1
|
Rendulić T, Perpelea A, Ortiz JPR, Casal M, Nevoigt E. Mitochondrial membrane transporters as attractive targets for the fermentative production of succinic acid from glycerol in Saccharomyces cerevisiae. FEMS Yeast Res 2024; 24:foae009. [PMID: 38587863 PMCID: PMC11014245 DOI: 10.1093/femsyr/foae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024] Open
Abstract
Previously, we reported an engineered Saccharomyces cerevisiae CEN.PK113-1A derivative able to produce succinic acid (SA) from glycerol with net CO2 fixation. Apart from an engineered glycerol utilization pathway that generates NADH, the strain was equipped with the NADH-dependent reductive branch of the TCA cycle (rTCA) and a heterologous SA exporter. However, the results indicated that a significant amount of carbon still entered the CO2-releasing oxidative TCA cycle. The current study aimed to tune down the flux through the oxidative TCA cycle by targeting the mitochondrial uptake of pyruvate and cytosolic intermediates of the rTCA pathway, as well as the succinate dehydrogenase complex. Thus, we tested the effects of deletions of MPC1, MPC3, OAC1, DIC1, SFC1, and SDH1 on SA production. The highest improvement was achieved by the combined deletion of MPC3 and SDH1. The respective strain produced up to 45.5 g/L of SA, reached a maximum SA yield of 0.66 gSA/gglycerol, and accumulated the lowest amounts of byproducts when cultivated in shake-flasks. Based on the obtained data, we consider a further reduction of mitochondrial import of pyruvate and rTCA intermediates highly attractive. Moreover, the approaches presented in the current study might also be valuable for improving SA production when sugars (instead of glycerol) are the source of carbon.
Collapse
Affiliation(s)
- Toni Rendulić
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Andreea Perpelea
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | | | - Margarida Casal
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Elke Nevoigt
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
2
|
Carpenter AC, Feist AM, Harrison FS, Paulsen IT, Williams TC. Have you tried turning it off and on again? Oscillating selection to enhance fitness-landscape traversal in adaptive laboratory evolution experiments. Metab Eng Commun 2023; 17:e00227. [PMID: 37538933 PMCID: PMC10393799 DOI: 10.1016/j.mec.2023.e00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
Adaptive Laboratory Evolution (ALE) is a powerful tool for engineering and understanding microbial physiology. ALE relies on the selection and enrichment of mutations that enable survival or faster growth under a selective condition imposed by the experimental setup. Phenotypic fitness landscapes are often underpinned by complex genotypes involving multiple genes, with combinatorial positive and negative effects on fitness. Such genotype relationships result in mutational fitness landscapes with multiple local fitness maxima and valleys. Traversing local maxima to find a global maximum often requires an individual or sub-population of cells to traverse fitness valleys. Traversing involves gaining mutations that are not adaptive for a given local maximum but are necessary to 'peak shift' to another local maximum, or eventually a global maximum. Despite these relatively well understood evolutionary principles, and the combinatorial genotypes that underlie most metabolic phenotypes, the majority of applied ALE experiments are conducted using constant selection pressures. The use of constant pressure can result in populations becoming trapped within local maxima, and often precludes the attainment of optimum phenotypes associated with global maxima. Here, we argue that oscillating selection pressures is an easily accessible mechanism for traversing fitness landscapes in ALE experiments, and provide theoretical and practical frameworks for implementation.
