1
|
Saadoun S, Asif H, Papadopoulos MC. The concepts of Intra Spinal Pressure (ISP), Intra Thecal Pressure (ITP), and Spinal Cord Perfusion Pressure (SCPP) in acute, severe traumatic spinal cord injury: Narrative review. BRAIN & SPINE 2024; 4:103919. [PMID: 39654909 PMCID: PMC11626061 DOI: 10.1016/j.bas.2024.103919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 12/12/2024]
Abstract
There is increasing interest in monitoring pressure from the injured spinal cord to guide the management of patients with acute, severe traumatic spinal cord injuries (TSCI). This is analogous to monitoring intracranial pressure and cerebral perfusion pressure in traumatic brain injury (TBI). Here, we explore key concepts in this field and novel therapies that are emerging from these ideas. We argue that the Monro-Kellie doctrine, a fundamental principle in TBI, may also apply to TSCI as follows: The injured cord swells, initially displacing surrounding cerebrospinal fluid (CSF) that prevents a rise in spinal cord pressure; once the CSF space is exhausted, the spinal cord pressure at the injury site rises. The spinal Monro-Kellie doctrine allows us to define novel concepts to guide the management of TSCI based on principles employed in the management of TBI such as intraspinal pressure (ISP), intrathecal pressure (ITP), spinal cord perfusion pressure (SCPP), spinal pressure reactivity index (sPRx), and optimum SCPP (SCPPopt). Draining lumbar CSF and expansion duroplasty are currently undergoing clinical trials as novel therapies for TSCI. We conclude that there is acknowledgement that blood pressure targets applied to all TSCI patients are inadequate. Current research aims to develop individualised management based on ISP/ITP and SCPP monitoring. These techniques are experimental. A key controversy is whether the spinal cord pressure is best measured from the injury site (ISP) or from the lumbar cerebrospinal fluid (ITP).
Collapse
Affiliation(s)
- Samira Saadoun
- Academic Neurosurgery Unit, Neuroscience and Cell Biology Research Institute, St. George's, University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| | - Hasan Asif
- Academic Neurosurgery Unit, Neuroscience and Cell Biology Research Institute, St. George's, University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| | - Marios C. Papadopoulos
- Academic Neurosurgery Unit, Neuroscience and Cell Biology Research Institute, St. George's, University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| |
Collapse
|
2
|
Kheram N, Boraschi A, Aguirre J, Farshad M, Pfender N, Curt A, Schubert M, Kurtcuoglu V, Zipser CM. Cerebrospinal fluid pressure dynamics across the intra- and postoperative setting: Retrospective study of a spine surgery cohort. J Clin Neurosci 2024; 128:110803. [PMID: 39163699 DOI: 10.1016/j.jocn.2024.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
Timely and sufficient decompression are critical objectives in degenerative cervical myelopathy (DCM) and spinal cord injury (SCI). We previously investigated intraoperative cerebrospinal fluid pressure (CSFP) for determining surgical outcomes. However, confounding factors during the intra- and postoperative setting need consideration. These are related to type of respiration (i.e., artificial vs. natural) and anesthesia, which affect CSFP dynamics through the interaction between the cardiorespiratory system and the CSF compartment. This retrospective cohort study (NCT02170155) aims to systematically investigate these factors to facilitate CSFP interpretation. CSFP was continuously measured through a lumbar catheter, intra- and postoperatively, in 21 patients with DCM undergoing decompression surgery. Mean CSFP and cardiac-driven CSFP peak-to-valley amplitude (CSFPp) were analyzed throughout the perioperative period, including the immediate extubation period in eight patients. Intraoperative mean CSFP had a median value and {interquartile range} of 10.8 {5.5} mmHg and increased 1.6-fold to 16.9 {7.1} mmHg postoperatively (p < 0.001). CSFPp increased 3-fold from 0.6 {0.7} to 1.8 {2.5} mmHg (p = 0.001). Increased CSFP persisted overnight. During extubation, there was a notable increase in CSFP and CSFPp of 14.0 {5.8} and 5.1 {3.1} mmHg, respectively. From case-based analysis, this was attributed to an arterial pCO2 increase. There was no correlation between respirator settings and CSFP metrics. There were distinct and quantifiable changes in CSFP dynamics from the intra- to postoperative setting related to type of respiration, anesthesia, and level of consciousness. When monitoring CSFP dynamics in spine surgery across these settings, cardiorespiratory factors must be controlled for.
