1
|
Zhang S, Niu Q, Zong W, Song Q, Tian S, Wang J, Liu J, Zhang H, Wang Z, Li B. Endotype-driven Co-module mechanisms of danhong injection in the Co-treatment of cardiovascular and cerebrovascular diseases: A modular-based drug and disease integrated analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118287. [PMID: 38705429 DOI: 10.1016/j.jep.2024.118287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiovascular and cerebrovascular diseases are the leading causes of death worldwide and interact closely with each other. Danhong Injection (DHI) is a widely used preparation for the co-treatment of brain and heart diseases (CTBH). However, the underlying molecular endotype mechanisms of DHI in the CTBH remain unclear. AIM OF THIS STUDY To elucidate the underlying endotype mechanisms of DHI in the CTBH. MATERIALS AND METHODS In this study, we proposed a modular-based disease and drug-integrated analysis (MDDIA) strategy for elucidating the systematic CTBH mechanisms of DHI using high-throughput transcriptome-wide sequencing datasets of DHI in the treatment of patients with stable angina pectoris (SAP) and cerebral infarction (CI). First, we identified drug-targeted modules of DHI and disease modules of SAP and CI based on the gene co-expression networks of DHI therapy and the protein-protein interaction networks of diseases. Moreover, module proximity-based topological analyses were applied to screen CTBH co-module pairs and driver genes of DHI. At the same time, the representative driver genes were validated via in vitro experiments on hypoxia/reoxygenation-related cardiomyocytes and neuronal cell lines of H9C2 and HT22. RESULTS Seven drug-targeted modules of DHI and three disease modules of SAP and CI were identified by co-expression networks. Five modes of modular relationships between the drug and disease modules were distinguished by module proximity-based topological analyses. Moreover, 13 targeted module pairs and 17 driver genes associated with DHI in the CTBH were also screened. Finally, the representative driver genes AKT1, EDN1, and RHO were validated by in vitro experiments. CONCLUSIONS This study, based on clinical sequencing data and modular topological analyses, integrated diseases and drug targets. The CTBH mechanism of DHI may involve the altered expression of certain driver genes (SRC, STAT3, EDN1, CYP1A1, RHO, RELA) through various enriched pathways, including the Wnt signaling pathway.
Collapse
Affiliation(s)
- Siqi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qikai Niu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wenjing Zong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qi Song
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Siwei Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingai Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huamin Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Lin W, Zhao XY, Cheng JW, Li LT, Jiang Q, Zhang YX, Han F. Signaling pathways in brain ischemia: Mechanisms and therapeutic implications. Pharmacol Ther 2023; 251:108541. [PMID: 37783348 DOI: 10.1016/j.pharmthera.2023.108541] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Ischemic stroke occurs when the arteries supplying blood to the brain are narrowed or blocked, inducing damage to brain tissue due to a lack of blood supply. One effective way to reduce brain damage and alleviate symptoms is to reopen blocked blood vessels in a timely manner and reduce neuronal damage. To achieve this, researchers have focused on identifying key cellular signaling pathways that can be targeted with drugs. These pathways include oxidative/nitrosative stress, excitatory amino acids and their receptors, inflammatory signaling molecules, metabolic pathways, ion channels, and other molecular events involved in stroke pathology. However, evidence suggests that solely focusing on protecting neurons may not yield satisfactory clinical results. Instead, researchers should consider the multifactorial and complex mechanisms underlying stroke pathology, including the interactions between different components of the neurovascular unit. Such an approach is more representative of the actual pathological process observed in clinical settings. This review summarizes recent research on the multiple molecular mechanisms and drug targets in ischemic stroke, as well as recent advances in novel therapeutic strategies. Finally, we discuss the challenges and future prospects of new strategies based on the biological characteristics of stroke.