Collapse
Affiliation(s)
- Alexander C. Carpenter
- Department of Molecular Sciences and ARC Centre of Excellence in Synthetic Biology, Centre Headquarters, Macquarie University, Sydney, SW, 2109, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT, 2601, Australia
| | - Adam M. Feist
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Joint BioEnergy Institute, 5885 Hollis Street, 4th Floor, Emeryville, CA, 94608, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs, Lyngby, Denmark
| | - Fergus S.M. Harrison
- Department of Molecular Sciences and ARC Centre of Excellence in Synthetic Biology, Centre Headquarters, Macquarie University, Sydney, SW, 2109, Australia
| | - Ian T. Paulsen
- Department of Molecular Sciences and ARC Centre of Excellence in Synthetic Biology, Centre Headquarters, Macquarie University, Sydney, SW, 2109, Australia
| | - Thomas C. Williams
- Department of Molecular Sciences and ARC Centre of Excellence in Synthetic Biology, Centre Headquarters, Macquarie University, Sydney, SW, 2109, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT, 2601, Australia
| |
Collapse
|
3
|
Tsirigka A, Theodosiou E, Patsios SI, Tsoureki A, Andreadelli A, Papa E, Aggeli A, Karabelas AJ, Makris AM. Novel evolved Yarrowia lipolytica strains for enhanced growth and lipid content under high concentrations of crude glycerol. Microb Cell Fact 2023; 22:62. [PMID: 37004109 PMCID: PMC10067222 DOI: 10.1186/s12934-023-02072-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Yarrowia lipolytica is a well-studied oleaginous yeast known for its ability to accumulate and store intracellular lipids, while growing on diverse, non-conventional substrates. Amongst them, crude glycerol, a low-cost by-product of the biodiesel industry, appears to be an interesting option for scaling up a sustainable single-cell oil production process. Adaptive laboratory evolution (ALE) is a powerful tool to force metabolic adaptations endowing tolerance to stressful environmental conditions, generating superior phenotypes with industrial relevance. RESULTS Y. lipolytica MUCL 28849 underwent ALE in a synthetic medium with increasing concentration of pure or crude glycerol as a stressing factor (9-20% v/v) for 520 generations. In one case of pure glycerol, chemical mutagenesis with ethyl methanesulfonate (EMS) was applied prior to ALE. Growth profile, biomass production and lipid content of 660 evolved strains (EVS), revealed 5 superior isolates; exhibiting from 1.9 to 3.6-fold increase of dry biomass and from 1.1 to 1.6-fold increase of lipid concentration compared to the parental strain, when grown in 15% v/v crude glycerol. NGS for differential gene expression analysis, showed induced expression in all EVS affecting nucleosomal structure and regulation of transcription. As strains differentiated, further changes accumulated in membrane transport and protein transport processes. Genes involved in glycerol catabolism and triacylglycerol biosynthesis were overexpressed in two EVS. Mismatches and gaps in the expressed sequences identified altered splicing and mutations in the EVS, with most of them, affecting different components of septin ring formation in the budding process. The selected YLE155 EVS, used for scale-up cultivation in a 3L benchtop bioreactor with 20% v/v crude glycerol, achieved extended exponential phase, twofold increase of dry biomass and lipid yields at 48 h, while citric acid secretion and glycerol consumption rates were 40% and 50% lower, respectively, compared to the parental strain, after 24 h of cultivation. CONCLUSION ALE and EMS-ALE under increasing concentrations of pure or crude glycerol generated novel Y. lipolytica strains with enhanced biomass and lipid content. Differential gene expression analysis and scale-up of YLE155, illustrated the potential of the evolved strains to serve as suitable "chassis" for rational engineering approaches towards both increased lipid accumulation, and production of high-added value compounds, through efficient utilization of crude glycerol.
Collapse
Affiliation(s)
- Asimina Tsirigka
- Laboratory of Natural Resources and Renewable Energies, Chemical Process and Energy Resources Institute, Centre for Research and Technology - Hellas, Thermi, Thessaloniki, Greece
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Theodosiou
- Institute of Applied Biosciences, Centre for Research and Technology - Hellas, Thermi, Thessaloniki, Greece
| | - Sotiris I Patsios
- Laboratory of Natural Resources and Renewable Energies, Chemical Process and Energy Resources Institute, Centre for Research and Technology - Hellas, Thermi, Thessaloniki, Greece
| | - Antiopi Tsoureki
- Institute of Applied Biosciences, Centre for Research and Technology - Hellas, Thermi, Thessaloniki, Greece
| | - Aggeliki Andreadelli
- Institute of Applied Biosciences, Centre for Research and Technology - Hellas, Thermi, Thessaloniki, Greece
| | - Elisavet Papa
- Institute of Applied Biosciences, Centre for Research and Technology - Hellas, Thermi, Thessaloniki, Greece
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Amalia Aggeli
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasios J Karabelas
- Laboratory of Natural Resources and Renewable Energies, Chemical Process and Energy Resources Institute, Centre for Research and Technology - Hellas, Thermi, Thessaloniki, Greece
| | - Antonios M Makris
- Institute of Applied Biosciences, Centre for Research and Technology - Hellas, Thermi, Thessaloniki, Greece.