Collapse
Affiliation(s)
- Najmeh Kheram
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland; University Spine Center, Balgrist University Hospital, Zurich, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Andrea Boraschi
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - José Aguirre
- University Spine Center, Balgrist University Hospital, Zurich, Switzerland; Department of Anesthesiology, Balgrist University Hospital, Zurich, Switzerland
| | - Mazda Farshad
- University Spine Center, Balgrist University Hospital, Zurich, Switzerland
| | - Nikolai Pfender
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland; University Spine Center, Balgrist University Hospital, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland; University Spine Center, Balgrist University Hospital, Zurich, Switzerland
| | - Martin Schubert
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland; University Spine Center, Balgrist University Hospital, Zurich, Switzerland
| | | | - Carl M Zipser
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland; University Spine Center, Balgrist University Hospital, Zurich, Switzerland.
| |
Collapse
|
3
|
Leary OP, Shaaya EA, Chernysh AA, Seidler M, Sastry RA, Persad-Paisley E, Zhu M, Gokaslan ZL, Oyelese AA, Beland MD, Fridley JS. Microbubble Contrast-Enhanced Transcutaneous Ultrasound Enables Real-Time Spinal Cord Perfusion Monitoring Following Posterior Cervical Decompression. World Neurosurg 2024; 189:e404-e410. [PMID: 38901475 DOI: 10.1016/j.wneu.2024.06.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Ultrasound imaging is inexpensive, portable, and widely available. The development of a real-time transcutaneous spinal cord perfusion monitoring system would allow more precise targeting of mean arterial pressure goals following acute spinal cord injury (SCI). There has been no prior demonstration of successful real-time cord perfusion monitoring in humans. METHODS Four adult patients who had undergone posterior cervical decompression and instrumentation at a single center were enrolled into this prospective feasibility study. All participants had undergone cervical laminectomies spanning ≥2 contiguous levels ≥2 months prior to inclusion with no history of SCI. The first 2 underwent transcutaneous ultrasound without contrast and the second 2 underwent contrast-enhanced ultrasound (CEUS) with intravenously injected microbubble contrast. RESULTS Using noncontrast ultrasound with or without Doppler (n = 2), the dura, spinal cord, and vertebral bodies were apparent however ultrasonography was insufficient to discern intramedullary perfusion or clear white-gray matter differentiation. With application of microbubble contrast (n = 2), it was possible to quantify differential spinal cord perfusion within and between cross-sectional regions of the cord. Further, it was possible to quantify spinal cord hemodynamic perfusion using CEUS by measuring peak signal intensity and the time to peak signal intensity after microbubble contrast injection. Time-intensity curves were generated and area under the curves were calculated as a marker of tissue perfusion. CONCLUSIONS CEUS is a viable platform for monitoring real-time cord perfusion in patients who have undergone prior cervical laminectomies. Further development has the potential to change clinical management acute SCI by tailoring treatments to measured tissue perfusion parameters.
Collapse
Affiliation(s)
- Owen P Leary
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA.
| | - Elias A Shaaya
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Alexander A Chernysh
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Michael Seidler
- Department of Diagnostic Imaging, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Rahul A Sastry
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Elijah Persad-Paisley
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Michelle Zhu
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Ziya L Gokaslan
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Adetokunbo A Oyelese
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Michael D Beland
- Department of Diagnostic Imaging, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Jared S Fridley
- Department of Neurosurgery, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
4
|
Alvi MA, Pedro KM, Quddusi AI, Fehlings MG. Advances and Challenges in Spinal Cord Injury Treatments. J Clin Med 2024; 13:4101. [PMID: 39064141 PMCID: PMC11278467 DOI: 10.3390/jcm13144101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition that is associated with long-term physical and functional disability. Our understanding of the pathogenesis of SCI has evolved significantly over the past three decades. In parallel, significant advances have been made in optimizing the management of patients with SCI. Early surgical decompression, adequate bony decompression and expansile duraplasty are surgical strategies that may improve neurological and functional outcomes in patients with SCI. Furthermore, advances in the non-surgical management of SCI have been made, including optimization of hemodynamic management in the critical care setting. Several promising therapies have also been investigated in pre-clinical studies, with some being translated into clinical trials. Given the recent interest in advancing precision medicine, several investigations have been performed to delineate the role of imaging, cerebral spinal fluid (CSF) and serum biomarkers in predicting outcomes and curating individualized treatment plans for SCI patients. Finally, technological advancements in biomechanics and bioengineering have also found a role in SCI management in the form of neuromodulation and brain-computer interfaces.