Collapse
Affiliation(s)
- Wen Lin
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang-Yu Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Wen Cheng
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Li-Tao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Quan Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yi-Xuan Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
3
|
Li L, Yang JH, Li C, Zhou HF, Yu L, Wu XL, Lu YH, He Y, Wan HT. Danhong injection improves neurological function in rats with ischemic stroke by enhancing neurogenesis and activating BDNF/AKT/CREB signaling pathway. Biomed Pharmacother 2023; 163:114887. [PMID: 37207429 DOI: 10.1016/j.biopha.2023.114887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023] Open
Abstract
Danhong injection (DHI) is a traditional Chinese medicine injection that promotes blood circulation and removes blood stasis and has been widely used in the treatment of stroke. Many studies have focused on the mechanism of DHI in acute ischemic stroke (IS); however, few studies have thoroughly explored its role during recovery. In this study, we aimed to determine the effect of DHI on long-term neurological function recovery after cerebral ischemia and explored the related mechanisms. Middle cerebral artery occlusion (MCAO) was used to establish an IS model in rats. The efficacy of DHI was assessed using neurological severity scores, behaviors, cerebral infarction volume and histopathology. Immunofluorescence staining was performed to assess hippocampal neurogenesis. An in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) cell model was constructed and western-blot analyses were performed to verify the underlying mechanisms. Our results showed that DHI treatment greatly reduced the infarct volume, promoted neurological recovery and reversed brain pathological changes. Furthermore, DHI promoted neurogenesis by increasing the migration and proliferation of neural stem cells, and enhancing synaptic plasticity. Moreover, we found that the pro-neurogenic effects of DHI were related to an increase in brain-derived neurotrophic factor (BDNF) expression and the activation of AKT/CREB, which were attenuated by ANA-12 and LY294002, the inhibitors of the BDNF receptor and PI3K. These results suggest that DHI improves neurological function by enhancing neurogenesis and activating the BDNF/AKT/CREB signaling pathways.
Collapse
Affiliation(s)
- Lan Li
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang province, China
| | - Jie-Hong Yang
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang province, China
| | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang province, China
| | - Hui-Fen Zhou
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang province, China
| | - Li Yu
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang province, China
| | - Xiao-Long Wu
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang province, China
| | - Yi-Hang Lu
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang province, China
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang province, China.
| | - Hai-Tong Wan
- Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang province, China.
| |
Collapse
|
4
|
Zhang P, He S, Wu S, Li Y, Wang H, Yan C, Yang H, Li P. Discovering a Multi-Component Combination against Vascular Dementia from Danshen-Honghua Herbal Pair by Spectrum-Effect Relationship Analysis. Pharmaceuticals (Basel) 2022; 15:ph15091073. [PMID: 36145294 PMCID: PMC9505896 DOI: 10.3390/ph15091073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The Danshen-Honghua (DH) herbal pair exhibits a synergistic effect in protecting the cerebrovascular system from ischemia/reperfusion injury, but the therapeutic effect on vascular dementia (VaD) has not been clarified, and the main active ingredient group has not been clarified. In this work, the chemical constituents in DH herbal pair extract were characterized by UHPLC-QTOF MS, and a total of 72 compounds were identified. Moreover, the DH herbal pair alleviated phenylhydrazine (PHZ)-induced thrombosis and improved bisphenol F (BPF)- and ponatinib-induced brain injury in zebrafish. Furthermore, the spectrum-effect relationship between the fingerprint of the DH herbal pair and the antithrombotic and neuroprotective efficacy was analyzed, and 11 chemical components were screened out as the multi-component combination (MCC) against VaD. Among them, the two compounds with the highest content were salvianolic acid B (17.31 ± 0.20 mg/g) and hydroxysafflor yellow A (15.85 ± 0.19 mg/g). Finally, we combined these 11 candidate compounds as the MCC and found that it could improve thrombosis and neuronal injury in three zebrafish models and rat bilateral common carotid artery occlusion (BCCAO) model, which had similar efficacy compared to the DH herbal pair. This study provides research ideas for the treatment of VaD and the clinical application of the DH herbal pair.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hua Yang
- Correspondence: or (H.Y.); or (P.L.); Tel./Fax: +86-25-8327-1379 (P.L.)
| | - Ping Li
- Correspondence: or (H.Y.); or (P.L.); Tel./Fax: +86-25-8327-1379 (P.L.)
| |
Collapse
|
5
|
Guo X, Ma R, Wang M, Wui-Man Lau B, Chen X, Li Y. Novel perspectives on the therapeutic role of cryptotanshinone in the management of stem cell behaviors for high-incidence diseases. Front Pharmacol 2022; 13:971444. [PMID: 36046823 PMCID: PMC9420941 DOI: 10.3389/fphar.2022.971444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Cryptotanshinone (CTS), a diterpenoid quinone, is found mostly in Salvia miltiorrhiza Bunge (S. miltiorrhiza) and plays a crucial role in many cellular processes, such as cell proliferation/self-renewal, differentiation and apoptosis. In particular, CTS’s profound physiological impact on various stem cell populations and their maintenance and fate determination could improve the efficiency and accuracy of stem cell therapy for high-incidence disease. However, as much promise CTS holds, these CTS-mediated processes are complex and multifactorial and many of the underlying mechanisms as well as their clinical significance for high-incidence diseases are not yet fully understood. This review aims to shed light on the impact and mechanisms of CTS on the actions of diverse stem cells and the involvement of CTS in the many processes of stem cell behavior and provide new insights for the application of CTS and stem cell therapy in treating high-incidence diseases.