| |
Collapse
|
4
|
Wang G, Li Q, Zhang Z, Yin X, Wang B, Yang X. Recent progress in adaptive laboratory evolution of industrial microorganisms. J Ind Microbiol Biotechnol 2023; 50:kuac023. [PMID: 36323428 PMCID: PMC9936214 DOI: 10.1093/jimb/kuac023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/24/2022] [Indexed: 01/12/2023]
Abstract
Adaptive laboratory evolution (ALE) is a technique for the selection of strains with better phenotypes by long-term culture under a specific selection pressure or growth environment. Because ALE does not require detailed knowledge of a variety of complex and interactive metabolic networks, and only needs to simulate natural environmental conditions in the laboratory to design a selection pressure, it has the advantages of broad adaptability, strong practicability, and more convenient transformation of strains. In addition, ALE provides a powerful method for studying the evolutionary forces that change the phenotype, performance, and stability of strains, resulting in more productive industrial strains with beneficial mutations. In recent years, ALE has been widely used in the activation of specific microbial metabolic pathways and phenotypic optimization, the efficient utilization of specific substrates, the optimization of tolerance to toxic substance, and the biosynthesis of target products, which is more conducive to the production of industrial strains with excellent phenotypic characteristics. In this paper, typical examples of ALE applications in the development of industrial strains and the research progress of this technology are reviewed, followed by a discussion of its development prospects.
Collapse
Affiliation(s)
- Guanglu Wang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| | - Qian Li
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| | - Zhan Zhang
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou, Henan 450000, People's Republic of China
| | - Xianzhong Yin
- Technology Center, China Tobacco Henan Industrial Co., Ltd. Zhengzhou, Henan 450000, People's Republic of China
| | - Bingyang Wang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| | - Xuepeng Yang
- Laboratory of Biotransformation and Biocatalysis, School of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, People's Republic of China
| |
Collapse
|
5
|
Ren L, Liu Y, Xia Y, Huang Y, Liu Y, Wang Y, Li P, Chang K, Xu D, Li F, Zhang B. Improving glycerol utilization during high-temperature xylitol production with Kluyveromyces marxianus using a transient clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 system. BIORESOURCE TECHNOLOGY 2022; 365:128179. [PMID: 36283669 DOI: 10.1016/j.biortech.2022.128179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Glycerol is an ideal co-substrate for xylitol production with Kluyveromyces marxianus. This study demonstrated that K. marxianus catabolizes glycerol through the Gut1-Gut2 pathway instead of the previously speculated NADPH-dependent Gcy1-Dak1 pathway using the transient clustered regularly interspaced short palindromic repeats/ CRISPR-associated protein 9 (CRISPR/Cas9) system. Additionally, Utr1p was demonstrated to mediate NADPH generation through NADH phosphorylation. YZB392, which was constructed by integrating Utr1 into the Ypr1 site in the strain overexpressing NcXyl1 and CiGxf1 and harboring disrupted Xyl2, exhibited enhanced glycerol utilization for xylitol production (from 2.50- to 3.30- g/L after consuming 1 g/L glycerol). Fed-batch fermentation at 42 °C with YZB392 yielded 322.07 g/L xylitol, which is the highest known xylitol titer obtained via biological method. Feeding crude glycerol, xylose mother liquor, and corn steep liquor powder into a bioreactor resulted in the production of 235.69 g/L xylitol. This study developed a platform for xylitol production from industrial by-products.
Collapse
Affiliation(s)
- Lili Ren
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yanyan Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yitong Xia
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yi Huang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Yu Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Youming Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Pengfei Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Kechao Chang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Dayong Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China
| | - Biao Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, PR China.
| |
Collapse
|
6
|
Draft Genome Sequence of Saccharomyces cerevisiae DJJ01, Isolated from Dojoji Temple in Gobo, Wakayama, Japan. Microbiol Resour Announc 2022; 11:e0011322. [PMID: 35862913 PMCID: PMC9387287 DOI: 10.1128/mra.00113-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae
strain DJJ01 was isolated from Dojoji Temple (Gobo, Wakayama, Japan) for development of local breweries. Here, we report the draft genome sequence of this strain to facilitate comparative genomic studies of yeast strains used for Japanese sake brewing.