Collapse
Affiliation(s)
- Mohammed Ali Alvi
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
| | - Karlo M. Pedro
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
- Department of Surgery and Spine Program, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Ayesha I. Quddusi
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
| | - Michael G. Fehlings
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; (M.A.A.); (K.M.P.); (A.I.Q.)
- Department of Surgery and Spine Program, University of Toronto, Toronto, ON M5T 1P5, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
5
|
Adegeest C, Moayeri N, Muijs S, ter Wengel P. Spinal cord injury: Current trends in acute management. BRAIN & SPINE 2024; 4:102803. [PMID: 38618228 PMCID: PMC11010802 DOI: 10.1016/j.bas.2024.102803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/05/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Introduction Traumatic spinal cord injury (tSCI) is a profoundly debilitating condition necessitating prompt intervention. However, the optimal acute treatment strategy remains a subject of debate. Research question The aim of this overview is to elucidate prevailing trends in the acute tSCI management. Material and Methods We provided an overview using peer-reviewed studies. Results Early surgical treatment (<24h after trauma) appears beneficial compared to delayed surgery. Nonetheless, there is insufficient evidence supporting a positive influence of ultra-early surgery on neurological outcome in tSCI. Furthermore, the optimal surgical approach to decompress the spinal cord remains unclear. These uncertainties extend to a growing aging population suffering from central cord syndrome (CCS). Additionally, there is a paucity of evidence supporting the beneficial effects of strict hemodynamic management. Discussion and Conclusion This overview highlights the current literature on surgical timing, surgical techniques and hemodynamic management during the acute phase of tSCI. It also delves into considerations specific to the elderly population experiencing CCS.
Collapse
Affiliation(s)
- C.Y. Adegeest
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, the Netherlands
- Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - N. Moayeri
- Department of Neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - S.P.J. Muijs
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - P.V. ter Wengel
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, the Netherlands
| |
Collapse
|
6
|
Ko CC, Lee PH, Lee JS, Lee KZ. Spinal decompression surgery may alleviate vasopressor-induced spinal hemorrhage and extravasation during acute cervical spinal cord injury in rats. Spine J 2024; 24:519-533. [PMID: 37793474 DOI: 10.1016/j.spinee.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Cervical spinal injury often disrupts the supraspinal vasomotor pathways projecting to the thoracic sympathetic preganglionic neurons, leading to cardiovascular dysfunction. The current guideline is to maintain the mean arterial blood pressure at 85 to 90 mmHg using a vasopressor during the first week of the injury. Some studies have demonstrated that this treatment might be beneficial to alleviate secondary injury and improve neurological outcomes; however, elevation of blood pressure may exacerbate spinal hemorrhage, extravasation, and edema, exacerbating the initial injury. PURPOSE The present study was designed to (1) examine whether vasopressor administration exacerbates spinal hemorrhage and extravasation; (2) evaluate whether spinal decompression surgery relieves vasopressor-induced spinal hemorrhage and extravasation. STUDY DESIGN In vivo animal study. METHODS Animals received a saline solution or a vasopressor (phenylephrine hydrochloride, 500 or 1000 μg/kg, 7 mL/kg/h) after mid-cervical contusion with or without spinal decompression (ie, incision of the dura and arachnoid mater). Spinal cord hemorrhage and extravasation were examined by expression of Evans blue within the spinal cord section. RESULTS The results demonstrated that cervical spinal contusion significantly reduced the mean arterial blood pressure and induced spinal hemorrhage and extravasation. Phenylephrine infusion significantly elevated the mean arterial blood pressure to the preinjury level within 15 to 60 minutes postcontusion; however, spinal hemorrhage and extravasation were more extensive in animals that received phenylephrine than in those that received saline. Notably, spinal decompression mitigated spinal hemorrhage and extravasation in contused rats who received phenylephrine. CONCLUSIONS These data indicate that, although phenylephrine can prevent hypotension after cervical spinal injury, it also causes excess spinal hemorrhage and extravasation. CLINICAL SIGNIFICANCE Spinal decompressive surgery seemed to minimize the side effect of phenylephrine as vasopressor treatment during acute spinal cord injury.