Collapse
Affiliation(s)
- Xiaomeng Guo
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruishuang Ma
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Wang
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Xiaopeng Chen
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xiaopeng Chen, ; Yue Li,
| | - Yue Li
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xiaopeng Chen, ; Yue Li,
| |
Collapse
|
6
|
Chen YY, Nan JY, Li HX, Liu Q, Li B, Liu J, Wei PL, Zhang YY, Wang Z, Wang J. Deciphering potential pharmacological mechanisms of Danhong injection to treat chronic stable angina based on drug response-related modules and genes. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115125. [PMID: 35202715 DOI: 10.1016/j.jep.2022.115125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danhong injection (DHI), a traditional Chinese medicine (TCM) injection that has been widely used to treat coronary heart disease and angina pectoris. However, its underlying pharmacological mechanisms have not been fully elucidated. Not all patients benefit from DHI to the same extent. We attempted to explore the characteristics of potential therapeutic targets in different responsive populations. AIM OF THE STUDY This study aimed to reveal the potential molecular mechanisms of DHI in treating chronic stable angina and identify potential therapeutic targets for DHI. MATERIALS AND METHODS Based on a previous phase IV clinical trial of DHI in treating chronic stable angina, drug response modules were identified through structural entropy and similarity. Drug response-related genes were screened out based on the correlations between drug response module/module-related genes and clinical features and were assessed using a random forest model. Further validation was conducted using a hypoxia/reoxygenation (H/R) model. RESULTS Seven DHI-related response modules were identified. Eight drug response-related genes were screened out, and principal component analysis showed that DHI responders were distinguished from responders in the control group based on their expression values. The combination of the two most important genes, SHC4 and PIP5K1P1, discriminated between responders and nonresponders with an area under the receiver operating characteristic curve (AUC) of 0.714; however, no significant difference was found in the AUC between the combination and a single gene. Reverse transcription-polymerase chain reaction showed that middle-dose DHI treatment significantly decreased SHC4 mRNA expression compared with that in the H/R group (P = 0.026), a finding consistent with our previous analysis of differentially expressed genes. CONCLUSIONS DHI comprehensively exerted a therapeutic effect by acting on multiple response modules related to angina pectoris and drug response-related genes. Our findings indicate that the dimensionality reduction strategy based on the target network-drug response module-therapeutic targets can contribute to revealing the mechanism of action of TCM compounds and guiding precise clinical medication.
Collapse
Affiliation(s)
- Yin-Ying Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing-Yi Nan
- Shananxi Buchang Pharmaceutical Co., Ltd., Xianyang, China
| | - Hai-Xia Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiong Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng-Lu Wei
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ying-Ying Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Chen Y, Liu Y, Zhang J, Zhou K, Zhang X, Dai H, Yang B, Shang H. Efficacy and safety of lumbrokinase plus aspirin versus aspirin alone for acute ischemic stroke (LUCENT): study protocol for a multicenter randomized controlled trial. Trials 2022; 23:285. [PMID: 35410433 PMCID: PMC8996506 DOI: 10.1186/s13063-022-06200-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background Lumbrokinase has been widely used for patients with acute ischemic stroke (AIS) in China; however, because rigorously designed studies are lacking, safety and efficacy of lumbrokinase in the treatment of acute ischemic stroke remains largely unknown. In this multicenter, randomized, and controlled trial, we aim to compare lumbrokinase plus aspirin versus aspirin alone in patients with acute ischemic stroke. Methods A total of 220 eligible participants will be randomized to either the intervention or control group with a 1:1 ratio. These participants must be diagnosed with acute ischemic stroke for the first time, whose symptoms appear within 72 h. Their NIHSS score must be greater than 5 and less than 15, and their age must be between 35 and 85 years old. They must have not received intravenous thrombolysis, arterial thrombolysis, or intravascular intervention. Participants in the intervention group will be treated with lumbrokinase plus aspirin for the first 90 days. Participants in the control group will use placebo plus aspirin for the first 90 days. Then, all participants will be treated with aspirin only and followed up for another 90 days (180-day follow-up). The primary outcome is the modified Rankin Scale (mRS) score. The secondary outcomes are National Institutes of Health Stroke Scale (NIHSS) score, Activity of Daily Living (ADL) Scale score, coagulation function, and serum hypersensitive C-reactive protein. The exploratory outcomes are fasting lipid panel, recurrence rate, the occurrence of cardiovascular and cerebrovascular events, and the mortality rate. Safety evaluations include liver function and kidney function, serum fibrinogen, adverse events, serious adverse events, and bleeding events. Adherence of participants will also be assessed. Discussion This trial will investigate the efficacy and safety of lumbrokinase plus aspirin as compared to aspirin alone in the treatment of acute ischemic stroke. Trial registration Chinese Clinical Trial Registry, ChiCTR2000032952. Registered on May 16, 2020.
