1
|
Manasa V, Shubangi S, Jose A, Rame Gowda R, Serva Peddha M, Krishnaswamy K. Nanoencapsulation of apocynin and vanillic acid extracted from Picrorhiza kurroa Royle ex Benth plant roots and its characterisation. Heliyon 2024; 10:e26156. [PMID: 38390167 PMCID: PMC10881362 DOI: 10.1016/j.heliyon.2024.e26156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Picrorhiza kurroa Royle ex Benth (P.kurroa) is an important medicinal plant in the ayurvedic system for treating various liver and inflammatory conditions. The present study aimed to extract the phytocompounds from various extracts (Acetone, Chloroform, Ethanol, Ethyl acetate, Hexane, and Methanol) of P. kurroa. Further, the major phytocompounds were nano-encapsulated by PLGA (Poly-lactic-co-glycolic acid) method and characterized to enhance activity towards the target. The highest polyphenolic value was found to be 323.2 ± 16.6 and 316.3 ± 12.1 μg GAEq./mg in ethanolic and methanolic extracts. The highest flavonoid value was found to be 280.3 ± 19.8 and 300.8 ± 15.2 in ethanolic and methanolic extracts μg QEq./mg. P. kurroa exhibited DPPH radical scavenging with IC50 of 38.2 ± 1.1 and 43.7 ± 1.8 μg/mL and also showed potent ferric reducing power and total antioxidant activities. The major phytocompounds, such as apocynin (AP) and vanillic acid (VA), were confirmed using HPLC. Further, the nano-encapsulation of apocynin and vanillic acid successfully achieved by PLGA methods. The average particle size of nano-encapsulated apocynin, vanillic acid is 350 nm, 204.4 nm, and zeta potential were -25.3 mv and -11.2 mv. Nanoformulations showed an apocynin and vanillic acid encapsulation efficiency of 93.6% and 93.3%, respectively. SEM and AFM confirmed the round and smooth morphology of the nanoparticles. The results of XRD confirmed the amorphous nature of nanoformulations. FTIR technique confirm the presence of biomolecules inside the polymer. The thermal stability of nanoformulations determined by DSC analysis showed endothermic peak. The prepared and characterization apocynin, vanillic acid nanoparticles revealed their good quality index, suggesting that potential use in pharmacy and phytotherapy as a source of natural antioxidant.
Collapse
Affiliation(s)
- Vallamkondu Manasa
- Department of Biochemistry, Council of Scientific and Industrial Research - Central Food Technological Research Institute, Mysore, 570 020, India
| | - Sivathasan Shubangi
- Department of Biochemistry, Council of Scientific and Industrial Research - Central Food Technological Research Institute, Mysore, 570 020, India
| | - Anitta Jose
- Department of Biochemistry, Council of Scientific and Industrial Research - Central Food Technological Research Institute, Mysore, 570 020, India
| | - Rakshitha Rame Gowda
- Department of Biochemistry, Council of Scientific and Industrial Research - Central Food Technological Research Institute, Mysore, 570 020, India
| | - Muthukumar Serva Peddha
- Department of Biochemistry, Council of Scientific and Industrial Research - Central Food Technological Research Institute, Mysore, 570 020, India
| | - Krupashree Krishnaswamy
- Department of Biochemistry, Council of Scientific and Industrial Research - Central Food Technological Research Institute, Mysore, 570 020, India
| |
Collapse
|
2
|
Applicability of liquid and supercritical fluid chromatographic separation techniques with diode array ultraviolet detection for forensic analysis. Forensic Chem 2021. [DOI: 10.1016/j.forc.2021.100359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
Atlabachew M, Abebe A, Alemneh Wubieneh T, Tefera Habtemariam Y. Rapid and simultaneous determination of trigonelline, caffeine, and chlorogenic acid in green coffee bean extract. Food Sci Nutr 2021; 9:5028-5035. [PMID: 34532014 PMCID: PMC8441463 DOI: 10.1002/fsn3.2456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/10/2021] [Accepted: 06/20/2021] [Indexed: 11/10/2022] Open
Abstract
A simple, inexpensive, and rapid method for simultaneous determination of trigonelline, caffeine, and chlorogenic acid from green coffee bean extract was proposed based on salting-out assisted liquid-liquid extraction, using QuEChERS salt and acetonitrile followed by UV-Vis analysis. The proposed method represents acceptable linearity for trigonelline (0.9978), caffeine (0.9995), and chlorogenic acid (0.9996) with excellent correlation (0.93 and 0.83) for trigonelline and caffeine, respectively, when compared to RP-HPLC-DAD. The proposed method could be used in coffee industries for quality control and geographical origin traceability studies of green coffee samples.
