1
|
Qu G, Wang H, Yan H, Liu G, Wu M. Identification of CXCL10 as a Prognostic Biomarker for Clear Cell Renal Cell Carcinoma. Front Oncol 2022; 12:857619. [PMID: 35296026 PMCID: PMC8918693 DOI: 10.3389/fonc.2022.857619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 12/20/2022] Open
Abstract
Background One of the widespread forms of kidney tumor is clear cell renal cell carcinoma (ccRCC), with poor prognosis and insensitivity to radio chemotherapy as there is limited capacity to understand the disease mechanism. This study aims at identifying potential biomarkers and the underlying processes of ccRCC using bioinformatics analysis. Methods Transcriptome data of relevant samples were downloaded from The Cancer Genome Atlas (TCGA) database. R software was used to screen differentially expressed genes (DEGs) using the “edgeR” package. Two types of analysis—Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment—were accomplished by applying Database for Annotation, Visualization, and Integrated Discovery (DAVID) and Search Tool for the Retrieval of Interacting Genes database (STRING) online bioinformatics tools. A protein–protein interaction (PPI) network of the identified DEGs was constructed using Cytoscape software, and hub genes were subsequently selected via the Cytohubba plug-in. The selected genes were input into Oncomine for verification. Finally, selected hub genes were analyzed by doing survival analysis to notice the relationship between survival (OS) rate and the selected genes’ level of expression. Results There were 1,855 DEGs found connected to ccRCC, with 1,207 upregulated genes and 648 downregulated genes. G-protein-coupled receptor signaling pathway, integral component of membrane, calcium ion binding, and cytokine–cytokine receptor interaction were among the DEGs discovered. Oncomine confirmed the top six hub genes from the PPI network (C3, CXCR3, CXCL10, CCR5, CCL4, and CCL5). A high level of expression of CXCL10, one of these hub genes, was linked to a poor prognosis in individuals with ccRCC. The results of survival analysis showed that the expression level of CXCL10 was significantly correlated with the prognosis of ccRCC patients (p < 0.05). Conclusions From the analysis, the following results were drawn: CXCL10 might be a potential prognostic biomarker and novel therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Genyi Qu
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou, China
| | - Hao Wang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Huiqin Yan
- Department of Obstetrics, Zhuzhou Central Hospital, Zhuzhou, China
| | - Genlin Liu
- Department of Emergency, Zhuzhou Central Hospital, Zhuzhou, China
- *Correspondence: Genlin Liu, ; Min Wu,
| | - Min Wu
- Department of Emergency, Zhuzhou Central Hospital, Zhuzhou, China
- *Correspondence: Genlin Liu, ; Min Wu,
| |
Collapse
|
2
|
Toni LS, Carroll IA, Jones KL, Schwisow JA, Minobe WA, Rodriguez EM, Altman NL, Lowes BD, Gilbert EM, Buttrick PM, Kao DP, Bristow MR. Sequential analysis of myocardial gene expression with phenotypic change: Use of cross-platform concordance to strengthen biologic relevance. PLoS One 2019; 14:e0221519. [PMID: 31469842 PMCID: PMC6716635 DOI: 10.1371/journal.pone.0221519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives To investigate the biologic relevance of cross-platform concordant changes in gene expression in intact human failing/hypertrophied ventricular myocardium undergoing reverse remodeling. Background Information is lacking on genes and networks involved in remodeled human LVs, and in the associated investigative best practices. Methods We measured mRNA expression in ventricular septal endomyocardial biopsies from 47 idiopathic dilated cardiomyopathy patients, at baseline and after 3–12 months of β-blocker treatment to effect left ventricular (LV) reverse remodeling as measured by ejection fraction (LVEF). Cross-platform gene expression change concordance was investigated in reverse remodeling Responders (R) and Nonresponders (NR) using 3 platforms (RT-qPCR, microarray, and RNA-Seq) and two cohorts (All 47 subjects (A-S) and a 12 patient “Super-Responder” (S-R) subset of A-S). Results For 50 prespecified candidate genes, in A-S mRNA expression 2 platform concordance (CcpT), but not single platform change, was directly related to reverse remodeling, indicating CcpT has biologic significance. Candidate genes yielded a CcpT (PCR/microarray) of 62% for Responder vs. Nonresponder (R/NR) change from baseline analysis in A-S, and ranged from 38% to 100% in S-R for PCR/microarray/RNA-Seq 2 platform comparisons. Global gene CcpT measured by microarray/RNA-Seq was less than for candidate genes, in S-R R/NR 17.5% vs. 38% (P = 0.036). For S-R global gene expression changes, both cross-cohort concordance (CccT) and CcpT yielded markedly greater values for an R/NR vs. an R-only analysis (by 22 fold for CccT and 7 fold for CcpT). Pathway analysis of concordant global changes for R/NR in S-R revealed signals for downregulation of multiple phosphoinositide canonical pathways, plus expected evidence of a β1-adrenergic receptor gene network including enhanced Ca2+ signaling. Conclusions Two-platform concordant change in candidate gene expression is associated with LV biologic effects, and global expression concordant changes are best identified in an R/NR design that can yield novel information.
Collapse
Affiliation(s)
- Lee S Toni
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Ian A Carroll
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America.,ARCA biopharma, Westminster, Colorado, United States of America
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jessica A Schwisow
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Wayne A Minobe
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America.,University of Colorado Cardiovascular Institute Pharmacogenomics, Boulder and Aurora, Colorado, United States of America
| | - Erin M Rodriguez
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Natasha L Altman
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America.,University of Colorado Cardiovascular Institute Pharmacogenomics, Boulder and Aurora, Colorado, United States of America
| | - Brian D Lowes
- Division of Cardiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Edward M Gilbert
- Division of Cardiology, University of Utah Medical Center, Salt Lake City, Utah, United States of America
| | - Peter M Buttrick
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America.,University of Colorado Cardiovascular Institute Pharmacogenomics, Boulder and Aurora, Colorado, United States of America
| | - David P Kao
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America.,University of Colorado Cardiovascular Institute Pharmacogenomics, Boulder and Aurora, Colorado, United States of America
| | - Michael R Bristow
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America.,ARCA biopharma, Westminster, Colorado, United States of America.,University of Colorado Cardiovascular Institute Pharmacogenomics, Boulder and Aurora, Colorado, United States of America
| |
Collapse
|