1
|
Rao R, Gulfishan M, Kim MS, Kashyap MK. Deciphering Cancer Complexity: Integrative Proteogenomics and Proteomics Approaches for Biomarker Discovery. Methods Mol Biol 2025; 2859:211-237. [PMID: 39436604 DOI: 10.1007/978-1-0716-4152-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Proteomics has revolutionized the field of cancer biology because the use of a large number of in vivo (SILAC), in vitro (iTRAQ, ICAT, TMT, stable-isotope Dimethyl, and 18O) labeling techniques or label-free methods (spectral counting or peak intensities) coupled with mass spectrometry enables us to profile and identify dysregulated proteins in diseases such as cancer. These proteome and genome studies have led to many challenges, such as the lack of consistency or correlation between copy numbers, RNA, and protein-level data. This review covers solely mass spectrometry-based approaches used for cancer biomarker discovery. It also touches on the emerging role of oncoproteogenomics or proteogenomics in cancer biomarker discovery and how this new area is attracting the integration of genomics and proteomics areas to address some of the important questions to help impinge on the biology and pathophysiology of different malignancies to make these mass spectrometry-based studies more realistic and relevant to clinical settings.
Collapse
Affiliation(s)
- Rashmi Rao
- School of Life and Allied Health Sciences, Glocal University, Saharanpur, UP, India
| | - Mohd Gulfishan
- School of Life and Allied Health Sciences, Glocal University, Saharanpur, UP, India
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu-42988, Republic of Korea
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute (ASCI), Amity Medical School (AMS), Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| |
Collapse
|
2
|
Zheng L, Li L, Wang B, Zhang S, Fu Z, Cheng A, Liang X. Annexin A1 affects tumor metastasis through epithelial-mesenchymal transition: a narrative review. Transl Cancer Res 2022; 11:4416-4433. [PMID: 36644197 PMCID: PMC9834584 DOI: 10.21037/tcr-22-1544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/12/2022] [Indexed: 12/28/2022]
Abstract
Background and Objective Annexin A1 (annexin I, ANXA1), the first discovered member of the annexin superfamily, plays important roles in tumor development, invasion, metastasis, apoptosis and drug resistance based on tumor type-specific patterns of expression. The acquisition of the epithelial-mesenchymal transition (EMT) characteristics is an essential mechanism of metastasis because they increase the mobility and invasiveness of cancer cells. Cancer invasion and metastasis remain major health problems worldwide. Elucidating the role and mechanism of ANXA1 in the occurrence of EMT will help advance the development of novel therapeutic strategies. Hence, this review aims to attract everyone's attention to the important role of ANXA1 in tumors and provide new ideas for clinical tumor treatment. Methods The PubMed database was mainly used to search for various English research papers and reviews related to the role of ANXA1 in tumors and EMT published from November 1994 to April 2022. The search terms used mainly include ANXA1, EMT, tumor, cancer, carcinoma, and mechanism. Key Content and Findings This article mainly provides a summary of the roles of ANXA1 and EMT in tumor metastasis as well as the various mechanisms via which ANXA1 facilitates the occurrence of EMT, thereby affecting tumor metastasis. In addition, the expression of ANXA1 in different metastatic tumor cell lines and its roles in tumorigenesis and development are also elaborated. This article has found many tumorous therapeutic targets related to ANXA1 and EMT, further confirming that ANXA1 has a huge potential for the diagnosis, treatment and prognosis of certain cancers. Conclusions Both the abnormal expression of ANXA1 and the occurrence of EMT are closely related to the invasion and metastasis of tumors, and more interestingly, ANXA1 can impact EMT directly or indirectly by mediating signaling pathways and adhesion among cells. We need more studies to elucidate the effects of ANXA1 on tumor invasion, migration and metastasis through EMT in vitro and in vivo clearly, and ultimately in patients to identify more therapeutic targets.
