1
|
Brenne SS, Madsen PH, Pedersen IS, Hveem K, Skorpen F, Krarup HB, Xanthoulis A, Laugsand EA. The prognostic role of circulating tumour DNA detected prior to clinical diagnosis of colorectal cancer in the HUNT study. BMC Cancer 2024; 24:1251. [PMID: 39385172 PMCID: PMC11465842 DOI: 10.1186/s12885-024-13030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 10/04/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Today, the prognostic tools available at the time of diagnosis in colorectal cancer (CRC) are limited. Better prognostic tools are a prerequisite for personalised treatment. This study aimed to investigate whether circulating tumour DNA (ctDNA) markers found in plasma before clinical diagnosis of CRC could contribute to the prediction of poor prognosis. METHODS This observational cohort study included patients diagnosed with CRC stage I-III within 24 months following participation in the Trøndelag Health Study (n = 85). Known methylated ctDNA biomarkers of CRC were analysed by PCR in plasma. Outcomes were overall survival (OS), recurrence-free survival (RFS) and poor prognosis (PP). Candidate clinical and methylated ctDNA predictors of the outcomes were identified by Cox regression analyses. RESULTS Methylated GRIA4 (HR 1.96 (1.06-3.63)), RARB (HR 9.48 (3.00-30.00)), SLC8A1 (HR 1.97 (1.03-3.77)), VIM (HR 2.95 (1.22-7.14)) and WNT5A (HR 5.83 (2.33-14.56)) were independent predictors of OS, methylated RARB (HR 9.67 (2.54-36.81)), SDC2 (HR 3.38 (1.07-10.66)), SLC8A1 (HR 2.93 (1.01-8.51)) and WNT5A (HR 6.95 (1.81-26.68)) were independent predictors of RFS and methylated RARB (HR 6.11 (1.69-22.18)), SDC2 (HR 2.79 (1.20-6.49)) and WNT5A (HR 5.57 (3.04-15.26)) were independent predictors of PP (p < 0.05). CONCLUSIONS Prediagnostic ctDNA markers are promising contributors to predicting poor prognosis in CRC, potentially becoming one of the tools guiding more personalised treatment.
Collapse
Affiliation(s)
- Siv Stakset Brenne
- Department of Surgery, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway.
- Department of Public Health and Nursing, HUNT Research Centre, Norwegian University of Science and Technology, Levanger, Norway.
| | - Poul Henning Madsen
- Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark
- Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | - Inge Søkilde Pedersen
- Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark
- Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Kristian Hveem
- Department of Public Health and Nursing, HUNT Research Centre, Norwegian University of Science and Technology, Levanger, Norway
| | - Frank Skorpen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, N-7489, Norway
| | - Henrik Bygum Krarup
- Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark
- Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Athanasios Xanthoulis
- Department of Surgery, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, N-7489, Norway
| | - Eivor Alette Laugsand
- Department of Surgery, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
- Department of Public Health and Nursing, HUNT Research Centre, Norwegian University of Science and Technology, Levanger, Norway
| |
Collapse
|
2
|
Wu SL, Yang L, Huang C, Li Q, Ma C, Yuan F, Zhou Y, Wang X, Tong WM, Niu Y, Jin F. Genome-wide characterization of dynamic DNA 5-hydroxymethylcytosine and TET2-related DNA demethylation during breast tumorigenesis. Clin Epigenetics 2024; 16:125. [PMID: 39261937 PMCID: PMC11391647 DOI: 10.1186/s13148-024-01726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Breast tumorigenesis is a complex and multistep process accompanied by both genetic and epigenetic dysregulation. In contrast to the extensive studies on DNA epigenetic modifications 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) in malignant breast tumors, their roles in the early phases of breast tumorigenesis remain ambiguous. RESULTS DNA 5hmC and 5mC exhibited a consistent and significant decrease from usual ductal hyperplasia to atypical ductal hyperplasia and subsequently to ductal carcinoma in situ (DCIS). However, 5hmC showed a modest increase in invasive ductal breast cancer compared to DCIS. Genomic analyses showed that the changes in 5hmC and 5mC levels occurred around the transcription start sites (TSSs), and the modification levels were strongly correlated with gene expression levels. Meanwhile, it was found that differentially hydroxymethylated regions (DhMRs) and differentially methylated regions (DMRs) were overlapped in the early phases and accompanied by the enrichment of active histone marks. In addition, TET2-related DNA demethylation was found to be involved in breast tumorigenesis, and four transcription factor binding sites (TFs: ESR1, FOXA1, GATA3, FOS) were enriched in TET2-related DhMRs/DMRs. Intriguingly, we also identified a certain number of common DhMRs between tumor samples and cell-free DNA (cfDNA). CONCLUSIONS Our study reveals that dynamic changes in DNA 5hmC and 5mC play a vital role in propelling breast tumorigenesis. Both TFs and active histone marks are involved in TET2-related DNA demethylation. Concurrent changes in 5hmC signals in primary breast tumors and cfDNA may play a promising role in breast cancer screening.
Collapse
Affiliation(s)
- Shuang-Ling Wu
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110000, China
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Lin Yang
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Changcai Huang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Center for Bioinformatics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Qing Li
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Chunhui Ma
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Fang Yuan
- National Institute of Measurement and Testing Technology, Chengdu, 610021, China
| | - Yinglin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiaoyue Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100871, China
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Feng Jin
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
3
|
Linowiecka K, Szpotan J, Godlewska M, Gaweł D, Zarakowska E, Gackowski D, Brożyna AA, Foksiński M. Selective Estrogen Receptor Modulators' (SERMs) Influence on TET3 Expression in Breast Cancer Cell Lines with Distinct Biological Subtypes. Int J Mol Sci 2024; 25:8561. [PMID: 39201247 PMCID: PMC11354732 DOI: 10.3390/ijms25168561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Tamoxifen, a selective estrogen receptor modulator (SERM), exhibits dual agonist or antagonist effects contingent upon its binding to either G-protein-coupled estrogen receptor (GPER) or estrogen nuclear receptor (ESR). Estrogen signaling plays a pivotal role in initiating epigenetic alterations and regulating estrogen-responsive genes in breast cancer. Employing three distinct breast cancer cell lines-MCF-7 (ESR+; GPER+), MDA-MB-231 (ESR-; GPER-), and SkBr3 (ESR-; GPER+)-this study subjected them to treatment with two tamoxifen derivatives: 4-hydroxytamoxifen (4-HT) and endoxifen (Endox). Through 2D high-performance liquid chromatography with tandem mass spectrometry detection (HPLC-MS/MS), varying levels of 5-methylcytosine (5-mC) were found, with MCF-7 displaying the highest levels. Furthermore, TET3 mRNA expression levels varied among the cell lines, with MCF-7 exhibiting the lowest expression. Notably, treatment with 4-HT induced significant changes in TET3 expression across all cell lines, with the most pronounced increase seen in MCF-7 and the least in MDA-MB-231. These findings underscore the influence of tamoxifen derivatives on DNA methylation patterns, particularly through modulating TET3 expression, which appears to be contingent on the presence of estrogen receptors. This study highlights the potential of targeting epigenetic modifications for personalized anti-cancer therapy, offering a novel avenue to improve treatment outcomes.
Collapse
Affiliation(s)
- Kinga Linowiecka
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.S.); (A.A.B.)
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Justyna Szpotan
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.S.); (A.A.B.)
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Marlena Godlewska
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (M.G.); (D.G.)
| | - Damian Gaweł
- Department of Cell Biology and Immunology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland; (M.G.); (D.G.)
