1
|
Xu X, Luo S, Zhao X, Tang B, Zhang E, Liu J, Duan L. Computational analysis of PD-L1 dimerization mechanism induced by small molecules and potential dynamical properties. Int J Biol Macromol 2024; 265:130921. [PMID: 38492688 DOI: 10.1016/j.ijbiomac.2024.130921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
The design of small molecule inhibitors that target the programmed death ligand-1 (PD-L1) is a forefront issue in immune checkpoint blocking therapy. Small-molecule inhibitors have been shown to exert therapeutic effects by inducing dimerization of the PD-L1 protein, however, the specific mechanisms underlying this dimerization process remain largely unexplored. Furthermore, there is a notable lack of comparative studies examining the binding modes of structurally diverse inhibitors. In view of the research gaps, this work employed molecular dynamics simulations to meticulously examine the interactions between two distinct types of inhibitors and PD-L1 in both monomeric and dimeric forms, and predicted the dimerization mechanism. The results revealed that inhibitors initially bind to a PD-L1 monomer, subsequently attracting another monomer to form a dimer. Notably, symmetric inhibitors observed superior binding efficiency compared to other inhibitors. Key residues, including Ile54, Tyr56, Met115 and Tyr123 played a leading role in binding. Structurally, symmetric inhibitors were capable of thoroughly engaging the binding pocket, promoting a more symmetrical formation of PD-L1 dimers. Furthermore, symmetric inhibitors formed more extensive hydrophobic interactions with protein residues. The insights garnered from this research are expected to significantly contribute to the rational design and optimization of small molecule inhibitors targeting PD-L1.
Collapse
Affiliation(s)
- Xiaole Xu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xiaoyu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Bolin Tang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Enhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Jinxin Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
2
|
Donati G, D’Amore VM, Russomanno P, Cerofolini L, Amato J, Marzano S, Salobehaj M, Rizzo D, Assoni G, Carotenuto A, La Pietra V, Arosio D, Seneci P, Fragai M, Brancaccio D, Di Leva FS, Marinelli L. Theoretical and experimental studies on the interaction of biphenyl ligands with human and murine PD-L1: Up-to-date clues for drug design. Comput Struct Biotechnol J 2023; 21:3355-3368. [PMID: 37384351 PMCID: PMC10293680 DOI: 10.1016/j.csbj.2023.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023] Open
Abstract
Today it is widely recognized that the PD-1/PD-L1 axis plays a fundamental role in escaping the immune system in cancers, so that anti-PD-1/PD-L1 antibodies have been evaluated for their antitumor properties in more than 1000 clinical trials. As a result, some of them have entered the market revolutionizing the treatment landscape of specific cancer types. Nonetheless, a new era based on the development of small molecules as anti PD-L1 drugs has begun. There are, however, some limitations to advancing these compounds into clinical stages including the possible difficulty in counteracting the PD-1/PD-L1 interaction in vivo, the discrepancy between the in vitro IC50 (HTFR assay) and cellular EC50 (immune checkpoint blockade co-culture assay), and the differences in ligands' affinity between human and murine PD-L1, which can affect their preclinical evaluation. Here, an extensive theoretical study, assisted by MicroScale Thermophoresis binding assays and NMR experiments, was performed to provide an atomistic picture of the binding event of three representative biphenyl-based compounds in both human and murine PD-L1. Structural determinants of the species' specificity were unraveled, providing unprecedented details useful for the design of next generation anti-PD-L1 molecules.
Collapse
Affiliation(s)
- Greta Donati
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Vincenzo Maria D’Amore
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Pasquale Russomanno
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Linda Cerofolini
- Magnetic Resonance Center and Department of Chemistry, University of Florence and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Simona Marzano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Maria Salobehaj
- Magnetic Resonance Center and Department of Chemistry, University of Florence and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Domenico Rizzo
- Magnetic Resonance Center and Department of Chemistry, University of Florence and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Giulia Assoni
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Povo I-38123, Trento, Italy
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Valeria La Pietra
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche (CNR), Via C. Golgi 19, Milan 20133, Italy
| | - Pierfausto Seneci
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy
| | - Marco Fragai
- Magnetic Resonance Center and Department of Chemistry, University of Florence and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | | | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|