Collapse
Affiliation(s)
- Chia-Chen Ko
- Department of Biological Sciences, National Sun Yat-sen University, No. 70, Lien-Hai Rd., Kaohsiung city 804, Taiwan
| | - Po-Hsuan Lee
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, No. 138, Sheng-Li Rd., Tainan city 704, Taiwan
| | - Jung-Shun Lee
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, No. 138, Sheng-Li Rd., Tainan city 704, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, No.1, University Rd., Tainan city 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Rd., Tainan city 701, Taiwan
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, No. 70, Lien-Hai Rd., Kaohsiung city 804, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Rd., Kaohsiung city 807, Taiwan.
| |
Collapse
|
7
|
Asif H, Tsan SEH, Zoumprouli A, Papadopoulos MC, Saadoun S. Evolving trends in the surgical, anaesthetic, and intensive care management of acute spinal cord injuries in the UK. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:1213-1222. [PMID: 38217717 DOI: 10.1007/s00586-023-08085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 01/15/2024]
Abstract
PURPOSE We surveyed the treatment of acute spinal cord injuries in the UK and compared current practices with 10 years ago. METHODS A questionnaire survey was conducted amongst neurosurgeons, neuroanaesthetists, and neurointensivists that manage patients with acute spinal cord injuries. The survey gave two scenarios (complete and incomplete cervical spinal cord injuries). We obtained opinions on the speed of transfer, timing and aim of surgery, choice of anaesthetic, intraoperative monitoring, targets for physiological parameters, and drug treatments. RESULTS We received responses from 78.6% of UK units that manage acute spinal cord injuries (33 neurosurgeons, 56 neuroanaesthetists/neurointensivists). Most neurosurgeons operate within 12 h for incomplete (82%) and complete (64%) injuries. There is a significant shift from 10 years ago, when only 61% (incomplete) and 30% (complete) of neurosurgeons operated within 12 h. The preferred anaesthetic technique in 2022 is total intravenous anaesthesia (TIVA), used by 69% of neuroanaesthetists. Significantly more intraoperative monitoring is now used at least sometimes, including bispectral index (91%), non-invasive cardiac output (62%), and neurophysiology (73-77%). Methylprednisolone is no longer used by surgeons. Achieving at least 80 mmHg mean arterial blood pressure is recommended by 70% neurosurgeons, 62% neuroanaesthetists, and 75% neurointensivists. CONCLUSIONS Between 2012 and 2022, there was a paradigm shift in managing acute spinal cord injuries in the UK with earlier surgery and more intraoperative monitoring. Variability in practice persists due to lack of high-quality evidence and consensus guidelines.
Collapse
Affiliation(s)
- Hasan Asif
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Institute, St. George's, University of London, London, SW17 0RE, UK
| | | | - Argyro Zoumprouli
- Neurointensive Care Unit, St. George's Hospital, London, SW17 0QT, UK
| | - Marios C Papadopoulos
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Institute, St. George's, University of London, London, SW17 0RE, UK
| | - Samira Saadoun
- Academic Neurosurgery Unit, Molecular and Clinical Sciences Institute, St. George's, University of London, London, SW17 0RE, UK.