Collapse
|
8
|
Xu A, Wen ZH, Su SX, Chen YP, Liu WC, Guo SQ, Li XF, Zhang X, Li R, Xu NB, Wang KX, Li WX, Guan DG, Duan CZ. Elucidating the Synergistic Effect of Multiple Chinese Herbal Prescriptions in the Treatment of Post-stroke Neurological Damage. Front Pharmacol 2022; 13:784242. [PMID: 35355727 PMCID: PMC8959705 DOI: 10.3389/fphar.2022.784242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Traditional Chinese medicine (TCM) has been widely used in the treatment of human diseases. However, the synergistic effects of multiple TCM prescriptions in the treatment of stroke have not been thoroughly studied. Objective of the study: This study aimed to reveal the mechanisms underlying the synergistic effects of these TCM prescriptions in stroke treatment and identify the active compounds. Methods: Herbs and compounds in the Di-Tan Decoction (DTD), Xue-Fu Zhu-Yu Decoction (XFZYD), and Xiao-Xu-Ming Decoction (XXMD) were acquired from the TCMSP database. SEA, HitPick, and TargetNet web servers were used for target prediction. The compound-target (C-T) networks of three prescriptions were constructed and then filtered using the collaborative filtering algorithm. We combined KEGG enrichment analysis, molecular docking, and network analysis approaches to identify active compounds, followed by verification of these compounds with an oxygen-glucose deprivation and reoxygenation (OGD/R) model. Results: The filtered DTD network contained 39 compounds and 534 targets, the filtered XFZYD network contained 40 compounds and 508 targets, and the filtered XXMD network contained 55 compounds and 599 targets. The filtered C-T networks retained approximately 80% of the biological functions of the original networks. Based on the enriched pathways, molecular docking, and network analysis results, we constructed a complex network containing 3 prescriptions, 14 botanical drugs, 26 compounds, 13 targets, and 5 pathways. By calculating the synergy score, we identified the top 5 candidate compounds. The experimental results showed that quercetin, baicalin, and ginsenoside Rg1 independently and synergistically increased cell viability. Conclusion: By integrating pharmacological and chemoinformatic approaches, our study provides a new method for identifying the effective synergistic compounds of TCM prescriptions. The filtered compounds and their synergistic effects on stroke require further research.
Collapse
Affiliation(s)
- Anqi Xu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhuo-Hua Wen
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shi-Xing Su
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Peng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Wen-Chao Liu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shen-Quan Guo
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xi-Feng Li
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ran Li
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ning-Bo Xu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Xin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Wen-Xing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Dao-Gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Chuan-Zhi Duan
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Sun W, Wang S, Liang P, Zhou H, Zhang L, Jia Q, Fu J, Lv Y, Han S. Pseudo-allergic compounds screened from Shengmai injection by using high-expression Mas-related G protein-coupled receptor X2 cell membrane chromatography online coupled with liquid chromatography and mass spectrometry. J Sep Sci 2021; 44:1421-1429. [PMID: 33491300 DOI: 10.1002/jssc.202001163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 11/11/2022]
Abstract
Adverse drug reactions of traditional Chinese medicine injection mainly manifested as pseudo-allergic reactions. In the present study, ginsenoside Rd, Ro, and Rg3 were identified as pseudo-allergic components in Shengmai injection by a high-expression Mas-related G protein-coupled receptor X2 cell membrane chromatography coupled online with high-performance liquid chromatography and mass spectrometry. Their pseudo-allergic activities were evaluated by in vitro and in vivo assay. The three compounds were further found to induce pseudo-allergic reaction through Mas-related G protein-coupled receptor X2. Therefore, we concluded that ginsenoside Rd, Ro and Rg3 may be potential allergens that cause pseudo-allergic reactions. This study might be helpful for the safe use of Shengmai injection.