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (J.S.); (A.A.B.)
| | - Marek Foksiński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza 24, 85-092 Bydgoszcz, Poland; (E.Z.); (D.G.)
| |
Collapse
|
4
|
Zavarykina TM, Lomskova PK, Pronina IV, Khokhlova SV, Stenina MB, Sukhikh GT. Circulating Tumor DNA Is a Variant of Liquid Biopsy with Predictive and Prognostic Clinical Value in Breast Cancer Patients. Int J Mol Sci 2023; 24:17073. [PMID: 38069396 PMCID: PMC10706922 DOI: 10.3390/ijms242317073] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
This paper introduces the reader to the field of liquid biopsies and cell-free nucleic acids, focusing on circulating tumor DNA (ctDNA) in breast cancer (BC). BC is the most common type of cancer in women, and progress with regard to treatment has been made in recent years. Despite this, there remain a number of unresolved issues in the treatment of BC; in particular, early detection and diagnosis, reliable markers of response to treatment and for the prediction of recurrence and metastasis, especially for unfavorable subtypes, are needed. It is also important to identify biomarkers for the assessment of drug resistance and for disease monitoring. Our work is devoted to ctDNA, which may be such a marker. Here, we describe its main characteristics and potential applications in clinical oncology. This review considers the results of studies devoted to the analysis of the prognostic and predictive roles of various methods for the determination of ctDNA in BC patients. Currently known epigenetic changes in ctDNA with clinical significance are reviewed. The possibility of using ctDNA as a predictive and prognostic marker for monitoring BC and predicting the recurrence and metastasis of cancer is also discussed, which may become an important part of a precision approach to the treatment of BC.
Collapse
Affiliation(s)
- Tatiana M. Zavarykina
- N.M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow 119334, Russia;
- “B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology of Ministry of Health of the Russian Federation, Moscow 117997, Russia; (S.V.K.); (G.T.S.)
| | - Polina K. Lomskova
- N.M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow 119334, Russia;
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, Moscow 125315, Russia;
| | - Svetlana V. Khokhlova
- “B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology of Ministry of Health of the Russian Federation, Moscow 117997, Russia; (S.V.K.); (G.T.S.)
| | - Marina B. Stenina
- “N.N. Blokhin National Medical Research Center of Oncology of Ministry of Health of the Russian Federation, Moscow 115522, Russia;
| | - Gennady T. Sukhikh
- “B.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology of Ministry of Health of the Russian Federation, Moscow 117997, Russia; (S.V.K.); (G.T.S.)
| |
Collapse
|
5
|
Danos P, Giannoni‐Luza S, Murillo Carrasco AG, Acosta O, Guevara‐Fujita ML, Cotrina Concha JM, Guerra Miller H, Pinto Oblitas J, Aguilar Cartagena A, Araujo JM, Fujita R, Buleje Sono JL. Promoter hypermethylation of RARB and GSTP1 genes in plasma cell-free DNA as breast cancer biomarkers in Peruvian women. Mol Genet Genomic Med 2023; 11:e2260. [PMID: 37548362 PMCID: PMC10724513 DOI: 10.1002/mgg3.2260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/30/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Promoter hypermethylation is one of the enabling mechanisms of hallmarks of cancer. Tumor suppressor genes like RARB and GSTP1 have been reported as hypermethylated in breast cancer tumors compared with normal tissues in several populations. This case-control study aimed to determine the association between the promoter methylation ratio (PMR) of RARB and GSTP1 genes (separately and as a group) with breast cancer and its clinical-pathological variables in Peruvian patients, using a liquid biopsy approach. METHODS A total of 58 breast cancer patients and 58 healthy controls, matched by age, participated in the study. We exacted cell-free DNA (cfDNA) from blood plasma and converted it by bisulfite salts. Methylight PCR was performed to obtain the PMR value of the studied genes. We determined the association between PMR and breast cancer, in addition to other clinicopathological variables. The sensitivity and specificity of the PMR of these genes were obtained. RESULTS A significant association was not found between breast cancer and the RARB PMR (OR = 1.90; 95% CI [0.62-6.18]; p = 0.210) or the GSTP1 PMR (OR = 6.57; 95% CI [0.75-307.66]; p = 0.114). The combination of the RARB + GSTP1 PMR was associated with breast cancer (OR = 2.81; 95% CI [1.02-8.22]; p = 0.026), controls under 50 years old (p = 0.048), patients older than 50 (p = 0.007), and postmenopausal (p = 0.034). The PMR of both genes showed a specificity of 86.21% and a sensitivity of 31.03%. CONCLUSION Promoter hypermethylation of RARB + GSTP1 genes is associated with breast cancer, older age, and postmenopausal Peruvian patients. The methylated promoter of the RARB + GSTP1 genes needs further validation to be used as a biomarker for liquid biopsy and as a recommendation criterion for additional tests in asymptomatic women younger than 50 years.
Collapse
Affiliation(s)
- Pierina Danos
- Centro de Genética y Biología MolecularUniversidad de San Martín de PorresLimaPeru
| | | | | | - Oscar Acosta
- Facultad de Medicina HumanaUniversidad de San Martín de PorresChiclayoPeru
- Facultad de Farmacia y BioquímicaUniversidad Nacional Mayor de San MarcosLimaPeru
| | | | | | | | | | | | | | - Ricardo Fujita
- Centro de Genética y Biología MolecularUniversidad de San Martín de PorresLimaPeru
| | | |
Collapse
|
6
|
Corsaro L, Gambino VS. Notch, SUMOylation, and ESR-Mediated Signalling Are the Main Molecular Pathways Showing Significantly Different Epimutation Scores between Expressing or Not Oestrogen Receptor Breast Cancer in Three Public EWAS Datasets. Cancers (Basel) 2023; 15:4109. [PMID: 37627137 PMCID: PMC10452656 DOI: 10.3390/cancers15164109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Oestrogen receptor expression in breast cancer (BC) cells is a marker of high cellular differentiation and allows the identification of two BC groups (ER-positive and ER-negative) that, although not completely homogeneous, differ in biological characteristics, clinical behaviour, and therapeutic options. The study, based on three publicly available EWAS (Epigenetic Wide Association Study) datasets, focuses on the comparison between these two groups of breast cancer using an epimutation score. The score is calculated not only based on the presence of the epimutation, but also on the deviation amplitude of the methylation outlier value. For each dataset, we performed a functional analysis based first on the functional gene region of each annotated gene (we aggregated the data per gene region TSS1500, TSS200, first-exon, and body-gene identified by the information from the Illumina Data Sheet), and then, we performed a pathway enrichment analysis through the REACTOME database based on the genes with the highest epimutation score. Thus, we blended our results and found common pathways for all three datasets. We found that a higher and significant epimutation score due to hypermethylation in ER-positive BC is present in the promoter region of the genes belonging to the SUMOylation pathway, the Notch pathway, the IFN-γ signalling pathway, and the deubiquitination protease pathway, while a higher and significant level of epimutation due to hypomethylation in ER-positive BC is present in the promoter region of the genes belonging to the ESR-mediated pathway. The presence of this state of promoter hypomethylation in the ESR-mediated signalling genes is consistent and coherent with an active signalling pathway mediated by oestrogen function in the group of ER-positive BC. The SUMOylation and Notch pathways are associated with BC pathogenesis and have been found to play distinct roles in the two BC subgroups. We speculated that the altered methylation profile may play a role in regulating signalling pathways with specific functions in the two subgroups of ER BC.