| |
Collapse
|
8
|
Jeffery ND, Rossmeisl JH, Harcourt-Brown TR, Granger N, Ito D, Foss K, Chase D. Randomized Controlled Trial of Durotomy as an Adjunct to Routine Decompressive Surgery for Dogs With Severe Acute Spinal Cord Injury. Neurotrauma Rep 2024; 5:128-138. [PMID: 38414780 PMCID: PMC10898236 DOI: 10.1089/neur.2023.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Although many interventions for acute spinal cord injury (SCI) appear promising in experimental models, translation directly from experimental animals to human patients is a large step that can be problematic. Acute SCI occurs frequently in companion dogs and may provide a model to ease translation. Recently, incision of the dura has been highlighted in both research animals and human patients as a means of reducing intraspinal pressure, with a view to improving perfusion of the injured tissue and enhancing functional recovery. Observational clinical data in humans and dogs support the notion that it may also improve functional outcome. Here, we report the results of a multi-center randomized controlled trial of durotomy as an adjunct to traditional decompressive surgery for treatment of severe thoracolumbar SCI caused by acute intervertebral disc herniation in dogs. Sample-size calculation was based on the proportion of dogs recovering ambulation improving from an expected 55% in the traditional surgery group to 70% in the durotomy group. Over a 3.5-year period, we enrolled 140 dogs, of which 128 had appropriate duration of follow-up. Overall, 65 (51%) dogs recovered ambulation. Recovery in the traditional decompression group was 35 of 62 (56%) dogs, and in the durotomy group 30 of 66 (45%) dogs, associated with an odds ratio of 0.643 (95% confidence interval: 0.320-1.292) and z-score of -1.24. This z-score indicates trial futility to reach the target 15% improvement over traditional surgery, and the trial was terminated at this stage. We conclude that durotomy is ineffective in improving functional outcome for severe acute thoracolumbar SCI in dogs. In the future, these data can be compared with similar data from clinical trials on duraplasty in human patients and will aid in determining the predictive validity of the "companion dog model" of acute SCI.
Collapse
Affiliation(s)
- Nick D. Jeffery
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| | - John H. Rossmeisl
- Department of Small Animal Clinical Sciences, VA-MD College of Veterinary Medicine, Blacksburg, Virginia, USA
| | | | | | - Daisuke Ito
- Nihon University College of Bioresource Sciences Department of Veterinary Medicine, Fujisawa, Japan
| | - Kari Foss
- Department of Veterinary Clinical Medicine, University of Illinois Urbana–Champaign, Champaign, Illinois, USA
| | - Damian Chase
- Veterinary Specialists Aotearora, Auckland, New Zealand
| |
Collapse
|
9
|
Sabirov D, Ogurcov S, Shulman I, Kabdesh I, Garanina E, Sufianov A, Rizvanov A, Mukhamedshina Y. Comparative Analysis of Cytokine Profiles in Cerebrospinal Fluid and Blood Serum in Patients with Acute and Subacute Spinal Cord Injury. Biomedicines 2023; 11:2641. [PMID: 37893015 PMCID: PMC10604120 DOI: 10.3390/biomedicines11102641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Cytokines are actively involved in the regulation of the inflammatory and immune responses and have crucial importance in the outcome of spinal cord injuries (SCIs). Examining more objective and representative indicators of the patient's condition is still required to reveal the fundamental patterns of the abovementioned posttraumatic processes, including the identification of changes in the expression of cytokines. METHODS We performed a dynamic (3, 7, and 14 days post-injury (dpi)) extended multiplex analysis of cytokine profiles in both CSF and blood serum of SCI patients with baseline American Spinal Injury Association Impairment Scale grades of A. RESULTS The data obtained showed a large elevation of IL6 (>58 fold) in CSF and IFN-γ (>14 fold) in blood serum at 3 dpi with a downward trend as the post-traumatic period increases. The level of cytokine CCL26 was significantly elevated in both CSF and blood serum at 3 days post-SCI, while other cytokines did not show the same trend in the different biosamples. CONCLUSIONS The dynamic changes in cytokine levels observed in our study can explore the relationships with the SCI region and injury severity, paving the way for a better understanding of the pathophysiology of SCI and potentially more targeted and personalized therapeutic interventions.
Collapse
Affiliation(s)
- Davran Sabirov
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Sergei Ogurcov
- Neurosurgical Department No. 2, Republic Clinical Hospital, 420138 Kazan, Russia
| | - Ilya Shulman
- Neurosurgical Department No. 2, Republic Clinical Hospital, 420138 Kazan, Russia
| | - Ilyas Kabdesh
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Ekaterina Garanina
- Department of Genetics, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Albert Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- The Research and Educational Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN), 117198 Moscow, Russia
| | - Albert Rizvanov
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Yana Mukhamedshina
- OpenLab “Gene and Cell Technologies”, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|