1
|
Liu R, Ma L, Meng X, Zhang S, Cao M, Kong D, Chen X, Li Z, Pang X, Bo W. Volatile Profile Characterization of Jujube Fruit via HS-SPME-GC/MS and Sensory Evaluation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1517. [PMID: 38891325 PMCID: PMC11174767 DOI: 10.3390/plants13111517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Current research does not fully elucidate the key compounds and their mechanisms that define the aroma profile of fresh jujube fruits. Therefore, this study conducted a comprehensive analysis of both free and glycosidically bound aroma compounds in fresh jujube fruits of ten cultivars. Utilizing gas chromatography-mass spectrometry (GC-MS), we identified 76 volatile free aroma compounds and 19 glycosidically bound volatile compounds, with esters, aldehydes, and ketones emerging as the predominant volatile compounds in the jujube fruits. Odor activity value (OAV) analysis revealed that the primary aroma profile of the jujubes is characterized by fruity and fatty odors, with β-damascenone being a key contributor to the fruity aroma, and (E)-2-oct-en-1-al and nonanal significantly influencing the fatty aroma. Moreover, the integration of sensory evaluation and partial least squares regression (PLSR) analysis pinpointed octanal, (E)-2-oct-en-1-al, nonanal, β-damascenone, and pentanal as significant contributors to the jujube's characteristic aroma, while isoamyl acetate was identified as significantly influencing the fatty acid taste. This study not only underscores the complexity of the jujube aroma composition but also highlights the impact of environmental factors on aroma profiles, offering valuable insights into the sensory characteristics of jujube fruits.
Collapse
Affiliation(s)
- Ruojin Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (R.L.); (L.M.); (X.M.); (S.Z.); (X.P.)
| | - Ling Ma
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (R.L.); (L.M.); (X.M.); (S.Z.); (X.P.)
| | - Xiangyu Meng
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (R.L.); (L.M.); (X.M.); (S.Z.); (X.P.)
| | - Shuwei Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (R.L.); (L.M.); (X.M.); (S.Z.); (X.P.)
| | - Ming Cao
- National Foundation for Improved Cultivars of Chinese Jujube, Cangzhou 061000, China; (M.C.); (D.K.)
| | - Decang Kong
- National Foundation for Improved Cultivars of Chinese Jujube, Cangzhou 061000, China; (M.C.); (D.K.)
| | - Xuexun Chen
- Bureau of Forestry of Aohan, Chifeng 028000, China;
| | - Zhiqin Li
- Agricultural Comprehensive Service Center, Dong Lianhuayuan Town, Qianxi County, Tangshan 063000, China;
| | - Xiaoming Pang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (R.L.); (L.M.); (X.M.); (S.Z.); (X.P.)
| | - Wenhao Bo
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (R.L.); (L.M.); (X.M.); (S.Z.); (X.P.)
| |
Collapse
|
2
|
Dou Q, Liu W, Xiang P, Zhao J. Quantitative Analysis of Three Synthetic Cannabinoids MDMB-4en-PINACA, ADB-BUTINACA, and ADB-4en-PINACA by Thermal-Assisted Carbon Fiber Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2316-2322. [PMID: 37641897 DOI: 10.1021/jasms.3c00229] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Recently, synthetic cannabinoids (SCs) have emerged as new psychoactive substances (NPS) and have been frequently added to e-liquids, leading to their abuse. In order to detect SCs in e-liquids quickly and accurately, a thermal-assisted carbon fiber ionization mass spectrometry technique has been developed. The introduction of a heat source helps to reduce the matrix effects. The results indicate that the ratio of the slope of the matrix curve (e-liquids matrix) and the standard curve (methanol solution) for SCs analysis is close to 1, indicating a minimized matrix effect of this method. Furthermore, this method exhibits good quantitative ability when applied to real samples. It does not require sample pretreatment and is sensitive enough to directly quantify SCs in e-liquids. Our method is characterized by the ability to achieve rapid and direct quantitative analysis with minimized matrix effects. It provides a rapid and simple method for analyzing SCs in e-liquids.