Collapse
|
7
|
The Dicarboxylate Transporters from the AceTr Family and Dct-02 Oppositely Affect Succinic Acid Production in S. cerevisiae. J Fungi (Basel) 2022; 8:jof8080822. [PMID: 36012810 PMCID: PMC9409672 DOI: 10.3390/jof8080822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Membrane transporters are important targets in metabolic engineering to establish and improve the production of chemicals such as succinic acid from renewable resources by microbial cell factories. We recently provided a Saccharomyces cerevisiae strain able to strongly overproduce succinic acid from glycerol and CO2 in which the Dct-02 transporter from Aspergillus niger, assumed to be an anion channel, was used to export succinic acid from the cells. In a different study, we reported a new group of succinic acid transporters from the AceTr family, which were also described as anion channels. Here, we expressed these transporters in a succinic acid overproducing strain and compared their impact on extracellular succinic acid accumulation with that of the Dct-02 transporter. The results show that the tested transporters of the AceTr family hinder succinic acid accumulation in the extracellular medium at low pH, which is in strong contrast to Dct-02. Data suggests that the AceTr transporters prefer monovalent succinate, whereas Dct-02 prefers divalent succinate anions. In addition, the results provided deeper insights into the characteristics of Dct-02, showing its ability to act as a succinic acid importer (thus being bidirectional) and verifying its capability of exporting malate.
Collapse
|
8
|
Nakanishi A, Zhang K, Matsumoto R, Yamamoto N. Estimation of Carbon Metabolism in Saccharomyces cerevisiae Acclimatized to Glycerol Assimilation with Quantitative PCR. Microorganisms 2022; 10:1173. [PMID: 35744691 PMCID: PMC9231053 DOI: 10.3390/microorganisms10061173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Saccharomyces cerevisiae has the potential to produce value-added chemicals; however, this strain is restricted by using glycerol as a carbon source. Although acclimatization of S. cerevisiae as a glycerol-assimilating strain was confirmed so far, the reason why S. cerevisiae can be acclimatized was not clear in detail with limited information on the metabolic changes. In this report, glycerol-assimilating strains from S. cerevisiae BY4741 were isolated, and the biomass production, ethanol fermentation, and transcription levels related to glycolysis and the tricarboxylic acid cycle under aerobic and slightly anaerobic conditions were analyzed. As the results show, although µmax was equal to 0.15 h-1 between wildtype and glycerol-assimilating strains in an aerobic culture including glucose, the differences in max biomass production and percentage yields of ethanol and transcription levels between the two strains were shown. In slightly anaerobic culture, the differences in transcription levels downstream of glycolysis were also displayed. In the case of the glycerol-assimilating strain with glycerol under aerobic conditions, although the transcription levels related to ethanol production were sufficient, the ethanol production was not detected. Additionally, the biomass production reached a plateau even in the culture containing sufficient glycerol, indicating that the redox imbalance even in the cells of the glycerol-acclimatized strain could disturb the utilization of glycerol. The obtained knowledge will promote the use of glycerol resources with the glycerol-acclimatized S. cerevisiae in view of carbon recycling.
Collapse
Affiliation(s)
- Akihito Nakanishi
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji 192-0982, Tokyo, Japan; (K.Z.); (N.Y.)
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji 192-0982, Tokyo, Japan;
| | - Kuan Zhang
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji 192-0982, Tokyo, Japan; (K.Z.); (N.Y.)
| | - Riri Matsumoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji 192-0982, Tokyo, Japan;
| | - Naotaka Yamamoto
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji 192-0982, Tokyo, Japan; (K.Z.); (N.Y.)