Collapse
Affiliation(s)
- Wei Sun
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, P. R. China
| | - Saisai Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, P. R. China
| | - Peida Liang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, P. R. China
| | - Huaxin Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, P. R. China
| | - Liyang Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, P. R. China
| | - Qianqian Jia
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, P. R. China
| | - Jia Fu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, P. R. China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, P. R. China
| | - Shengli Han
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P. R. China.,Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, P. R. China
| |
Collapse
|
10
|
Zhou D, Xie L, Wang Y, Wu S, Liu F, Zhang S, Liu R, Zhu L. Clinical Efficacy of Tonic Traditional Chinese Medicine Injection on Acute Cerebral Infarction: A Bayesian Network Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8318792. [PMID: 33299456 PMCID: PMC7704142 DOI: 10.1155/2020/8318792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 01/01/2023]
Abstract
Western medicine (WM) has certain limitations in terms of treating acute cerebral infarction (ACI), while tonic traditional Chinese medicine injections (TCMIs) have been shown to have obvious clinical effects as an adjunct to WM for ACI. However, most randomized controlled trials (RCTs) to date have not performed direct comparisons of efficacy among tonic TCMIs. This study designed a Bayesian network meta-analysis (NMA) to explore the therapeutic effect of tonic TCMIs on ACI. A comprehensive search of RCTs of TCMIs combined with WM for ACI was conducted using electronic databases for studies dated from the start date of each database until February 2020. Stata 13.0 and ADDIS 1.16.7 software were used to plot and analyze the data. Sixty-six RCTs with a total of 5,989 patients involving 7 kinds of tonic TCMIs were included. Among TCMIs, Shenfu injection (SFI) + WM ranked first in terms of improving clinical efficacy and the activities of daily living (ADLs) rating and reducing interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels. While Ciwujia injection (CI) + WM was the best choice for reducing neurological impairment and the high-cut viscosity of whole blood (HCV). Shenmai injection (SI) + WM had the greatest effects in terms of decreasing the levels of low-cut viscosity of whole blood (LCV), fibrinogen (FIB), and plasma viscosity (PV). Based on the cluster analysis of the clinical efficacy and the neurological impairment, CI + WM and Shenqifuzheng (SQI) + WM were the best options for treating ACI. With respect to adverse drug reactions (ADRs), 35 RCTs did not monitor ADRs during treatment. In conclusion, tonic TCMIs could assist WM in benefiting patients with ACI. However, due to the limitations of the current study, strict monitoring of ADRs and data from high-quality RCTs will be required in future to verify the advantage of TCMIs.
Collapse
Affiliation(s)
- Dongrui Zhou
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liandi Xie
- Department of Cardiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yao Wang
- Department of Cardiology, Zhuji Hospital of Traditional Chinese Medicine, Shaoxing, Zhejiang, China
| | - Shuang Wu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fengzhi Liu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shuangshuang Zhang
- Department of Oncology, Beijing Daxing District Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Ruijia Liu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lingqun Zhu
- Key Laboratory of Chinese Internal Medicine of Educational Ministry and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Liu J, Wang N, Dang HX, Chen BW, Zhang L, Zou C, Zhong CL, Huang JK, Liu Q, Yu YN, Jiang M, Liang WX, Chen QG, Wang YY, Shen CT, Wang Z. Standard Operating Procedures for Chinese Medicine Data Monitoring Committees of Clinical Studies. Chin J Integr Med 2020; 27:483-489. [PMID: 33170939 DOI: 10.1007/s11655-020-3439-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 11/26/2022]
Abstract
Although there is guidance from different regulatory agencies, there are opportunities to bring greater consistency and stronger applicability to address the practical issues of establishing and operating a data monitoring committee (DMC) for clinical studies of Chinese medicine. We names it as a Chinese Medicine Data Monitoring Committee (CMDMC). A panel composed of clinical and statistical experts shared their experience and thoughts on the important aspects of CMDMCs. Subsequently, a community standard on CMDMCs (T/CACM 1323-2019) was issued by the China Association of Chinese Medicine on September 12, 2019. This paper summarizes the key content of this standard to help the sponsors of clinical studies establish and operate CMDMCs, which will further develop the scientific integrity and quality of clinical studies.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Nian Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hai-Xia Dang
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bing-Wei Chen
- School of Public Health, Southeast University, Nanjing, 210009, China
| | - Li Zhang
- Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Chong Zou
- Jiangsu Provincial Hospital of Traditional Chinese Medicine (Affiliated Hospital of Nanjing University of Traditional Chinese Medicine), Nanjing, 210029, China
| | - Cheng-Liang Zhong
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Ju-Kai Huang
- Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Qiong Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ya-Nan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Meng Jiang
- Jiangsu Provincial Hospital of Traditional Chinese Medicine (Affiliated Hospital of Nanjing University of Traditional Chinese Medicine), Nanjing, 210029, China
| | - Wei-Xiong Liang
- Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Qi-Guang Chen
- School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yong-Yan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chun-Ti Shen
- Changzhou Traditional Chinese Medicine Hospital, Changzhou, Jiangsu Province, 213004, China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
12
|
Application of Traditional Chinese Medicines in Postoperative Abdominal Adhesion. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8073467. [PMID: 32419827 PMCID: PMC7199640 DOI: 10.1155/2020/8073467] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022]
Abstract
Adhesion is a frequent complication after abdominal surgery. Although various methods have been applied to prevent and treat postoperative abdominal adhesion (PAA), few modern drugs designed for clinical applications have reached the expected preventive or therapeutic effect so far. There is an imperative to develop some new strategies for the treatment of PAA. Traditional Chinese medicine (TCM) has been widely practiced for thousands of years and played an indispensable role in the prevention and treatment of diseases. Modern medicine researchers have accepted the therapeutic effects of many active components derived from Chinese medicinal herbs. The review stresses the most commonly used TCM treatment, including Chinese medicinal herbals and monomers, TCM formulas, and acupuncture treatment.