Collapse
Affiliation(s)
| | - Atakilt Abebe
- Chemistry DepartmentScience CollegeBahir Dar UniversityBahir DarEthiopia
| | | | | |
Collapse
|
4
|
Overview of the major classes of new psychoactive substances, psychoactive effects, analytical determination and conformational analysis of selected illegal drugs. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
The misuse of psychoactive substances is attracting a great deal of attention from the general public. An increase use of psychoactive substances is observed among young people who do not have enough awareness of the harmful effects of these substances. Easy access to illicit drugs at low cost and lack of effective means of routine screening for new psychoactive substances (NPS) have contributed to the rapid increase in their use. New research and evidence suggest that drug use can cause a variety of adverse psychological and physiological effects on human health (anxiety, panic, paranoia, psychosis, and seizures). We describe different classes of these NPS drugs with emphasis on the methods used to identify them and the identification of their metabolites in biological specimens. This is the first review that thoroughly gives the literature on both natural and synthetic illegal drugs with old known data and very hot new topics and investigations, which enables the researcher to use it as a starting point in the literature exploration and planning of the own research. For the first time, the conformational analysis was done for selected illegal drugs, giving rise to the search of the biologically active conformations both theoretically and using lab experiments.
Collapse
|
5
|
Shao Q, Hu W, Liu X, Zhou R, Wei Y. Separation of five bioactive compounds from Glycyrrhiza uralensis Fisch using a general three-liquid-phase flotation followed by preparative high-performance liquid chromatography. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2019.1655456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Qian Shao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Weilun Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Xuerui Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Rongfei Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
6
|
Ramos RM, Brandão PF, Rodrigues JA. Development of a SALLE-HPLC-FLD Analytical Method for the Simultaneous Determination of Ten Biogenic Amines in Cheese. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01730-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
7
|
Lo Faro AF, Di Trana A, La Maida N, Tagliabracci A, Giorgetti R, Busardò FP. Biomedical analysis of New Psychoactive Substances (NPS) of natural origin. J Pharm Biomed Anal 2019; 179:112945. [PMID: 31704129 DOI: 10.1016/j.jpba.2019.112945] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022]
Abstract
New psychoactive substances (NPS) can be divided into two main groups: synthetic molecules and active principles of natural origin. With respect to this latter group, a wide range of alkaloids contained in plants, mainly from Asia and South America, can be included in the class of NPS of natural origin. The majority NPS of natural origin presents stimulant and/or hallucinogenic effects (e.g. Catha edulis and Ayahuasca, respectively) while few of them show sedative and relaxing properties (e.g. kratom). Few information is available in relation to the analytical identification of psychoactive principles contained in the plant material. Moreover, to our knowledge, scarce data are present in literature, about the characterization and quantification of the parent drug in biological matrices from intoxication and fatality cases. In addition, the metabolism of natural active principles has not been yet fully investigated for most of the psychoactive substances from plant material. Consequently, their identification is not frequently performed and produced metabolites are often unknown. To fill this gap, we reviewed the currently available analytical methodologies for the identification and quantification of NPS of natural origin in plant material and, whenever possible, in conventional and non-conventional biological matrices of intoxicated and dead subjects. The psychoactive principles contained in the following plants were investigated: Areca catechu, Argyreia nervosa, Ayahuasca, Catha edulis, Ipomoea violacea, Mandragora officinarum, Mitragyna speciosa, Pausinystalia yohimbe, Piper methisticum, Psilocybe, Rivea corymbosa, Salvia divinorum, Sceletium tortuosum, Lactuca virosa. From the results obtained, it can be evidenced that although several analytical methods for the simultaneous quantification of different molecules from the same plants have been developed and validated, a comprehensive method to detect active compounds from different natural specimens both in biological and non-biological matrices is still lacking.