Collapse
Affiliation(s)
- Luigi Corsaro
- Centro Diagnostico Italiano, Università di Pavia, 20100 Milan, Italy
| | | |
Collapse
|
7
|
Genetics, Treatment, and New Technologies of Hormone Receptor-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15041303. [PMID: 36831644 PMCID: PMC9954687 DOI: 10.3390/cancers15041303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The current molecular classification divides breast cancer into four major subtypes, including luminal A, luminal B, HER2-positive, and basal-like, based on receptor gene expression profiling. Luminal A and luminal B are hormone receptor (HR, estrogen, and/or progesterone receptor)-positive and are the most common subtypes, accounting for around 50-60% and 15-20% of the total breast cancer cases, respectively. The drug treatment for HR-positive breast cancer includes endocrine therapy, HER2-targeted therapy (depending on the HER2 status), and chemotherapy (depending on the risk of recurrence). In this review, in addition to classification, we focused on discussing the important aspects of HR-positive breast cancer, including HR structure and signaling, genetics, including epigenetics and gene mutations, gene expression-based assays, the traditional and new drugs for treatment, and novel or new uses of technology in diagnosis and treatment. Particularly, we have summarized the commonly mutated genes and abnormally methylated genes in HR-positive breast cancer and compared four common gene expression-based assays that are used in breast cancer as prognostic and/or predictive tools in detail, including their clinical use, the factors being evaluated, patient demographics, and the scoring systems. All these topic discussions have not been fully described and summarized within other research or review articles.
Collapse
|
8
|
Kalinkin AI, Sigin VO, Nemtsova MV, Strelnikov VV. Identification of prognostically significant DNA methylation signatures in patients with various breast cancer types. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and one of the major causes of female mortality. The development of prognostic models based on multiomics data is the main goal of precision oncology. Aberrant DNA methylation in BC is a diagnostic marker of carcinogenesis. Despite the existing factors of BC prognosis, introduction of methylation markers would make it possible to obtain more accurate prognostic scores. The study was aimed to assess DNA methylation signatures in various BC subtypes for clinical endpoints and patients' clinicopathological characteristics. The data on methylation of CpG dinucleotides (probes) and clinical characteristics of BC samples were obtained from The Cancer Genome Atlas Breast Cancer database. CpG dinucleotides associated with the selected endpoints were chosen by univariate Cox regression method. The LASSO method was used to search for stable probes, while further signature construction and testing of the clinical characteristics independence were performed using multivariate Cox regression. The dignostic and prognostic potential of the signatures was assessed using ROC analysis and Kaplan–Meier curves. It has been shown that the signatures of selected probes have a significant diagnostic (AUC 0.76–1) and prognostic (p < 0.05) potential. This approach has made it possible to identify 47 genes associated with good and poor prognosis, among these five genes have been described earlier. If the genome-wide DNA analysis results are available, the research approach applied can be used to study molecular pathogenesis of BC and other disorders.
Collapse
Affiliation(s)
- AI Kalinkin
- Research Centre for Medical Genetics, Moscow, Russia
| | - VO Sigin
- Research Centre for Medical Genetics, Moscow, Russia
| | - MV Nemtsova
- Research Centre for Medical Genetics, Moscow, Russia
| | - VV Strelnikov
- Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
9
|
Mathur R, Jha NK, Saini G, Jha SK, Shukla SP, Filipejová Z, Kesari KK, Iqbal D, Nand P, Upadhye VJ, Jha AK, Roychoudhury S, Slama P. Epigenetic factors in breast cancer therapy. Front Genet 2022; 13:886487. [PMID: 36212140 PMCID: PMC9539821 DOI: 10.3389/fgene.2022.886487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic modifications are inherited differences in cellular phenotypes, such as cell gene expression alterations, that occur during somatic cell divisions (also, in rare circumstances, in germ line transmission), but no alterations to the DNA sequence are involved. Histone alterations, polycomb/trithorax associated proteins, short non-coding or short RNAs, long non—coding RNAs (lncRNAs), & DNA methylation are just a few biological processes involved in epigenetic events. These various modifications are intricately linked. The transcriptional potential of genes is closely conditioned by epigenetic control, which is crucial in normal growth and development. Epigenetic mechanisms transmit genomic adaptation to an environment, resulting in a specific phenotype. The purpose of this systematic review is to glance at the roles of Estrogen signalling, polycomb/trithorax associated proteins, DNA methylation in breast cancer progression, as well as epigenetic mechanisms in breast cancer therapy, with an emphasis on functionality, regulatory factors, therapeutic value, and future challenges.
Collapse
Affiliation(s)
- Runjhun Mathur
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Dr. A.P.J Abdul Kalam Technical University, Lucknow, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| | - Gaurav Saini
- Department of Civil Engineering, Netaji Subhas University of Technology, Delhi, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| | - Sheo Prasad Shukla
- Department of Civil Engineering, Rajkiya Engineering College, Banda, India
| | - Zita Filipejová
- Small Animal Clinic, University of Veterinary Sciences Brno, Brno, Czechia
| | | | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Parma Nand
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Vijay Jagdish Upadhye
- Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS), Parul University, Vadodara, Gujarat
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- *Correspondence: Abhimanyu Kumar Jha, ; Shubhadeep Roychoudhury,
| | - Shubhadeep Roychoudhury
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
- *Correspondence: Abhimanyu Kumar Jha, ; Shubhadeep Roychoudhury,
| | - Petr Slama
- Department of Animal Morphology, Physiology, and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
10
|
Bücker L, Lehmann U. CDH1 (E-cadherin) Gene Methylation in Human Breast Cancer: Critical Appraisal of a Long and Twisted Story. Cancers (Basel) 2022; 14:cancers14184377. [PMID: 36139537 PMCID: PMC9497067 DOI: 10.3390/cancers14184377] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Genes can be inactivated by specific modifications of DNA bases, most often by adding a methyl group to the DNA base cytosine if it is followed by guanosine (CG methylation). This modification prevents gene expression and has been reported for many different genes in nearly all types of cancer. A prominent example is the gene CDH1, which encodes the cell-adhesion molecule E-cadherin. This is an important player in the spreading of tumor cells within the body (metastasis). Particularly in human breast cancer, many different research groups have studied the inactivation of the CDH1 gene via DNA methylation using various methods. Over the last 20 years, different, in part, even contradicting results have been published for the CDH1 gene in breast cancer. This review summarizes the most important publications and explains the bewildering heterogeneity of results through careful analysis of the methods which have been used. Abstract Epigenetic inactivation of a tumor suppressor gene by aberrant DNA methylation is a well-established defect in human tumor cells, complementing genetic inactivation by mutation (germline or somatic). In human breast cancer, aberrant gene methylation has diagnostic, prognostic, and predictive potential. A prominent example is the hypermethylation of the CDH1 gene, encoding the adhesion protein E-Cadherin (“epithelial cadherin”). In numerous publications, it is reported as frequently affected by gene methylation in human breast cancer. However, over more than two decades of research, contradictory results concerning CDH1 gene methylation in human breast cancer accumulated. Therefore, we review the available evidence for and against the role of DNA methylation of the CDH1 gene in human breast cancer and discuss in detail the methodological reasons for conflicting results, which are of general importance for the analysis of aberrant DNA methylation in human cancer specimens. Since the loss of E-cadherin protein expression is a hallmark of invasive lobular breast cancer (ILBC), special attention is paid to CDH1 gene methylation as a potential mechanism for loss of expression in this special subtype of human breast cancer. Proper understanding of the methodological basis is of utmost importance for the correct interpretation of results supposed to demonstrate the presence and clinical relevance of aberrant DNA methylation in cancer specimens.
