1
|
Qin S, Wei G, Lin Q, Tang D, Li C, Tan Z, Yao L, Huang L, Wei F, Liang Y. Analysis of the Spatholobus suberectus full-length transcriptome identified an R2R3-MYB transcription factor-encoding gene SsMYB158 that regulates flavonoid biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108929. [PMID: 39002304 DOI: 10.1016/j.plaphy.2024.108929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Spatholobus suberectus Dunn (Leguminosae) has been used for medicinal purposes for a long period. Flavonoids are the major bioactive components of S. suberectus. However, there is still limited knowledge of the exact method via which transcription factors (TFs) regulate flavonoid biosynthesis. The full-length transcriptome of S. suberectus was analyzed using SMRT sequencing; 61,548 transcripts were identified, including 12,311 new gene loci, 53,336 novel transcripts, 44,636 simple sequence repeats, 36,414 complete coding sequences, 871 long non-coding RNAs and 6781 TFs. The SsMYB158 TF, which is associated with flavonoid biosynthesis, belongs to the R2R3-MYB class and is localized subcellularly to the nucleus. The overexpression of SsMYB158 in Nicotiana benthamiana and the transient overexpression of SsMYB158 in S. suberectus resulted in a substantial enhancement in both flavonoids and catechin levels. In addition, there was a remarkable upregulation in the expression of essential enzyme-coding genes associated with the flavonoid biosynthesis pathways. Our study revealed SsMYB158 as a critical regulator of flavonoid biosynthesis in S. suberectus and laying the foundation for its molecular breeding.
Collapse
Affiliation(s)
- Shuangshuang Qin
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
| | - Guili Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Quan Lin
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Danfeng Tang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Cui Li
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zhien Tan
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Lixiang Yao
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Lirong Huang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Fan Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
| | - Ying Liang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.
| |
Collapse
|
2
|
Li J, Wang Q, Wang Y, Wu X, Liu Y, Wan M, Wang L, Wang X, Zhang C, Wang X, Tang X, Heng W. Identification of nsLTP family in Chinese white pear (Pyrus bretschneideri) reveals its potential roles in russet skin formation. PLANTA 2023; 257:113. [PMID: 37165276 DOI: 10.1007/s00425-023-04153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
MAIN CONCLUSION Identification of PbLTP genes in pear and functional characterization of PbLTP4 in the transport of suberin monomers of russet skin formation. Non-specific lipid-transfer protein (nsLTP) is an abundant and diverse alkaline small molecule protein in the plant kingdom with complex and diverse biophysiological functions, such as transfer of phospholipids, reproductive development, pathogen defence and abiotic stress response. Up to now, only a tiny fraction of nsLTPs have been functionally identified, and the distribution of nsLTPs in pear (Pyrus bretschneideri) (PbLTPs) has not been fully characterized. In this study, the genome-wide analysis of the nsLTP gene family in the pear genome identified 67 PbLTP proteins, which could be divided into six types (1, 2, C, D, E, and G). Similar intron/exon structural patterns were observed in the same type, strongly supporting their close evolutionary relationship. In addition, PbLTP4 was highly expressed in russet pear skin compared with green skin, which was located in the plasma membrane. Coexpression network analysis showed that PbLTP4 closely related to suberin biosynthetic genes. The biological function of PbLTP4 in promoting suberification has been demonstrated by overexpression in Arabidopsis. Identification of suberin monomers showed that PbLTP4 promotes suberification by regulating 9,12-octadecadienoic acid and hexadecanoic acid transport. These results provide helpful insights into the characteristics of PbLTP genes and their biological function in the transport of suberin monomers of russet skin formation.
Collapse
Affiliation(s)
- Jiawei Li
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Qi Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yajing Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Xinyi Wu
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yaping Liu
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Minchen Wan
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Lindu Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Xiexuan Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Cheng Zhang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Xueqian Wang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China
| | - Xiaomei Tang
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China.
| | - Wei Heng
- College of Horticulture, Anhui Agricultural University, West Changjiang Road No. 130, Hefei, 230036, Anhui, People's Republic of China.