Collapse
Affiliation(s)
- Quanlu Dou
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai 200063, China
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Wanhui Liu
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Ping Xiang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai 200063, China
| | - Junbo Zhao
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai 200063, China
| |
Collapse
|
3
|
Yuan L, Lao F, Shi X, Zhang D, Wu J. Effects of cold plasma, high hydrostatic pressure, ultrasound, and high-pressure carbon dioxide pretreatments on the quality characteristics of vacuum freeze-dried jujube slices. ULTRASONICS SONOCHEMISTRY 2022; 90:106219. [PMID: 36371874 PMCID: PMC9664403 DOI: 10.1016/j.ultsonch.2022.106219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/16/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Pretreatment combined with vacuum freeze-drying is an effective technique to extend the storage period of jujube fruits and reduce energy consumption and cost; however, the effects of pretreatment on the quality characteristics of jujube during vacuum freeze-drying remain unknown. In this study, the effects of cold plasma (CP), high hydrostatic pressure (HHP), ultrasound (US), high-pressure carbon dioxide (HPCD), and conventional blanching (BC) as pretreatments on the performance of vacuum freeze-dried jujube slices were investigated. The results indicated that the application of different pretreatments decreased the water activity and increased the rehydration capacity, owing to the pretreatment etching larger and more porous holes in the microstructure. Freeze-dried jujube slices pretreated with HPCD retained most of their quality characteristics (color, hardness, and volatile compounds), followed by the HHP- and US-pretreated samples, whereas samples pretreated with BC showed the greatest deterioration in quality characteristics, and hence, BC is not recommended as a pretreatment for freeze-dried jujube slices. Sensory evaluation based on hedonic analysis showed that jujube slices pretreated with HPCD and US were close to the control sample and scored highest. Compared to other pretreated samples and the control, freeze-dried jujube slices pretreated with HPCD showed the least degradation (4.93%) of cyclic adenosine monophosphate (cAMP), the highest contents of total phenol, total flavonoid, and l-ascorbic acid, and the highest antioxidant capacity. Partial least squares-discriminant analysis (PLS-DA) was performed to screen all the quality characteristic data of different pretreated samples, and 12 volatile compounds, including ethyl hexanoate and (E)-2-hexenal, along with color, l-ascorbic acid content, and cAMP content were found suitable to be used as discriminators for pretreated freeze-dried jujube slices. Therefore, non-thermal pretreatments, including HPCD, US, and HHP pretreatments, are promising techniques for the vacuum freeze-drying of jujube products.
Collapse
Affiliation(s)
- Lin Yuan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Xun Shi
- Haoxiangni Health Food Co., Ltd., Xinzheng 451100, China
| | - Donghao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
4
|
Using Solid-Phase Microextraction Coupled with Reactive Carbon Fiber Ionization-Mass Spectrometry for the Detection of Aflatoxin B1 from Complex Samples. SEPARATIONS 2022. [DOI: 10.3390/separations9080199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a common mycotoxin present in agricultural and food products. Therefore, rapid screening methods must be developed for AFB1 detection with high sensitivity and good selectivity. In this study, we developed an analytical method based on the combination of solid-phase microextraction (SPME) with carbon fiber ionization (CFI)-mass spectrometry (MS) to detect the presence of trace AFB1 from complex samples. A pencil lead (type 2B, length: ~2.5 cm) with a sharp end (diameter: ~150 μm) was used as the SPME fiber and the ionization emitter in CFI-MS analysis. Owing to the graphite structure of the pencil lead, AFB1 can be trapped on the pencil lead through π–π interactions. After adsorbing AFB1, the pencil lead was directly introduced in a pipette tip (length: ~0.7 cm; tip inner diameter: ~0.6 mm), placed close (~1 mm) to the inlet of the mass spectrometer, and applied with a high voltage (−4.5 kV) for in situ AFB1 elution and CFI-MS analysis. A direct electric contact on the SPME-CFI setup was not required. Followed by the introduction of an elution solvent (10 μL) (acetonitrile/ethanol/deionized water, 2:2:1 (v/v/v)) to the pipette tip, electrospray ionization was generated from the elution solvent containing AFB1 for CFI-MS analysis. A reactive SPME-CFI-MS strategy was employed to further identify AFB1 and improve elution capacity using our approach. Butylamine was added to the elution solvent, which was then introduced to the pipette tip inserted with the SPME fiber. Butylamine-derivatized AFB1 was readily generated and appeared in the resultant SPME-CFI mass spectrum. The lowest detectable concentration against AFB1 using our approach was ~1.25 nM. Our method can distinguish AFB1 from AFG1 in a mixture and can be used for the detection of trace AFB1 in complex peanut extract samples.
Collapse
|