Collapse
|
13
|
Systems Pharmacology-Based Approach to Comparatively Study the Independent and Synergistic Mechanisms of Danhong Injection and Naoxintong Capsule in Ischemic Stroke Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1056708. [PMID: 30863452 PMCID: PMC6378776 DOI: 10.1155/2019/1056708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/04/2018] [Accepted: 01/06/2019] [Indexed: 12/26/2022]
Abstract
To provide evidence for the better clinical use of traditional Chinese medicine preparations (TCMPs), comparison of the pharmacological mechanisms between TCMPs with similar therapeutic effect is necessary. However, methodology for dealing with this issue is still scarce. Danhong injection (DHI) and Naoxintong capsule (NXT) are representative TCMPs for ischemic stroke (IS) treatment, which are also frequently used in combination. Here they were employed as research objects to demonstrate the feasibility of systems pharmacology approach in elucidation of the independent and combined effect of TCMPs. By incorporating chemical screening, target prediction, and network construction, a feasible systems pharmacology model has been established to systematically uncover the underlying action mechanisms of DHI, NXT, or their pair in IS treatment. Systematic analysis of the created TCMP-Compound-Target-Disease network revealed that DHI and NXT shared common targets such as PTGS2, F2, ADRB1, IL6, ALDH2, and CCL2, which were involved in the vasomotor system regulation, blood-brain barrier disruption, redox imbalance, neurotrophin activity, and brain inflammation. In comparative mechanism study, the merged DHI/NXT-IS PPI network and pathway enrichment analysis indicated that DHI and NXT exerted the therapeutic effects mainly through immune system and VEGF signaling pathways. Meanwhile, they had their own unique pathways, e.g., calcium signaling pathway for DHI and gap junction for NXT. While for their synergistic mechanism, DHI and NXT participated in chemokine signaling pathway, T cell receptor signaling pathway, VEGF signaling pathway, gap junction, and so on. Our study provided an optimized strategy for dissecting the different and combined effect of TCMPs with similar actions.
Collapse
|
14
|
Li C, Xu T, Zhou P, Zhang J, Guan G, Zhang H, Ling X, Li W, Meng F, Liu G, Lv L, Yuan J, Li X, Zhu M. Post-marketing safety surveillance and re-evaluation of Xueshuantong injection. Altern Ther Health Med 2018; 18:277. [PMID: 30326892 PMCID: PMC6192149 DOI: 10.1186/s12906-018-2329-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/20/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Traditional Chinese medicine injections (TCMIs) have been widely used to treat severe and acute diseases due to their high bioavailability, accurate curative effect, and rapid effect. However, incidence rates of adverse drug reactions (ADRs) of TCMIs have also increased in recent years. Xueshuantong injection (XSTI) is a commonly-used TCMI comprised of Panax notoginseng total sapiens for the treatment of stroke hemiplegia, chest pain, and central retinal vein occlusion. Its safety remains uncelar. Therefore, post-marketing safety of XSTI was studied in this research. METHODS In present study, post-marketing safety surveillance and re-evaluation of XSTI were reported. Thirty thousand eight hundred eighty-four patients in 33 hospitals from 7 provinces participated in this study. Incidence rate, most common clinical manifestations, types, severity, occurrence time, and disposal of ADRs were calculated. RESULTS Incidence rate of ADR of XSTI was 4.14‰ and the most common clinical manifestations were skin and its appendages damage. Type A accounts for 95.49% of ADRs of XSTI and most of them (41.41%) were occurred within 24 h after receiving XSTI treatment. Severities of most ADRs of XSTI were moderate reactions (86.72%). Main disposition of ADRs of XSTI was drug withdrawal and symptomatic treatment (54.69%). CONCLUSIONS Our data provide basis for improvement of instructions of XSTI and clinical safety of XSTI. Post-marketing surveillance of TCMIs in this study is a powerful tool to identify types and manifestations of ADRs to improve safety and effectiveness of drugs in clinical applications. TRIAL REGISTRATION This protocol has international registration in China clinical trial registration center ( ChiCTR~OPC~ 14,005,718 ) at December 22, 2014.