Collapse
Affiliation(s)
| | - Ulrich Lehmann
- Correspondence: ; Tel.: +49-(0)511-532-4501; Fax: +49-(0)511-532-5799
| |
Collapse
|
11
|
Zhang SH, Wang ZF, Tan H. Novel zinc(II)−curcumin molecular probes bearing berberine and jatrorrhizine derivatives as potential mitochondria-targeting anti-neoplastic drugs. Eur J Med Chem 2022; 243:114736. [DOI: 10.1016/j.ejmech.2022.114736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/04/2022]
|
12
|
Durmus S, Gelisgen R, Uzun H. DNA Methylation Biomarkers in Cancer: Current Clinical Utility and Future Perspectives. Biomark Med 2022. [DOI: 10.2174/9789815040463122010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epigenetic alterations are related to inherited but reversible changes in
modifications that regulate gene activity beyond the DNA sequence. DNA methylation
is the best characterized epigenetic modification, controlling DNA stability, DNA
structure, transcription, and regulation, contributing to normal development and
differentiation. In this section, we first discuss the cellular functions of DNA
methylation and focus on how this fundamental biological process is impaired in
cancer. Changes in DNA methylation status in cancer have been heralded as promising
targets for the development of diagnostic, prognostic, and predictive biomarkers due to
their noninvasive accessibility in bodily fluids (such as blood, urine, stool),
reversibility, stability, and frequency. The absence of markers for definitive diagnosis
of most types of cancer and, in some cases, DNA methylation biomarkers being more
specific and sensitive than commonly used protein biomarkers indicate a strong need
for continued research to expand DNA methylation markers. Although the information
on changes in DNA methylation status in cancer and research on its clinical relevance
is rapidly increasing, the number of DNA methylation biomarkers currently available
as commercial tests is very small. Here, we focus on the importance of DNA
methylation location and target genes likely to be developed in the future for the
development of biomarkers in addition to existing commercial tests. Following a
detailed study of possible target genes, we summarize the current clinical application
status of the most studied and validated DNA methylation biomarkers, including
SEPT9, SDC2, BMP3, NDRG4, SFRP2, TFPI2, VIM and MGMT.
Collapse
Affiliation(s)
- Sinem Durmus
- Cerrahpasa Faculty of Medicine, Istanbul University,Department of Biochemistry,Department of Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul,Turkey
| | - Remise Gelisgen
- Cerrahpasa Faculty of Medicine, Istanbul University,Department of Biochemistry,Department of Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul,Turkey
| | - Hafize Uzun
- Department of Biochemistry, Faculty of Medicine, Istanbul Atlas University, Istanbul,Turkey
| |
Collapse
|
13
|
Yang G, Lu T, Weisenberger DJ, Liang G. The Multi-Omic Landscape of Primary Breast Tumors and Their Metastases: Expanding the Efficacy of Actionable Therapeutic Targets. Genes (Basel) 2022; 13:1555. [PMID: 36140723 PMCID: PMC9498783 DOI: 10.3390/genes13091555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Breast cancer (BC) mortality is almost exclusively due to metastasis, which is the least understood aspect of cancer biology and represents a significant clinical challenge. Although we have witnessed tremendous advancements in the treatment for metastatic breast cancer (mBC), treatment resistance inevitably occurs in most patients. Recently, efforts in characterizing mBC revealed distinctive genomic, epigenomic and transcriptomic (multi-omic) landscapes to that of the primary tumor. Understanding of the molecular underpinnings of mBC is key to understanding resistance to therapy and the development of novel treatment options. This review summarizes the differential molecular landscapes of BC and mBC, provides insights into the genomic heterogeneity of mBC and highlights the therapeutically relevant, multi-omic features that may serve as novel therapeutic targets for mBC patients.
Collapse
Affiliation(s)
- Guang Yang
- School of Sciences, China Pharmaceutical University, Nanjing 211121, China
- China Grand Enterprises, Beijing 100101, China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, Nanjing 211121, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211121, China
| | - Daniel J. Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Gangning Liang
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| |
Collapse
|
14
|
Kleinberger I, Sanders E, Staes K, Van Troys M, Hirano S, Hochepied T, Lemeire K, Martens L, Ampe C, van Roy F. Innovative mouse models for the tumor suppressor activity of Protocadherin-10 isoforms. BMC Cancer 2022; 22:451. [PMID: 35468745 PMCID: PMC9040349 DOI: 10.1186/s12885-022-09381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/02/2022] [Indexed: 11/12/2022] Open
Abstract
Background Nonclustered mouse protocadherin genes (Pcdh) encode proteins with a typical single ectodomain and a cytoplasmic domain with conserved motifs completely different from those of classic cadherins. Alternative splice isoforms differ in the size of these cytoplasmic domains. In view of the compelling evidence for gene silencing of protocadherins in human tumors, we started investigations on Pcdh functions in mouse cancer models. Methods For Pcdh10, we generated two mouse lines: one with floxed exon 1, leading to complete Pcdh10 ablation upon Cre action, and one with floxed exons 2 and 3, leading to ablation of only the long isoforms of Pcdh10. In a mouse medulloblastoma model, we used GFAP-Cre action to locally ablate Pcdh10 in combination with Trp53 and Rb1 ablation. From auricular tumors, that also arose, we obtained tumor-derived cell lines, which were analyzed for malignancy in vitro and in vivo. By lentiviral transduction, we re-expressed Pcdh10 cDNAs. RNA-Seq analyses were performed on these cell families. Results Surprisingly, not only medulloblastomas were generated in our model but also tumors of tagged auricles (pinnae). For both tumor types, ablation of either all or only long isoforms of Pcdh10 aggravated the disease. We argued that the perichondrial stem cell compartment is at the origin of the pinnal tumors. Immunohistochemical analysis of these tumors revealed different subtypes. We obtained several pinnal-tumor derived (PTD) cell lines and analyzed these for anchorage-independent growth, invasion into collagen matrices, tumorigenicity in athymic mice. Re-expression of either the short or a long isoform of Pcdh10 in two PTD lines counteracted malignancy in all assays. RNA-Seq analyses of these two PTD lines and their respective Pcdh10-rescued cell lines allowed to identify many interesting differentially expressed genes, which were largely different in the two cell families. Conclusions A new mouse model was generated allowing for the first time to examine the remarkable tumor suppression activity of protocadherin-10 in vivo. Despite lacking several conserved motifs, the short isoform of Pcdh10 was fully active as tumor suppressor. Our model contributes to scrutinizing the complex molecular mechanisms of tumor initiation and progression upon PCDH10 silencing in many human cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09381-y.
Collapse
Affiliation(s)
- Irene Kleinberger
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Ellen Sanders
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Katrien Staes
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Marleen Van Troys
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9052, Ghent, Belgium
| | - Shinji Hirano
- Department of Cell Biology, Kansai Medical University, Hirakata City, Osaka, 573-1010, Japan
| | - Tino Hochepied
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Kelly Lemeire
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Liesbet Martens
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium
| | - Christophe Ampe
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9052, Ghent, Belgium
| | - Frans van Roy
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium. .,VIB-UGent Center for Inflammation Research (IRC), VIB, 9052, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), 9052, Ghent, Belgium.
| |
Collapse
|
15
|
Chiang CC, Lin GL, Yang SY, Tu CW, Huang WL, Wei CF, Wang FC, Lin PJ, Huang WH, Chuang YM, Lee YT, Yeh CC, Chan M, Hsu YC. PCDHB15 as a potential tumor suppressor and epigenetic biomarker for breast cancer. Oncol Lett 2022; 23:117. [PMID: 35261631 PMCID: PMC8855166 DOI: 10.3892/ol.2022.13237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/07/2022] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is among the most frequently diagnosed cancer types and the leading cause of cancer-related death in women. The mortality rate of patients with breast cancer is currently increasing, perhaps due to a lack of early screening tools. In the present study, using The Cancer Genome Atlas (TCGA) breast cancer dataset (n=883), it was determined that methylation of the protocadherin β15 (PCDHB15) promoter was higher in breast cancer samples than that in normal tissues. A negative association between promoter methylation and expression of PCDHB15 was observed in the TCGA dataset and breast cancer cell lines. In TCGA cohort, lower PCDHB15 expression was associated with shorter relapse-free survival times. Treatment with the DNA methyltransferase inhibitor restored PCDHB15 expression in a breast cancer cell line; however, overexpression of PCDHB15 was shown to suppress colony formation. PCDHB15 methylation detected in circulating cell-free DNA (cfDNA) isolated from serum samples was higher in patients with breast cancer (40.8%) compared with that in patients with benign tumors (22.4%). PCDHB15 methylation was not correlated with any clinical parameters. Taken together, PCDHB15 is a potential tumor suppressor in cases of breast cancer, which can be epigenetically silenced via promoter methylation. PCDHB15 methylation using cfDNA is a novel minimally invasive epigenetic biomarker for the diagnosis and prognosis of breast cancer.