Collapse
Affiliation(s)
- Lulu Zheng
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Lanxin Li
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Baiqi Wang
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Shanshan Zhang
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhuqiong Fu
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Ailan Cheng
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoqiu Liang
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
Grewal T, Rentero C, Enrich C, Wahba M, Raabe CA, Rescher U. Annexin Animal Models-From Fundamental Principles to Translational Research. Int J Mol Sci 2021; 22:ijms22073439. [PMID: 33810523 PMCID: PMC8037771 DOI: 10.3390/ijms22073439] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Routine manipulation of the mouse genome has become a landmark in biomedical research. Traits that are only associated with advanced developmental stages can now be investigated within a living organism, and the in vivo analysis of corresponding phenotypes and functions advances the translation into the clinical setting. The annexins, a family of closely related calcium (Ca2+)- and lipid-binding proteins, are found at various intra- and extracellular locations, and interact with a broad range of membrane lipids and proteins. Their impacts on cellular functions has been extensively assessed in vitro, yet annexin-deficient mouse models generally develop normally and do not display obvious phenotypes. Only in recent years, studies examining genetically modified annexin mouse models which were exposed to stress conditions mimicking human disease often revealed striking phenotypes. This review is the first comprehensive overview of annexin-related research using animal models and their exciting future use for relevant issues in biology and experimental medicine.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence: (T.G.); (U.R.); Tel.: +61-(0)2-9351-8496 (T.G.); +49-(0)251-83-52121 (U.R.)
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.R.); (C.E.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.R.); (C.E.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Mohamed Wahba
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Carsten A. Raabe
- Research Group Regulatory Mechanisms of Inflammation, Center for Molecular Biology of Inflammation (ZMBE) and Cells in Motion Interfaculty Center (CiM), Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany;
| | - Ursula Rescher
- Research Group Regulatory Mechanisms of Inflammation, Center for Molecular Biology of Inflammation (ZMBE) and Cells in Motion Interfaculty Center (CiM), Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany;
- Correspondence: (T.G.); (U.R.); Tel.: +61-(0)2-9351-8496 (T.G.); +49-(0)251-83-52121 (U.R.)
| |
Collapse
|
4
|
Faca VM, Sanford EJ, Tieu J, Comstock W, Gupta S, Marshall S, Yu H, Smolka MB. Maximized quantitative phosphoproteomics allows high confidence dissection of the DNA damage signaling network. Sci Rep 2020; 10:18056. [PMID: 33093574 PMCID: PMC7582137 DOI: 10.1038/s41598-020-74939-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The maintenance of genomic stability relies on DNA damage sensor kinases that detect DNA lesions and phosphorylate an extensive network of substrates. The Mec1/ATR kinase is one of the primary sensor kinases responsible for orchestrating DNA damage responses. Despite the importance of Mec1/ATR, the current network of its identified substrates remains incomplete due, in part, to limitations in mass spectrometry-based quantitative phosphoproteomics. Phosphoproteomics suffers from lack of redundancy and statistical power for generating high confidence datasets, since information about phosphopeptide identity, site-localization, and quantitation must often be gleaned from a single peptide-spectrum match (PSM). Here we carefully analyzed the isotope label swapping strategy for phosphoproteomics, using data consistency among reciprocal labeling experiments as a central filtering rule for maximizing phosphopeptide identification and quantitation. We demonstrate that the approach allows drastic reduction of false positive quantitations and identifications even from phosphopeptides with a low number of spectral matches. Application of this approach identifies new Mec1/ATR-dependent signaling events, expanding our understanding of the DNA damage signaling network. Overall, the proposed quantitative phosphoproteomic approach should be generally applicable for investigating kinase signaling networks with high confidence and depth.