Collapse
|
15
|
Liu S, Wu JR, Zhang D, Wang KH, Zhang B, Zhang XM, Tan D, Duan XJ, Cui YY, Liu XK. Comparative efficacy of Chinese herbal injections for treating acute cerebral infarction: a network meta-analysis of randomized controlled trials. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:120. [PMID: 29615027 PMCID: PMC5883592 DOI: 10.1186/s12906-018-2178-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022]
Abstract
Background Chinese herbal injections (CHIs) are prepared by extracting and purifying effective substances from herbs (or decoction pieces) using modern scientific techniques and methods. CHIs combined with aspirin + anticoagulants + dehydrant + neuroprotectant (AADN) are believed to be effective for the treatment of acute cerebral infarction (ACI). However, no randomized controlled trial (RCT) has been performed to directly compare the efficacies of different regimens of CHIs. Therefore, we performed a systematic review and network meta-analysis (NMA) to compare the efficacies of different regimens of CHIs for ACI. Methods We conducted an overall and systematic retrieval from literature databases of RCTs focused on the use of CHIs to treat ACI up to June 2016. We used the Cochrane Handbook version 5.1.0 and CONSORT statement to assess the risk of bias. The data were analyzed using STATA 13.0 and WinBUGS 1.4.3 software. Results Overall, 64 studies with 6225 participants involving 15 CHIs were included in the NMA. In terms of the markedly effective rate, Danhong (DH) + AADN had the highest likelihood of being the best treatment. In terms of the improvement of neurological impairment, Shuxuening (SXN) + AADN had the highest likelihood of being the best treatment. Considering two outcomes, injections of SXN, Yinxingdamo (YXDM), DH, Shuxuetong (SXT), HongHuaHuangSeSu (HHHSS), DengZhanXiXin (DZXX) and Shenxiong glucose (SX) plus AADN were the optimum treatment regimens for ACI, especially SXN + AADN and YXDM + AADN. Conclusions Based on the NMA, SXN, YXDM, DH, SXT, HHHSS, DZXX and SX plus AADN showed the highest probability of being the best treatment regimens. Due to the limitations of the present study, our findings should be verified by well-designed RCTs. Electronic supplementary material The online version of this article (10.1186/s12906-018-2178-9) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Wan J, Wan H, Yang R, Wan H, Yang J, He Y, Zhou H. Protective effect of Danhong Injection combined with Naoxintong Capsule on cerebral ischemia-reperfusion injury in rats. JOURNAL OF ETHNOPHARMACOLOGY 2018; 211:348-357. [PMID: 28986333 DOI: 10.1016/j.jep.2017.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/13/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danhong Injection (DHI) and Naoxintong Capsule (NXT) are renowned traditional Chinese medicine in China. The drug combination of DHI and NXT is frequently applied for the treatment of cardiovascular and cerebrovascular diseases in clinic. However, there had been no pharmacological experiment studies of interaction between DHI and NXT. Due to the drug interactions, exploring their interaction profile is of great importance. MATERIAL AND METHODS In this study, focal cerebral I/R injury in adult male Sprague-Dawley rats were induced by transient middle cerebral artery occlusion (tMCAO) for 1h followed by reperfusion. Rats were divided into 5 groups: sham group, ischemia reperfusion untreated group (IRU), DHI group (DHI 10mL/kg/d), NXT group (NXT 0.5g/kg/d), DHI plus NXT group (DHI-NXT, DHI 10mL/kg/d plus NXT 0.5g/kg/d). All drug-treated groups were respectively successive administrated for 7 days after ischemia/ reperfusion (I/R) injury. The effects on rat neurological function were estimated by neurological defect scores. Brain infarct volumes were determined based on 2, 3, 5-triphenyltetrazolium chloride (TTC) staining. Pathological changes in brain tissues were observed using hematoxylin and eosin (H&E) staining and transmission electron microscope (TEM). Levels of nitric oxide (NO), granulocyte colony-stimulating factor (G-CSF) and granulocyte macrophage colony-stimulating factor (GM-CSF) in serum were determined with enzyme-linked immunosorbent assay (ELISA). Immunohisto-chemistry and Western blot were used to detect the expressions of basic fibroblast growth factor (bFGF), von Willebrand factor-microvessel vascular density (vWF-MVD), vascular endothelial cell growth factor (VEGF), transforming growth factor-β1 (TGF-β1), angiogenin-1 (Ang-1), angiogenin-2 (Ang-2) and platelet derived growth factor (PDGF) at day 7 after ischemia/reperfusion (I/R) injury. RESULTS Compared with IRU group and mono-therapy group (DHI group or NXT group), Danhong Injection combined with Naoxintong Capsule (DHI-NXT) group significantly ameliorated neurological deficits scores, infarct volume and pathological change, significantly decreased the overexpression of NO and the level of Ang-1, significantly increased the expressions of VEGF, Ang-2, G-CSF, GM-CSF, bFGF, PDGF, vWF, TGF-β1. CONCLUSION The protective benefits on rat brain against I/R injury were clearly produced when DHI and NXT were used in combination, which provided rational guidance for clinical combined application of DHI and NXT, and this protection maybe associated with the up-regulation expressions of the related chemokines and growth factors of angiogenesis.
