Kurotani A, Kakiuchi T, Kikuchi J. Solubility Prediction from Molecular Properties and Analytical Data Using an In-phase Deep Neural Network (Ip-DNN).
ACS OMEGA 2021;
6:14278-14287. [PMID:
34124451 PMCID:
PMC8190808 DOI:
10.1021/acsomega.1c01035]
[Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Materials informatics is an emerging field that allows us to predict the properties of materials and has been applied in various research and development fields, such as materials science. In particular, solubility factors such as the Hansen and Hildebrand solubility parameters (HSPs and SP, respectively) and Log P are important values for understanding the physical properties of various substances. In this study, we succeeded at establishing a solubility prediction tool using a unique machine learning method called the in-phase deep neural network (ip-DNN), which starts exclusively from the analytical input data (e.g., NMR information, refractive index, and density) to predict solubility by predicting intermediate elements, such as molecular components and molecular descriptors, in the multiple-step method. For improving the level of accuracy of the prediction, intermediate regression models were employed when performing in-phase machine learning. In addition, we developed a website dedicated to the established solubility prediction method, which is freely available at "http://dmar.riken.jp/matsolca/".
Collapse