| |
Collapse
|
3
|
Wang Q, Liu Y, Wu X, Wang L, Li J, Wan M, Jia B, Ye Z, Liu L, Tang X, Tao S, Zhu L, Heng W. MYB1R1 and MYC2 Regulate ω-3 Fatty Acid Desaturase Involved in ABA-Mediated Suberization in the Russet Skin of a Mutant of 'Dangshansuli' ( Pyrus bretschneideri Rehd.). FRONTIERS IN PLANT SCIENCE 2022; 13:910938. [PMID: 35755695 PMCID: PMC9225576 DOI: 10.3389/fpls.2022.910938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 05/26/2023]
Abstract
Russeting, a disorder of pear fruit skin, is mainly caused by suberin accumulation on the inner part of the outer epidermal cell layers. ABA was identified as a crucial phytohormone in suberification. Here, we demonstrated that the ABA content in russet pear skin was higher than in green skin. Then, ABA was applied to explore the changes in phenotype and suberin composition coupled with RNA-Seq and metabolomics to investigate the probably regulatory pathway of ABA-mediated suberification. The results showed that ABA treatment increased the expression of ω-3 fatty acid desaturase (FAD) and the content of α-linolenic acid. We identified 17 PbFADs in white pear, and the expression of PbFAD3a was induced by ABA. In addition, the role of PbFAD3a in promoting suberification has been demonstrated by overexpression in Arabidopsis and VIGS assays in the fruitlets. GUS staining indicated that the promoter of PbFAD3a was activated by ABA. Furthermore, MYC2 and MYB1R1 have been shown to bind to the PbFAD3a promoter directly and this was induced by ABA via yeast one-hybrid (Y1H) screening and qRT-PCR. In summary, our study found that ABA induces the expression of MYC2 and MYB1R1 and activates the PbFAD3a promoter, contributing to the formation of russet pear skin. Functional identification of key transcription factors will be the goal of future research. These findings reveal the molecular mechanism of ABA-mediated suberization in the russet skin and provide a good foundation for future studies on the formation of russet skin.
Collapse
Affiliation(s)
- Qi Wang
- College of Horticulture, Anhui Agricultural University, Hefei, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yaping Liu
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Xinyi Wu
- College of Horticulture, Anhui Agricultural University, Hefei, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lindu Wang
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Jinchao Li
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Minchen Wan
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Bin Jia
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Zhenfeng Ye
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Lun Liu
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Xiaomei Tang
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Shutian Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liwu Zhu
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Wei Heng
- College of Horticulture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Zhang Y, Arango G, Li F, Xiao X, Putatunda R, Yu J, Yang XF, Wang H, Watson LT, Zhang L, Hu W. Comprehensive off-target analysis of dCas9-SAM-mediated HIV reactivation via long noncoding RNA and mRNA profiling. BMC Med Genomics 2018; 11:78. [PMID: 30200981 PMCID: PMC6131778 DOI: 10.1186/s12920-018-0394-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022] Open
Abstract
Background CRISPR/CAS9 (epi)genome editing revolutionized the field of gene and cell therapy. Our previous study demonstrated that a rapid and robust reactivation of the HIV latent reservoir by a catalytically-deficient Cas9 (dCas9)-synergistic activation mediator (SAM) via HIV long terminal repeat (LTR)-specific MS2-mediated single guide RNAs (msgRNAs) directly induces cellular suicide without additional immunotherapy. However, potential off-target effect remains a concern for any clinical application of Cas9 genome editing and dCas9 epigenome editing. After dCas9 treatment, potential off-target responses have been analyzed through different strategies such as mRNA sequence analysis, and functional screening. In this study, a comprehensive analysis of the host transcriptome including mRNA, lncRNA, and alternative splicing was performed using human cell lines expressing dCas9-SAM and HIV-targeting msgRNAs. Results The control scrambled msgRNA (LTR_Zero), and two LTR-specific msgRNAs (LTR_L and LTR_O) groups show very similar expression profiles of the whole transcriptome. Among 839 identified lncRNAs, none exhibited significantly different expression in LTR_L vs. LTR_Zero group. In LTR_O group, only TERC and scaRNA2 lncRNAs were significantly decreased. Among 142,791 mRNAs, four genes were differentially expressed in LTR_L vs. LTR_Zero group. There were 21 genes significantly downregulated in LTR_O vs. either LTR_Zero or LTR_L group and one third of them are histone related. The distributions of different types of alternative splicing were very similar either within or between groups. There were no apparent changes in all the lncRNA and mRNA transcripts between the LTR_L and LTR_Zero groups. Conclusion This is an extremely comprehensive study demonstrating the rare off-target effects of the HIV-specific dCas9-SAM system in human cells. This finding is encouraging for the safe application of dCas9-SAM technology to induce target-specific reactivation of latent HIV for an effective “shock-and-kill” strategy. Electronic supplementary material The online version of this article (10.1186/s12920-018-0394-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yonggang Zhang
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA.,Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Gustavo Arango
- Department of Computer Science, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Fang Li
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Xiao Xiao
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Raj Putatunda
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Jun Yu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA
| | - Layne T Watson
- Department of Computer Science, Virginia Tech, Blacksburg, VA, 24060, USA.,Department of Mathematics, Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, VA, 24060, USA.
| | - Wenhui Hu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA. .,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|