Collapse
Affiliation(s)
- Jiayang Wan
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haofang Wan
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Rongbin Yang
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
17
|
Network pharmacology exploration reveals endothelial inflammation as a common mechanism for stroke and coronary artery disease treatment of Danhong injection. Sci Rep 2017; 7:15427. [PMID: 29133791 PMCID: PMC5684234 DOI: 10.1038/s41598-017-14692-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/09/2017] [Indexed: 12/17/2022] Open
Abstract
Although Danhong injection (DHI) is the most widely prescribed Chinese medicine for both stroke and coronary artery disease (CAD), its underlying common molecular mechanisms remain unclear. An integrated network pharmacology and experimental verification approach was used to decipher common pharmacological mechanisms of DHI on stroke and CAD treatment. A compound-target-disease & function-pathway network was constructed and analyzed, indicating that 37 ingredients derived from DH (Salvia miltiorrhiza Bge., Flos Carthami tinctorii and DHI) modulated 68 common targets shared by stroke and CAD. In-depth network analysis results of the top diseases, functions, pathways and upstream regulators implied that a common underlying mechanism linking DHI’s role in stroke and CAD treatment was inflammatory response in the process of atherosclerosis. Experimentally, DHI exerted comprehensive anti-inflammatory effects on LPS, ox-LDL or cholesterol crystal-induced NF-κB, c-jun and p38 activation, as well as IL-1β, TNF-α, and IL-10 secretion in vascular endothelial cells. Ten of 14 predicted ingredients were verified to have significant anti-inflammatory activities on LPS-induced endothelial inflammation. DHI exerts pharmacological efficacies on both stroke and CAD through multi-ingredient, multi-target, multi-function and multi-pathway mode. Anti-endothelial inflammation therapy serves as a common underlying mechanism. This study provides a new understanding of DHI in clinical application on cardiovascular and cerebrovascular diseases.
Collapse
|
18
|
Chao J, Dai Y, Verpoorte R, Lam W, Cheng YC, Pao LH, Zhang W, Chen S. Major achievements of evidence-based traditional Chinese medicine in treating major diseases. Biochem Pharmacol 2017. [PMID: 28636884 DOI: 10.1016/j.bcp.2017.06.123] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A long history of use and extensive documentation of the clinical practices of traditional Chinese medicine resulted in a considerable number of classical preparations, which are still widely used. This heritage of our ancestors provides a unique resource for drug discovery. Already, a number of important drugs have been developed from traditional medicines, which in fact form the core of Western pharmacotherapy. Therefore, this article discusses the differences in drug development between traditional medicine and Western medicine. Moreover, the article uses the discovery of artemisinin as an example that illustrates the "bedside-bench-bedside" approach to drug discovery to explain that the middle way for drug development is to take advantage of the best features of these two distinct systems and compensate for certain weaknesses in each. This article also summarizes evidence-based traditional medicines and discusses quality control and quality assessment, the crucial steps in botanical drug development. Herbgenomics may provide effective tools to clarify the molecular mechanism of traditional medicines in the botanical drug development. The totality-of-the-evidence approach used by the U.S. Food and Drug Administration for botanical products provides the directions on how to perform quality control from the field throughout the entire production process.
Collapse
Affiliation(s)
- Jung Chao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing; Graduate Institute of Health-Industry Technology, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City; Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung
| | - Yuntao Dai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing
| | - Robert Verpoorte
- Natural Products Laboratory, Institute of Biology, Leiden University, Leiden
| | - Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT
| | - Li-Heng Pao
- Graduate Institute of Health-Industry Technology, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City
| | - Wei Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing.
| |
Collapse
|