Collapse
Affiliation(s)
- Alfredo Fabrizio Lo Faro
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy
| | - Annagiulia Di Trana
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy
| | - Nunzia La Maida
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy
| | - Adriano Tagliabracci
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy
| | - Raffaele Giorgetti
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy
| | - Francesco Paolo Busardò
- Department of Excellence of Biomedical Sciences and Public Health, University "Politecnica delle Marche" of Ancona, Via Tronto 71, Ancona, Italy.
| |
Collapse
|
8
|
Gezahegn T, Tegegne B, Zewge F, Chandravanshi BS. Salting-out assisted liquid-liquid extraction for the determination of ciprofloxacin residues in water samples by high performance liquid chromatography-diode array detector. BMC Chem 2019; 13:28. [PMID: 31384776 PMCID: PMC6661818 DOI: 10.1186/s13065-019-0543-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Background The occurrence of emerging pollutants like pharmaceuticals and related compounds in the aquatic and terrestrial environments is of increasing concern. Ciprofloxacin is one of the pharmaceuticals which is active against a wide range of bacteria. The main objective of this research is to develop a simple method for the extraction and determination of ciprofloxacin residues in environmental water samples. Results A salting-out assisted liquid-liquid extraction (SALLE) method for the determination of ciprofloxacin in water samples by high-performance liquid chromatography with diode array detector (HPLC-DAD) was developed. The calibration curve was linear over the range of 0.1-100 μg/L with coefficient of determination (r2) of 0.9976. The limits of detection (LOD) and quantification (LOQ) of the method were 0.075 and 0.25 µg/L, respectively. The reproducibility in terms of relative standard deviation (% RSD) was less than 10%. The applicability of the developed method was investigated by analyzing tap water, bottled mineral water and waste water and demonstrated satisfactory recoveries in the ranges of 86.4-120%. Conclusion The method offered a number of features including wide linear range, good recovery, short analysis time, simple operation process and environmental friendly. The developed method can be utilized as an attractive alternative for the determination of ciprofloxacin residues in environmental water matrices.
Collapse
Affiliation(s)
- Teshome Gezahegn
- 1Department of Chemistry, College of Natural Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Bisratewongel Tegegne
- 1Department of Chemistry, College of Natural Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.,2Departement of Chemistry, College of Natural Sciences, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| | - Feleke Zewge
- 1Department of Chemistry, College of Natural Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Bhagwan Singh Chandravanshi
- 1Department of Chemistry, College of Natural Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
9
|
|
10
|
Pascali JP, Fais P, Vaiano F, Bertol E. Application of HRAM screening and LC–MS/MS confirmation of active pharmaceutical ingredient in “natural” herbal supplements. Forensic Sci Int 2018; 286:e28-e31. [DOI: 10.1016/j.forsciint.2018.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/04/2018] [Accepted: 03/08/2018] [Indexed: 02/02/2023]
|
11
|
Couto RAS, Gonçalves LM, Carvalho F, Rodrigues JA, Rodrigues CMP, Quinaz MB. The Analytical Challenge in the Determination of Cathinones, Key-Players in the Worldwide Phenomenon of Novel Psychoactive Substances. Crit Rev Anal Chem 2018; 48:372-390. [DOI: 10.1080/10408347.2018.1439724] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rosa A. S. Couto
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Luís Moreira Gonçalves
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Félix Carvalho
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José A. Rodrigues
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - M. Beatriz Quinaz
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|