metastasis
- Mice
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Neoplasm Invasiveness
- Protein Binding
- Signal Transduction
- Vimentin/genetics
- Vimentin/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Zhi-Dong Lv
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Kong
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiang-Ping Liu
- Central Laboratory of Molecular Biology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li-Ying Jin
- Cerebrovascular Disease Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Dong
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fu-Nian Li
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai-Bo Wang
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
37
|
Identification of microRNA expression profile related to lymph node status in women with early-stage grade 1-2 endometrial cancer. Mod Pathol 2016; 29:391-401. [PMID: 26847173 DOI: 10.1038/modpathol.2016.30] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/05/2015] [Accepted: 12/21/2015] [Indexed: 01/02/2023]
Abstract
Conventional methods used for histologic classification and grading of endometrial cancer (EC) are not sufficient to predict lymph node metastases. microRNA signatures have recently been related to EC pathologic characteristics or prognosis. The aim of this study was to evaluate whether microRNA profiles of grade 1-2 endometrioid adenocarcinomas can be related to nodal status and used as a tool to adapt surgical staging in early-stage EC. microRNA expression was assessed in nine formalin-fixed paraffin-embedded (FFPE) EC primary tumors with positive lymph node and in 27 FFPE EC primary tumors with negative lymph node, matched for grade, stage, and lymphovascular space involvement status. A microarray analysis showed that there was more than a twofold significant difference in the expression of 12 microRNAs between the two groups. A quantitative reverse transcriptase-PCR assay was used to confirm these results: the expression levels of five microRNAs (microRNA-34c-5p, -375, -184, -34c-3p, and -34b-5p) were significantly lower in the EC primary tumor with positive lymph node compared with those with negative lymph node. A minimal P-value approach revealed that women with a microRNA-375-fold change <0.30 were more likely to have positive lymph node (n=8; 53.3%) compared with those with a microRNA-375-fold change >0.30 (n=1; 4.8%), P=0.001. Furthermore, women with a microRNA 184-fold change <0.30 were more likely to have positive lymph node (n=6; 60.0%) compared with those with a microRNA 184-fold change >0.30 (n=3; 11.5%), P=0.006. This is the first study investigating the relative expression of mature microRNA genes in early-stage grade 1-2 EC primary tumors according to the nodal status. This microRNA expression profile provides a potential basis for further study of the microRNA function in EC and could be used as a diagnostic tool for nodal status.
Collapse
|
38
|
Li W, Wang P, Zhang Z, Wang W, Liu Y, Qi Q. MiR-184 Regulates Proliferation in Nucleus Pulposus Cells by Targeting GAS1. World Neurosurg 2016; 97:710-715.e1. [PMID: 26805687 DOI: 10.1016/j.wneu.2016.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The precise mechanism of nucleus pulposus proliferation in the degeneration of the intervertebral disk pathogenesis remains to be implicated. MicroRNAs (MiRNAs) are a class of 18-22 nucleotides, which are small, noncoding RNAs that inhibit protein translation by binding to the 3'-UTR of target gene. Recent studies have shown that miRNAs play a crucial role in various cell biologies such as cell proliferation, invasion, migration, and cell cycle. However, the role of miR-184 in nucleus pulposus proliferation is still unknown. METHOD qRT-PCR was performed to measure the expression of miR-184. CCK-8 assay, qRT-PCR, and Western blot were used to measure the functional role of miR-184 in nucleus pulposus (NP) cells. Western blot and Luciferase assays were done to find the miR-184 target gene. RESULT We demonstrated that expression of miR-184 was upregulated in degenerative NP tissues compared with that in the control NP tissues, and the expression of miR-184 was positively correlated with disk degeneration grade. We identified Growth Arrest Specific Gene 1 (GAS1) as a direct target gene of miR-184 in NP cells, and ectopic expression of miR-184 promoted NP cells proliferation. In addition, we found that GAS1 expression was downregulated in degenerative NP tissues compared with that in the control NP tissues and the GAS1 expression was inversely correlated with the grade of disk degeneration. Moreover, we demonstrated that miR-184 overexpression could induce AKT phosphorylation and ectopic expression of GAS1 decreased the miR-184 overexpressing NP cells proliferation. CONCLUSION These results demonstrated that miR-184 and the GAS1/Akt pathway may be a potential therapeutic target for intervertebral disc degeneration.
