El-Abassy OM, Maged K, El-Henawee MM, Abd El-Hay SS. Development of eco-friendly spectrophotometric methods for analysis of metformin hydrochloride and linagliptin in presence of metformin toxic impurity in their pure and dosage forms: Validation, practicality and greenness studies.
SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024;
309:123844. [PMID:
38198995 DOI:
10.1016/j.saa.2024.123844]
[Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Metformin is considered as type 2 diabetes first line treatment according to American Diabetes Association and European Association. But, in some cases, di- or tri - therapy should be prescribed for glycemic management, prevention of the maximum dose side effects and induced effectiveness. Co-administration of Linagliptin with metformin has many benefits on diabetic patients such as decrease the possibility of hypoglycemia. For the first time, novel and reliable techniques were developed and verified for the concurrent quantification of metformin hydrochloride and linagliptin, while accounting for the existence of metformin toxic impurity 1-cyanoguanidine in their pure and dosage forms. Method (A) utilizes the zero-order spectrophotometric approach to quantitatively determine the concentration of linagliptin. The measurements are performed at a wavelength of 295 nm. The double divisor derivative ratio spectrophotometric method is used in Method (B) to measure the amounts of metformin and cyanoguanidine at 252 nm and 219 nm wavelengths, respectively. The spectrophotometric method (C) for determining metformin and cyanoguanidine at 252 nm and 223 nm, respectively, is based on the single divisor derivative ratio-zero crossing technique. The obtained findings were subjected to statistical comparison with the reported method, revealing no statistically significant differences. The Green Analytical Procedure Index (GAPI) and Analytical GREEnness Metric approach (AGREE) determined that these approaches had a high degree of environmental friendliness. Additionally, the proposed strategy was deemed to be practical according to the Blue Applicability Grade Index (BAGI) assessment tool.
Collapse