Collapse
Affiliation(s)
- Ching-Chung Chiang
- Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| | - Guan-Ling Lin
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Shu-Yi Yang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Chi-Wen Tu
- Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| | - Wen-Long Huang
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi 62247, Taiwan, R.O.C
| | - Chun-Feng Wei
- Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| | - Feng-Chi Wang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Pin-Ju Lin
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Wan-Hong Huang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Yu-Ming Chuang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Yu-Ting Lee
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Chia-Chou Yeh
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi 62247, Taiwan, R.O.C
| | - Michael Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62101, Taiwan, R.O.C
| | - Yu-Chen Hsu
- Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan, R.O.C
| |
Collapse
|
16
|
Luo D, Yang J, Liu J, Yong X, Wang Z. Identification of four novel hub genes as monitoring biomarkers for colorectal cancer. Hereditas 2022; 159:11. [PMID: 35093172 PMCID: PMC8801129 DOI: 10.1186/s41065-021-00216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
Background It must be admitted that the incidence of colorectal cancer (CRC) was on the rise all over the world, but the related treatment had not caught up. Further research on the underlying pathogenesis of CRC was conducive to improving the survival status of current CRC patients. Methods Differentially expressed genes (DEGs) screening were conducted based on “limma” and “RobustRankAggreg” package of R software. Weighted gene co-expression network analysis (WGCNA) was performed in the integrated DEGs that from The Cancer Genome Atlas (TCGA), and all samples of validation were from Gene Expression Omnlbus (GEO) dataset. Results The terms obtained in the functional annotation for primary DEGs indicated that they were associated with CRC. The MEyellow stand out whereby showed the significant correlation with clinical feature (disease), and 4 hub genes, including ABCC13, AMPD1, SCNN1B and TMIGD1, were identified in yellow module. Nine datasets from Gene Expression Omnibus database confirmed these four genes were significantly down-regulated and the survival estimates for the low-expression group of these genes were lower than for the high-expression group in Kaplan-Meier survival analysis section. MEXPRESS suggested that down-regulation of some top hub genes may be caused by hypermethylation. Receiver operating characteristic curves indicated that these genes had certain diagnostic efficacy. Moreover, tumor-infiltrating immune cells and gene set enrichment analysis for hub genes suggested that there were some associations between these genes and the pathogenesis of CRC. Conclusion This study identified modules that were significantly associated with CRC, four novel hub genes, and further analysis of these genes. This may provide a little new insights and directions into the potential pathogenesis of CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00216-7.
Collapse
|
17
|
Brown LJ, Achinger-Kawecka J, Portman N, Clark S, Stirzaker C, Lim E. Epigenetic Therapies and Biomarkers in Breast Cancer. Cancers (Basel) 2022; 14:474. [PMID: 35158742 PMCID: PMC8833457 DOI: 10.3390/cancers14030474] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
Epigenetic therapies remain a promising, but still not widely used, approach in the management of patients with cancer. To date, the efficacy and use of epigenetic therapies has been demonstrated primarily in the management of haematological malignancies, with limited supportive data in solid malignancies. The most studied epigenetic therapies in breast cancer are those that target DNA methylation and histone modification; however, none have been approved for routine clinical use. The majority of pre-clinical and clinical studies have focused on triple negative breast cancer (TNBC) and hormone-receptor positive breast cancer. Even though the use of epigenetic therapies alone in the treatment of breast cancer has not shown significant clinical benefit, these therapies show most promise in use in combinations with other treatments. With improving technologies available to study the epigenetic landscape in cancer, novel epigenetic alterations are increasingly being identified as potential biomarkers of response to conventional and epigenetic therapies. In this review, we describe epigenetic targets and potential epigenetic biomarkers in breast cancer, with a focus on clinical trials of epigenetic therapies. We describe alterations to the epigenetic landscape in breast cancer and in treatment resistance, highlighting mechanisms and potential targets for epigenetic therapies. We provide an updated review on epigenetic therapies in the pre-clinical and clinical setting in breast cancer, with a focus on potential real-world applications. Finally, we report on the potential value of epigenetic biomarkers in diagnosis, prognosis and prediction of response to therapy, to guide and inform the clinical management of breast cancer patients.
Collapse
Affiliation(s)
- Lauren Julia Brown
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Joanna Achinger-Kawecka
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Neil Portman
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Susan Clark
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Clare Stirzaker
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Elgene Lim
- School of Clinical Medicine, St. Vincent’s Campus, University of New South Wales (UNSW), Sydney, NSW 2010, Australia; (L.J.B.); (J.A.-K.); (N.P.); (S.C.); (C.S.)
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| |
Collapse
|
18
|
Genomic Insights into Non-steroidal Nuclear Receptors in Prostate and Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:227-239. [DOI: 10.1007/978-3-031-11836-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Ray SK, Mukherjee S. Epigenetic Reprogramming and Landscape of Transcriptomic Interactions: Impending Therapeutic Interference of Triple-Negative Breast Cancer in Molecular Medicine. Curr Mol Med 2021; 22:835-850. [PMID: 34872474 DOI: 10.2174/1566524021666211206092437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022]
Abstract
The mechanisms governing the development and progression of cancers are believed to be the consequence of hereditary deformities and epigenetic modifications. Accordingly, epigenetics has become an incredible and progressively explored field of research to discover better prevention and therapy for neoplasia, especially triple-negative breast cancer (TNBC). It represents 15-20% of all invasive breast cancers and will, in general, have bellicose histological highlights and poor clinical outcomes. In the early phases of triple-negative breast carcinogenesis, epigenetic deregulation modifies chromatin structure and influences the plasticity of cells. It up-keeps the oncogenic reprogramming of malignant progenitor cells with the acquisition of unrestrained selfrenewal capacities. Genomic impulsiveness in TNBC prompts mutations, copy number variations, as well as genetic rearrangements, while epigenetic remodeling includes an amendment by DNA methylation, histone modification, and noncoding RNAs of gene expression profiles. It is currently evident that epigenetic mechanisms assume a significant part in the pathogenesis, maintenance, and therapeutic resistance of TNBC. Although TNBC is a heterogeneous malaise that is perplexing to describe and treat, the ongoing explosion of genetic and epigenetic research will help to expand these endeavors. Latest developments in transcriptome analysis have reformed our understanding of human diseases, including TNBC at the molecular medicine level. It is appealing to envision transcriptomic biomarkers to comprehend tumor behavior more readily regarding its cellular microenvironment. Understanding these essential biomarkers and molecular changes will propel our capability to treat TNBC adequately. This review will depict the different aspects of epigenetics and the landscape of transcriptomics in triple-negative breast carcinogenesis and their impending application for diagnosis, prognosis, and treatment decision with the view of molecular medicine.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry All India Institute of Medical Sciences. Bhopal, Madhya pradesh-462020. India
| |
Collapse
|
20
|
Quintas-Granados LI, Cortés H, Carmen MGD, Leyva-Gómez G, Bustamante-Montes LP, Rodríguez-Morales M, Villegas-Vazquez EY, López-Reyes I, Alcaraz-Estrada SL, Sandoval-Basilio J, Soto-Reyes E, Sharifi-Rad J, Figueroa-González G, Reyes-Hernández OD. The high methylation level of a novel 151-bp CpG island in the ESR1 gene promoter is associated with a poor breast cancer prognosis. Cancer Cell Int 2021; 21:649. [PMID: 34863151 PMCID: PMC8645138 DOI: 10.1186/s12935-021-02343-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The ESR1 gene suffers methylation changes in many types of cancers, including breast cancer (BC), the most frequently diagnosed cancer in women that is also present in men. Methylation at promoter A of ESR1 is the worse prognosis in terms of overall survival; thus, the early detection, prognostic, and prediction of therapy involve some methylation biomarkers. METHODS Therefore, our study aimed to examine the methylation levels at the ESR1 gene in samples from Mexican BC patients and its possible association with menopausal status. RESULTS We identified a novel 151-bp CpG island in the promoter A of the ESR1 gene. Interestingly, methylation levels at this CpG island in positive ERα tumors were approximately 50% less than negative ERα or control samples. Furthermore, methylation levels at ESR1 were associated with menopausal status. In postmenopausal patients, the methylation levels were 1.5-fold higher than in premenopausal patients. Finally, according to tumor malignancy, triple-negative cancer subtypes had higher ESR1 methylation levels than luminal/HER2+ or luminal A subtypes. CONCLUSIONS Our findings suggest that methylation at this novel CpG island might be a promising prognosis marker.