Collapse
Affiliation(s)
- Weiming Li
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Pei Wang
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Zheng Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Wantao Wang
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Quan Qi
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.
| |
Collapse
|
39
|
Zhang G, Liu Z, Xu H, Yang Q. miR-409-3p suppresses breast cancer cell growth and invasion by targeting Akt1. Biochem Biophys Res Commun 2015; 469:189-95. [PMID: 26631969 DOI: 10.1016/j.bbrc.2015.11.099] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 11/23/2015] [Indexed: 02/01/2023]
Abstract
Altered levels and functions of microRNAs (miRNAs) are correlated with carcinogenesis. While miR-409-3p has been shown to play important roles in several cancer types, its function in the context of breast cancer (BC) remains unknown. In this study, miR-409-3p was significantly downregulated in BC tissues and cell lines, compared with the corresponding control counterparts. Overexpression of miR-409-3p inhibited BC cell proliferation, migration and invasion in vitro and suppressed tumor growth in vivo. Notably, miR-409-3p induced downregulation of Akt1 protein through binding to its 3' untranslated region (UTR). Conversely, restoring Akt1 expression rescued the suppressive effects of miR-409-3p. Our data collectively indicate that miR-409-3p functions as a tumor suppressor in BC through downregulating Akt1, supporting the targeting of the novel miR-409-3p/Akt1 axis as a potentially effective therapeutic approach for BC.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan 250012, China; Department of Thyroid and Breast Surgery, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603, China
| | - Zengyan Liu
- Department of Hematology, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan 250012, China.
| |
Collapse
|
40
|
Li H, Xiang H, Ge W, Wang H, Wang T, Xiong M. Expression and functional perspectives of miR-184 in pancreatic ductal adenocarcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:12313-12318. [PMID: 26722418 PMCID: PMC4680363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/20/2015] [Indexed: 06/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignant tumors, with its 5-year survival rate lower than 5%. MicroRNAs (miR) have been known as important regulators for the tumorigenesis, progression, invasion and metastasis of various cancers. MiR-184 was found to be abnormally expressed in various cancers including glioma and oral carcinoma. The expression and functional role of miR-184 in PDAC, however, remains unclear. PDAC cell line PANC-1 was transfected with miR-184 inhibitor. Real-time PCR was used to detect the expression of miR-184 in untreated PANC-1, miR-184 inhibitor transfected PANC-1 and controlled normal pancreatic ductal epithelial cell line HPDE6c7. MTT assay was used to detect the effect of miR-184 on the proliferation of PANC-1 cells, while invasion assay and Western blotting were employed to describe the effect on cell invasion ability and expression of caspase-3, respectively. In PANC-1 cells, miR-184 was abundantly expressed. The transfection of inhibitor effectively suppressed the expression of miR-184, and further inhibited both cell proliferation and invasion abilities, in addition to the up-regulation of pro-apoptotic protein caspase 3 expression. The up-regulation of miR-184 in PDAC may facilitate the proliferation and invasion ability, and inhibit apoptosis of tumor cells, thus potentiating the occurrence and development of PDAC. MiR-184, therefore, is a potential molecular target for therapy.
Collapse
Affiliation(s)
- He Li
- Department of Emergency, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
| | - Heping Xiang
- Department of Emergency, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
| | - Weiwei Ge
- Department of Emergency, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
| | - Hengtong Wang
- Department of Emergency, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
| | - Tianpeng Wang
- Department of Emergency, The Second Affiliated Hospital of Anhui Medical UniversityHefei 230601, Anhui, China
| | - Maoming Xiong
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei 230022, Anhui, China
| |
Collapse
|
41
|
Identification of Recurrence-Related microRNAs from Bone Marrow in Hepatocellular Carcinoma Patients. J Clin Med 2015; 4:1600-11. [PMID: 26287250 PMCID: PMC4555079 DOI: 10.3390/jcm4081600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a poor-prognosis cancer due to its high rate of recurrence. microRNAs (miRNAs) are a class of small non-coding RNA molecules that affect crucial processes in cancer development. The objective of this study is to identify the role of miRNAs in patient bone marrow (BM) and explore the function of these molecules during HCC progression. We purified miRNAs from bone marrow cells of seven HCC patients, and divided them into three fractions by cell surface markers as follows: CD14(+) (macrophage), CD14(-)/CD45(+) (lymphocyte), and CD14(-)/CD45(-)/EpCAM(+) (epithelial cell). We employed microarray-based profiling to analyze miRNA expression in the bone marrow of patients with HCC. Differentially expressed miRNAs were significantly different between fractions from whole bone marrow, macrophages, and lymphocytes, and depended on stages in tumor progression. Differences in expression of miRNAs associated with cell proliferation also varied significantly between HCC patients with recurrence, multiple tumors, and advanced clinical stages. These results suggest that miRNA profiles in separated fractions of BM cells are associated with HCC progression.
Collapse
|