Collapse
Affiliation(s)
- Vitor Marcel Faca
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Biochemistry and Immunology and Cell-Based Therapy Center, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | - Ethan J Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jennifer Tieu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - William Comstock
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Shagun Gupta
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Shannon Marshall
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Haiyuan Yu
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
5
|
Babu N, Pinto SM, Biswas M, Subbannayya T, Rajappa M, Mohan SV, Advani J, Rajagopalan P, Sathe G, Syed N, Radhakrishna VD, Muthusamy O, Navani S, Kumar RV, Gopisetty G, Rajkumar T, Radhakrishnan P, Thiyagarajan S, Pandey A, Gowda H, Majumder P, Chatterjee A. Phosphoproteomic analysis identifies CLK1 as a novel therapeutic target in gastric cancer. Gastric Cancer 2020; 23:796-810. [PMID: 32333232 DOI: 10.1007/s10120-020-01062-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Phosphorylation is an important regulatory mechanism of protein activity in cells. Studies in various cancers have reported perturbations in kinases resulting in aberrant phosphorylation of oncoproteins and tumor suppressor proteins. METHODS In this study, we carried out quantitative phosphoproteomic analysis of gastric cancer tissues and corresponding xenograft samples. Using these data, we employed bioinformatics analysis to identify aberrant signaling pathways. We further performed molecular inhibition and silencing of the upstream regulatory kinase in gastric cancer cell lines and validated its effect on cellular phenotype. Through an ex vivo technology utilizing patient tumor and blood sample, we sought to understand the therapeutic potential of the kinase by recreating the tumor microenvironment. RESULTS Using mass spectrometry-based high-throughput analysis, we identified 1,344 phosphosites and 848 phosphoproteins, including differential phosphorylation of 177 proteins (fold change cut-off ≥ 1.5). Our data showed that a subset of differentially phosphorylated proteins belonged to splicing machinery. Pathway analysis highlighted Cdc2-like kinase (CLK1) as upstream kinase. Inhibition of CLK1 using TG003 and CLK1 siRNA resulted in a decreased cell viability, proliferation, invasion and migration as well as modulation in the phosphorylation of SRSF2. Ex vivo experiments which utilizes patient's own tumor and blood to recreate the tumor microenvironment validated the use of CLK1 as a potential target for gastric cancer treatment. CONCLUSIONS Our data indicates that CLK1 plays a crucial role in the regulation of splicing process in gastric cancer and that CLK1 can act as a novel therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Niraj Babu
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India.,Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sneha M Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India.,Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed To Be University), Mangalore, 575018, India
| | | | - Tejaswini Subbannayya
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India.,Mitra Biotech, Bangalore, 560100, India
| | | | - Sonali V Mohan
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India.,Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jayshree Advani
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India
| | - Pavithra Rajagopalan
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India
| | - Nazia Syed
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India
| | | | | | | | - Rekha V Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, 560029, India
| | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, 600020, India
| | - Thangarajan Rajkumar
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, 600020, India
| | | | | | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India.,Manipal Academy of Higher Education, Manipal, 576104, India.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India.,Manipal Academy of Higher Education, Manipal, 576104, India.,Cancer Precision Medicine, QIMR Berghofer, Royal Brisbane Hospital, Brisbane, QLD, 4029, Australia
| | | | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India. .,Manipal Academy of Higher Education, Manipal, 576104, India. .,Mitra Biotech, Bangalore, 560100, India.
| |
Collapse
|
6
|
Tang L, Chen Y, Chen H, Jiang P, Yan L, Mo D, Tang X, Yan F. DCST1-AS1 Promotes TGF-β-Induced Epithelial-Mesenchymal Transition and Enhances Chemoresistance in Triple-Negative Breast Cancer Cells via ANXA1. Front Oncol 2020; 10:280. [PMID: 32226772 PMCID: PMC7080863 DOI: 10.3389/fonc.2020.00280] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/18/2020] [Indexed: 12/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly metastatic breast cancer subtype, and the primary systemic treatment strategy involves conventional chemotherapy. DC-STAMP domain containing 1-antisense 1 (DCST1-AS1) is a long non-coding RNA that promotes TNBC migration and invasion. Studying the role of DCST1-AS1 in promoting epithelial–mesenchymal transition (EMT) and chemoresistance will provide a new strategy for TNBC therapy. In the present study, we found that DCST1-AS1 regulates the expression or secretion of EMT-related proteins E-cadherin, snail family zinc finger 1 (SNAI1), vimentin, matrix metallopeptidase 2 (MMP2), and matrix metallopeptidase 9 (MMP9). Interference with DCST1-AS1 impaired TGF-β-induced TNBC cell invasion and migration. DCST1-AS1 directly binds to ANXA1 in BT-549 cells and affects the expression of ANXA1. DCST1-AS1 enhances TGF-β/Smad signaling in BT-549 cells through ANXA1 to promote EMT. The combination of DCST1-AS1 and ANXA1 also contributes to enhancement of the resistance of BT-549 cells to doxorubicin and paclitaxel. In conclusion, DCST1-AS1 promotes TGF-β-induced EMT and enhances chemoresistance in TNBC cells through ANXA1, and therefore represents a potentially promising target for metastatic breast cancer therapy.