Collapse
Affiliation(s)
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, 14389, Mexico City, Mexico
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | | | | | - Edgar Yebran Villegas-Vazquez
- Departamento de Biotecnología y Bioingeniería del Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Israel López-Reyes
- Colegio de Ciencias y Humanidades, Plantel Cuautepec, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - Sofía Lizeth Alcaraz-Estrada
- División de Medicina Genomica, Centro Médico Nacional "20 de Noviembre"-ISSSTE, Mexico, 03100, Mexico City, Mexico
| | - Jorge Sandoval-Basilio
- Laboratorio de Biología Molecular, Universidad Hipócrates, Acapulco, Gro., México
- Laboratorio de Investigación Clínica, Facultad de Medicina, Universidad Autónoma de Guerrero, Acapulco, Gro., México
| | - Ernesto Soto-Reyes
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
| | | | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 09230, Mexico City, México.
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 09230, Mexico City, México.
| |
Collapse
|
21
|
Seale KN, Tkaczuk KHR. Circulating Biomarkers in Breast Cancer. Clin Breast Cancer 2021; 22:e319-e331. [PMID: 34756687 DOI: 10.1016/j.clbc.2021.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/22/2021] [Accepted: 09/19/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer management has progressed immensely over the decades, but the disease is still a major source of morbidity and mortality worldwide. Even with enhanced imaging detection and tissue biopsy capabilities, disease can progress on an ineffective treatment before additional information is obtained through standard methods of response evaluation, including the RECIST 1.1 criteria, widely used for assessment of treatment response and benefit from therapy.6 Circulating biomarkers have the potential to provide valuable insight into disease progression and response to therapy, and they can serve to identify actionable mutations and tumor characteristics that can direct therapy. These biomarkers can be collected at higher frequencies than imaging or tissue sampling, potentially allowing for more informed management. This review will evaluate the roles of circulating biomarkers in breast cancer, including the serum markers Carcinoembryonic antigen CA15-3, CA27-29, HER2 ECD, and investigatory markers such as GP88; and the components of the liquid biopsy, including circulating tumor cells, cell free DNA/DNA methylation, circulating tumor DNA, and circulating microRNA.
Collapse
Affiliation(s)
- Katelyn N Seale
- University of Maryland, School of Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, 22 South Greene Street, S9D12, Baltimore, MD 21201
| | - Katherine H R Tkaczuk
- University of Maryland, School of Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, 22 South Greene Street, S9D12, Baltimore, MD 21201.
| |
Collapse
|
22
|
Li J, Downs BM, Cope LM, Fackler MJ, Zhang X, Song CG, VandenBussche C, Zhang K, Han Y, Liu Y, Tulac S, Venkatesan N, de Guzman T, Chen C, Lai EW, Yuan J, Sukumar S. Automated and rapid detection of cancer in suspicious axillary lymph nodes in patients with breast cancer. NPJ Breast Cancer 2021; 7:89. [PMID: 34234148 PMCID: PMC8263765 DOI: 10.1038/s41523-021-00298-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/09/2021] [Indexed: 01/29/2023] Open
Abstract
Preoperative staging of suspicious axillary lymph nodes (ALNs) allows patients to be triaged to ALN dissection or to sentinel lymph node biopsy (SLNB). Ultrasound-guided fine needle aspiration (FNA) and cytology of ALN is moderately sensitive but its clinical utility relies heavily on the cytologist's experience. We proposed that the 5-h automated GeneXpert system-based prototype breast cancer detection assay (BCDA) that quantitatively measures DNA methylation in ten tumor-specific gene markers could provide a facile, accurate test for detecting cancer in FNA of enlarged lymph nodes. We validated the assay in ALN-FNA samples from a prospective study of patients (N = 230) undergoing SLNB. In a blinded analysis of 218 evaluable LN-FNAs from 108 malignant and 110 benign LNs by histology, BCDA displayed a sensitivity of 90.7% and specificity of 99.1%, achieving an area under the ROC curve, AUC of 0.958 (95% CI: 0.928-0.989; P < 0.0001). Next, we conducted a study of archival FNAs of ipsilateral palpable LNs (malignant, N = 72, benign, N = 53 by cytology) collected in the outpatient setting prior to neoadjuvant chemotherapy (NAC). Using the ROC-threshold determined in the prospective study, compared to cytology, BCDA achieved a sensitivity of 94.4% and a specificity of 92.5% with a ROC-AUC = 0.977 (95% CI: 0.953-1.000; P < 0.0001). Our study shows that the automated assay detects cancer in suspicious lymph nodes with a high level of accuracy within 5 h. This cancer detection assay, scalable for analysis to scores of LN FNAs, could assist in determining eligibility of patients to different treatment regimens.
Collapse
Affiliation(s)
- Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bradley M Downs
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leslie M Cope
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mary Jo Fackler
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiuyun Zhang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chuan-Gui Song
- Department of Breast Surgery, Union Hospital Affiliated by Fujian Medical University, Fuzhou, China
| | | | - Kejing Zhang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Han
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Yufei Liu
- Department of Pathology, Yichang Central People's Hospital, Yichang, China
| | | | | | | | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | | | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Dobre M, Salvi A, Pelisenco IA, Vasilescu F, De Petro G, Herlea V, Milanesi E. Crosstalk Between DNA Methylation and Gene Mutations in Colorectal Cancer. Front Oncol 2021; 11:697409. [PMID: 34277443 PMCID: PMC8281955 DOI: 10.3389/fonc.2021.697409] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is often characterized by mutations and aberrant DNA methylation within the promoters of tumor suppressor genes and proto-oncogenes. The most frequent somatic mutations occur within KRAS and BRAF genes. Mutations of the KRAS gene have been detected in approximately 40% of patients, while mutations in BRAF have been detected less frequently at a rate of 10%. In this study, the DNA methylation levels of 22 candidate genes were evaluated in three types of tissue: mucosal tumoral tissue from 18 CRC patients, normal adjacent tissues from 10 CRC patients who underwent surgical resection, and tissue from a control group of six individuals with normal colonoscopies. A differential methylation profile of nine genes (RUNX3, SFRP1, WIF1, PCDH10, DKK2, DKK3, TMEFF2, OPCML, and SFRP2) presenting high methylation levels in tumoral compared to normal tissues was identified. KRAS mutations (codons 12 or 13) were detected in eight CRC cases, and BRAF mutations (codon 600) in four cases. One of the CRC patients presented concomitant mutations in KRAS codon 12 and BRAF, whereas seven patients did not present these mutations (WT). When comparing the methylation profile according to mutation status, we found that six genes (SFRP2, DKK2, PCDH10, TMEFF2, SFRP1, HS3ST2) showed a methylation level higher in BRAF positive cases than BRAF negative cases. The molecular sub-classification of CRC according to mutations and epigenetic modifications may help to identify epigenetic biomarkers useful in designing personalized strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Maria Dobre
- Laboratory of Histopathology and Immunohistochemistry, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Alessandro Salvi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Florina Vasilescu
- Laboratory of Histopathology and Immunohistochemistry, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Giuseppina De Petro
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Vlad Herlea
- Department of Pathology, Fundeni Clinical Institute, Bucharest, Romania
| | - Elena Milanesi
- Laboratory of Radiobiology, Victor Babes National Institute of Pathology, Bucharest, Romania
| |
Collapse
|
24
|
Palanca-Ballester C, Rodriguez-Casanova A, Torres S, Calabuig-Fariñas S, Exposito F, Serrano D, Redin E, Valencia K, Jantus-Lewintre E, Diaz-Lagares A, Montuenga L, Sandoval J, Calvo A. Cancer Epigenetic Biomarkers in Liquid Biopsy for High Incidence Malignancies. Cancers (Basel) 2021; 13:cancers13123016. [PMID: 34208598 PMCID: PMC8233712 DOI: 10.3390/cancers13123016] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Early alterations in cancer include the deregulation of epigenetic events such as changes in DNA methylation and abnormal levels of non-coding (nc)RNAs. Although these changes can be identified in tumors, alternative sources of samples may offer advantages over tissue biopsies. Because tumors shed DNA, RNA, and proteins, biological fluids containing these molecules can accurately reflect alterations found in cancer cells, not only coming from the primary tumor, but also from metastasis and from the tumor microenvironment (TME). Depending on the type of cancer, biological fluids encompass blood, urine, cerebrospinal fluid, and saliva, among others. Such samples are named with the general term "liquid biopsy" (LB). With the advent of ultrasensitive technologies during the last decade, the identification of actionable genetic alterations (i.e., mutations) in LB is a common practice to decide whether or not targeted therapy should be applied. Likewise, the analysis of global or specific epigenetic alterations may also be important as biomarkers for diagnosis, prognosis, and even for cancer drug response. Several commercial kits that assess the DNA promoter methylation of single genes or gene sets are available, with some of them being tested as biomarkers for diagnosis in clinical trials. From the tumors with highest incidence, we can stress the relevance of DNA methylation changes in the following genes found in LB: SHOX2 (for lung cancer); RASSF1A, RARB2, and GSTP1 (for lung, breast, genitourinary and colon cancers); and SEPT9 (for colon cancer). Moreover, multi-cancer high-throughput methylation-based tests are now commercially available. Increased levels of the microRNA miR21 and several miRNA- and long ncRNA-signatures can also be indicative biomarkers in LB. Therefore, epigenetic biomarkers are attractive and may have a clinical value in cancer. Nonetheless, validation, standardization, and demonstration of an added value over the common clinical practice are issues needed to be addressed in the transfer of this knowledge from "bench to bedside".
Collapse
Affiliation(s)
- Cora Palanca-Ballester
- Biomarkers and Precision Medicine (UBMP) and Epigenomics Unit, IIS, La Fe, 46026 Valencia, Spain;
| | - Aitor Rodriguez-Casanova
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.R.-C.); (A.D.-L.)
- Roche-CHUS Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Susana Torres
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
| | - Silvia Calabuig-Fariñas
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Pathology, Universitat de València, 46010 Valencia, Spain
| | - Francisco Exposito
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Diego Serrano
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Esther Redin
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Karmele Valencia
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Eloisa Jantus-Lewintre
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (A.R.-C.); (A.D.-L.)
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
| | - Luis Montuenga
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Juan Sandoval
- Biomarkers and Precision Medicine (UBMP) and Epigenomics Unit, IIS, La Fe, 46026 Valencia, Spain;
- Correspondence: (J.S.); (A.C.)
| | - Alfonso Calvo
- CIBERONC, ISCIII, 28029 Madrid, Spain; (S.T.); (S.C.-F.); (F.E.); (E.R.); (K.V.); (E.J.-L.); (L.M.)
- DISNA and Program in Solid Tumors, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain;
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Correspondence: (J.S.); (A.C.)
| |
Collapse
|
25
|
Hamadneh L, Abu-Irmaileh B, Al-Majawleh M, Bustanji Y, Jarrar Y, Al-Qirim T. Doxorubicin-paclitaxel sequential treatment: insights of DNA methylation and gene expression changes of luminal A and triple negative breast cancer cell lines. Mol Cell Biochem 2021; 476:3647-3654. [PMID: 34050450 DOI: 10.1007/s11010-021-04191-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 05/22/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer is one of the significant causes of death among women diagnosed with cancer worldwide. Even though several chemotherapy combinations are still the primary treatment of breast cancer, unsuccessful treatments, and poor prognostic outcomes are still being reported. DNA methylation and gene expression changes among two breast cancer cell lines representing luminal A (MCF-7) and triple-negative (MDA-MB-231) cancers were determined after sequential combination treatment of doxorubicin and paclitaxel and analyzed using Ingenuity Pathway Analysis. Promoter methylation changes were seen in different treated MCF-7 cells and accompanied by changes in the gene expression of CCNA1 and PTGS2. In MDA-MB-231 cells, the hypomethylation of ESR1 was not accompanied by an increase in its gene expression in any treated cells. The hypomethylation of GSTP1 and MGMT was accompanied by an increase in gene expression levels in the group treated with doxorubicin only. Also, significant downregulation of several genes like MUC1 and MKI67 in MCF-7 cells treated with doxorubicin showed much lower gene expression (- 37.63, - 10.88 folds) when compared with cells treated with paclitaxel (- 2.47, - 2.05 folds) or the combination treatment (- 18.99, - 2.81 folds), respectively. On the other hand, a synergistic effect on MMP9 gene expression was significantly seen in MDA-MB-231 cells treated with the combination (- 9.99 folds) in comparison with the cells treated with doxorubicin (- 3.62 folds) or paclitaxel (1.75 folds) alone. Chemotherapy combinations do not always augment the molecular changes seen in each drug alone, and these changes could be utilized as treatment response markers.
Collapse
Affiliation(s)
- Lama Hamadneh
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, 11733, Jordan.
| | - Bashaer Abu-Irmaileh
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, 11942, Jordan
| | - May Al-Majawleh
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Yasser Bustanji
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, 11942, Jordan.,Department of Basic Medical Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, UAE
| | - Yazun Jarrar
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Tariq Al-Qirim
- Faculty of Pharmacy, AL-Zaytoonah University of Jordan, Amman, 11733, Jordan
| |
Collapse
|
26
|
Mao XH, Ye Q, Zhang GB, Jiang JY, Zhao HY, Shao YF, Ye ZQ, Xuan ZX, Huang P. Identification of differentially methylated genes as diagnostic and prognostic biomarkers of breast cancer. World J Surg Oncol 2021; 19:29. [PMID: 33499882 PMCID: PMC7839189 DOI: 10.1186/s12957-021-02124-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Background Aberrant DNA methylation is significantly associated with breast cancer. Methods In this study, we aimed to determine novel methylation biomarkers using a bioinformatics analysis approach that could have clinical value for breast cancer diagnosis and prognosis. Firstly, differentially methylated DNA patterns were detected in breast cancer samples by comparing publicly available datasets (GSE72245 and GSE88883). Methylation levels in 7 selected methylation biomarkers were also estimated using the online tool UALCAN. Next, we evaluated the diagnostic value of these selected biomarkers in two independent cohorts, as well as in two mixed cohorts, through ROC curve analysis. Finally, prognostic value of the selected methylation biomarkers was evaluated breast cancer by the Kaplan-Meier plot analysis. Results In this study, a total of 23 significant differentially methylated sites, corresponding to 9 different genes, were identified in breast cancer datasets. Among the 9 identified genes, ADCY4, CPXM1, DNM3, GNG4, MAST1, mir129-2, PRDM14, and ZNF177 were hypermethylated. Importantly, individual value of each selected methylation gene was greater than 0.9, whereas predictive value for all genes combined was 0.9998. We also found the AUC for the combined signature of 7 genes (ADCY4, CPXM1, DNM3, GNG4, MAST1, PRDM14, ZNF177) was 0.9998 [95% CI 0.9994–1], and the AUC for the combined signature of 3 genes (MAST1, PRDM14, and ZNF177) was 0.9991 [95% CI 0.9976–1]. Results from additional validation analyses showed that MAST1, PRDM14, and ZNF177 had high sensitivity, specificity, and accuracy for breast cancer diagnosis. Lastly, patient survival analysis revealed that high expression of ADCY4, CPXM1, DNM3, PRDM14, PRKCB, and ZNF177 were significantly associated with better overall survival. Conclusions Methylation pattern of MAST1, PRDM14, and ZNF177 may represent new diagnostic biomarkers for breast cancer, while methylation of ADCY4, CPXM1, DNM3, PRDM14, PRKCB, and ZNF177 may hold prognostic potential for breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02124-6.