Collapse
Affiliation(s)
- Li Tang
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yuli Chen
- Department of Clinical Laboratory, Nanjing Qixia District Hospital, Nanjing, China
| | - Huanhuan Chen
- The Fourth Clinical Medical School, Nanjing Medical University, Nanjing, China
| | - Pan Jiang
- The Fourth Clinical Medical School, Nanjing Medical University, Nanjing, China
| | - Linping Yan
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Dongping Mo
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xun Tang
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Yan
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Annexin-A1 – A Blessing or a Curse in Cancer? Trends Mol Med 2019; 25:315-327. [DOI: 10.1016/j.molmed.2019.02.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/24/2022]
|
8
|
Feng J, Wang X, Li H, Wang L, Tang Z. Silencing of Annexin A1 suppressed the apoptosis and inflammatory response of preeclampsia rat trophoblasts. Int J Mol Med 2018; 42:3125-3134. [PMID: 30272262 PMCID: PMC6202081 DOI: 10.3892/ijmm.2018.3887] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/11/2018] [Indexed: 12/22/2022] Open
Abstract
Preeclampsia (PE) is a disorder that is characterized by pregnancy-induced hypertension. It has been reported that Annexin A1 (ANXA1) is highly expressed in the plasma of women diagnosed with PE. Therefore, the present study aimed to examine the effect of ANXA1 on PE rats. The PE animal model was constructed in rats using Nω-nitro-L-arginine methyl ester (L-NAME), and the blood pressure and urine protein levels of rats were detected. The pathological features of placental tissue, and the levels of inflammatory factors and ANXA1 were respectively measured by hematoxylin-eosin staining, enzyme-linked immunosorbent assay and immunohistochemical assay. The activity of trophoblasts obtained from PE placental tissue was measured using immunofluorescence staining, while cell apoptosis was assessed using flow cytometry. The levels of associated factors were determined by reverse transcription-quantitative polymerase chain reaction and western blot analysis. The results identified that systolic blood pressure, diastolic blood pressure, mean arterial pressure and urine protein levels were enhanced, and that the contents of ANXA1, tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-6 and IL-8 were increased in the L-NAME group. Transfection with small interfering RNA (siRNA)-ANXA1 markedly decreased the apoptosis and inflammatory response of trophoblasts. In addition, siRNA-ANXA1 upregulated the levels of B-cell lymphoma-2 (Bcl-2) and pro-caspase-3, and downregulated the levels of Bcl-2-associated X protein, cleaved-caspase-3, TNF-α, IL-1β, IL-6 and IL-8. Furthermore, siRNA-ANXA1 repressed the phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3); however, siRNA-ANXA1 did not alter the levels of JAK2 and STAT3. Therefore, silencing of ANXA1 suppressed the apoptosis and inflammatory response of PE rat trophoblasts, and downregulated JAK2/STAK3 pathway.
Collapse
Affiliation(s)
- Jing Feng
- Department of Gynaecology and Obstetrics, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Xinling Wang
- Department of Gynaecology and Obstetrics, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Hongyan Li
- Department of Gynaecology and Obstetrics, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Li Wang
- Department of Gynaecology and Obstetrics, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Zengjun Tang
- Department of Gynaecology and Obstetrics, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|