Collapse
Affiliation(s)
- Xiao-Hong Mao
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Qiang Ye
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Guo-Bing Zhang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jin-Ying Jiang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Hong-Ying Zhao
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yan-Fei Shao
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Zi-Qi Ye
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zi-Xue Xuan
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Ping Huang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
27
|
Sher G, Salman NA, Khan AQ, Prabhu KS, Raza A, Kulinski M, Dermime S, Haris M, Junejo K, Uddin S. Epigenetic and breast cancer therapy: Promising diagnostic and therapeutic applications. Semin Cancer Biol 2020; 83:152-165. [PMID: 32858230 DOI: 10.1016/j.semcancer.2020.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022]
Abstract
The global burden of breast cancer (BC) is increasing significantly. This trend is caused by several factors such as late diagnosis, limited treatment options for certain BC subtypes, drug resistance which all lead to poor clinical outcomes. Recent research has reported the role of epigenetic alterations in the mechanism of BC pathogenesis and its hallmarks include drug resistance and stemness features. The understanding of these modifications and their significance in the management of BC carcinogenesis is challenging and requires further attention. Nevertheless, it promises to provide novel insight needed for utilizing these alterations as potential diagnostic, prognostic markers, predict treatment efficacy, as well as therapeutic agents. This highlights the importance of continuing research development to further advance the existing knowledge on epigenetics and BC carcinogenesis to overcome the current challenges. Hence, this review aims to shed light and discuss the current state of epigenetics research in the diagnosis and management of BC.
Collapse
Affiliation(s)
- Gulab Sher
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Nadia Aziz Salman
- Kingston University London, School of Life Science, Pharmacy and Chemistry, SEC Faculty, Kingston, upon Thames, London, KT1 2EE, UK
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Mohammad Haris
- Functional and Molecular Imaging Laboratory, Sidra Medicine, P.O. Box 26999, Qatar; Laboratory Animal Research Center, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Kulsoom Junejo
- General Surgery Department, Hamad General Hospital, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, P.O. Box 3050, Qatar.
| |
Collapse
|
28
|
Franzen A, Bootz F, Dietrich D. [Prognostic and predictive methylation biomarkers in HNSCC : Epigenomic diagnostics for head and neck squamous cell carcinoma (HNSCC)]. HNO 2020; 68:911-915. [PMID: 32613323 DOI: 10.1007/s00106-020-00902-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Prognostic and predictive biomarkers for personalized treatment management in head and neck squamous cell carcinoma (HNSCC) are of great clinical interest. OBJECTIVE DNA methylation is an epigenetic process involved in gene regulation and could be a source of potential prognostic and predictive biomarkers. METHODS This study comprises literature research in PubMed and own studies. RESULTS Gene methylation, e.g. of PITX2, is a strong, human papillomavirus (HPV)-independent prognostic biomarker. SHOX2 and SEPT9 methylation in circulating cell-free DNA within blood plasma correlates with tumor stage and prognosis. Methylation of diverse immune checkpoints, e.g., PD‑1, PD-L1, and CTLA4, is also prognostic and correlates with gene expression. CONCLUSION DNA methylation is a source of efficient prognostic blood plasma- and tissue-based biomarkers. However, prior to clinical implementation, studies must prove that biomarker-guided treatment selection can lead to better outcomes or reduced toxicity. The applicability of DNA methylation as a predictive biomarker for targeted drug-based cancer therapy seems promising, although further validation is needed.
Collapse
Affiliation(s)
- A Franzen
- Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland
| | - F Bootz
- Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland
| | - D Dietrich
- Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland.
| |
Collapse
|
29
|
You Q, Geng Y, Ye H, Zhu G, Gao X, Zhu H. HOPX Is an Epigenetically Inactivated Tumor Suppressor and Overexpression of HOPX Induce Apoptosis and Cell Cycle Arrest in Breast Cancer. Onco Targets Ther 2020; 13:5955-5965. [PMID: 32606804 PMCID: PMC7320906 DOI: 10.2147/ott.s250404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/23/2020] [Indexed: 12/26/2022] Open
Abstract
Background Evidence has been shown that abnormal DNA methylation plays a vital role in the progression of breast cancer via silencing of gene expression. The results of bisulfite sequencing showed that the methylation status of HOPX in breast cancer tissues was higher than that in normal breast cancer tissues, but little known about the biological functions of HOPX in breast cancer. Methods A total of 13 paired breast cancer and adjacent noncancerous tissues were subjected to bisulfite sequencing. Meanwhile, the methylation levels of cg218995965 and cg24862548 in breast cancer cells were detected by methylation-specific PCR (MSP). Flow cytometry, wound healing and transwell invasion assays were used to detect the apoptosis, migration and invasion in breast cancer cells. In addition, the expressions of HOPX, p21, cyclin D1 and CDK4 in cells were detected with Western blot assay. Results Bisulfite sequencing indicated that the CpG sites (cg218995965 and cg24862548) in the HOPX promoter region showed significantly higher methylation in breast cancer tissues. In addition, methylation-specific PCR revealed that HOPX was significantly hypermethylated in breast cancer cell lines MDA-MB-468 and MCF-7. Furthermore, overexpression of HOPX significantly inhibited the proliferation of MDA-MB-468 and MCF-7 cells via inducing the apoptosis. Moreover, upregulation of HOPX markedly inhibited the migration and invasion abilities of MDA-MB-468 cells. Meanwhile, overexpression of HOPX obviously induced cell cycle arrest in MDA-MB-468 cells via upregulation of p21, and downregulation of cyclin D1 and CDK4. Additionally, overexpression of HOPX suppressed tumor growth of breast cancer in vivo. Conclusion Our data showed that HOPX, a tumor suppressor, is epigenetically silenced in breast cancer. Overexpression of HOPX could suppress the progression of breast cancer, and thus indicating that it might serve as a potential target for the treatment of patients with breast cancer.
Collapse
Affiliation(s)
- Qinghua You
- Department of Pathology, Shanghai Pudong Hospital, Shanghai 201399, People's Republic of China
| | - Yuanyuan Geng
- Department of Pathology, Shanghai Pudong Hospital, Shanghai 201399, People's Republic of China
| | - Huiying Ye
- Department of Pathology, Shanghai Pudong Hospital, Shanghai 201399, People's Republic of China
| | - Guixiang Zhu
- Department of Pathology, Shanghai Pudong Hospital, Shanghai 201399, People's Republic of China
| | - Xiaofang Gao
- Department of Pathology, Shanghai Pudong Hospital, Shanghai 201399, People's Republic of China
| | - Hongbo Zhu
- Department of Pathology, Shanghai Pudong Hospital, Shanghai 201399, People's Republic of China
| |
Collapse
|