| |
Collapse
|
9
|
Malubhoy Z, Bahia FM, de Valk SC, de Hulster E, Rendulić T, Ortiz JPR, Xiberras J, Klein M, Mans R, Nevoigt E. Carbon dioxide fixation via production of succinic acid from glycerol in engineered Saccharomyces cerevisiae. Microb Cell Fact 2022; 21:102. [PMID: 35643577 PMCID: PMC9148483 DOI: 10.1186/s12934-022-01817-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/06/2022] [Indexed: 12/21/2022] Open
Abstract
Background The microbial production of succinic acid (SA) from renewable carbon sources via the reverse TCA (rTCA) pathway is a process potentially accompanied by net-fixation of carbon dioxide (CO2). Among reduced carbon sources, glycerol is particularly attractive since it allows a nearly twofold higher CO2-fixation yield compared to sugars. Recently, we described an engineered Saccharomyces cerevisiae strain which allowed SA production in synthetic glycerol medium with a maximum yield of 0.23 Cmol Cmol−1. The results of that previous study suggested that the glyoxylate cycle considerably contributed to SA accumulation in the respective strain. The current study aimed at improving the flux into the rTCA pathway accompanied by a higher CO2-fixation and SA yield. Results By changing the design of the expression cassettes for the rTCA pathway, overexpressing PYC2, and adding CaCO3 to the batch fermentations, an SA yield on glycerol of 0.63 Cmol Cmol−1 was achieved (i.e. 47.1% of the theoretical maximum). The modifications in this 2nd-generation SA producer improved the maximum biomass-specific glycerol consumption rate by a factor of nearly four compared to the isogenic baseline strain solely equipped with the dihydroxyacetone (DHA) pathway for glycerol catabolism. The data also suggest that the glyoxylate cycle did not contribute to the SA production in the new strain. Cultivation conditions which directly or indirectly increased the concentration of bicarbonate, led to an accumulation of malate in addition to the predominant product SA (ca. 0.1 Cmol Cmol−1 at the time point when SA yield was highest). Off-gas analysis in controlled bioreactors with CO2-enriched gas-phase indicated that CO2 was fixed during the SA production phase. Conclusions The data strongly suggest that a major part of dicarboxylic acids in our 2nd-generation SA-producer was formed via the rTCA pathway enabling a net fixation of CO2. The greatly increased capacity of the rTCA pathway obviously allowed successful competition with other pathways for the common precursor pyruvate. The overexpression of PYC2 and the increased availability of bicarbonate, the co-substrate for the PYC reaction, further strengthened this capacity. The achievements are encouraging to invest in future efforts establishing a process for SA production from (crude) glycerol and CO2. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01817-1.
Collapse
|
10
|
de Hulster E, Mooiman C, Timmermans R, Mans R. Automated Evolutionary Engineering of Yeasts. Methods Mol Biol 2022; 2513:255-270. [PMID: 35781210 DOI: 10.1007/978-1-0716-2399-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Evolutionary engineering of microbes provides a powerful tool for untargeted optimization of (engineered) cell factories and identification of genetic targets for further research. Directed evolution is an intrinsically time-intensive effort, and automated methods can significantly reduce manual labor. Here, design considerations for various evolutionary engineering methods are described, and generic workflows for batch-, chemostat-, and accelerostat-based evolution in automated bioreactors are provided. These methods can be used to evolve yeast cultures for >1000 generations and are designed to require minimal manual intervention.
Collapse
Affiliation(s)
- Erik de Hulster
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Christiaan Mooiman
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Robert Mans
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
11
|
Ho PW, Piampongsant S, Gallone B, Del Cortona A, Peeters PJ, Reijbroek F, Verbaet J, Herrera B, Cortebeeck J, Nolmans R, Saels V, Steensels J, Jarosz DF, Verstrepen KJ. Massive QTL analysis identifies pleiotropic genetic determinants for stress resistance, aroma formation, and ethanol, glycerol and isobutanol production in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:211. [PMID: 34727964 PMCID: PMC8564995 DOI: 10.1186/s13068-021-02059-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The brewer's yeast Saccharomyces cerevisiae is exploited in several industrial processes, ranging from food and beverage fermentation to the production of biofuels, pharmaceuticals and complex chemicals. The large genetic and phenotypic diversity within this species offers a formidable natural resource to obtain superior strains, hybrids, and variants. However, most industrially relevant traits in S. cerevisiae strains are controlled by multiple genetic loci. Over the past years, several studies have identified some of these QTLs. However, because these studies only focus on a limited set of traits and often use different techniques and starting strains, a global view of industrially relevant QTLs is still missing. RESULTS Here, we combined the power of 1125 fully sequenced inbred segregants with high-throughput phenotyping methods to identify as many as 678 QTLs across 18 different traits relevant to industrial fermentation processes, including production of ethanol, glycerol, isobutanol, acetic acid, sulfur dioxide, flavor-active esters, as well as resistance to ethanol, acetic acid, sulfite and high osmolarity. We identified and confirmed several variants that are associated with multiple different traits, indicating that many QTLs are pleiotropic. Moreover, we show that both rare and common variants, as well as variants located in coding and non-coding regions all contribute to the phenotypic variation. CONCLUSIONS Our findings represent an important step in our understanding of the genetic underpinnings of industrially relevant yeast traits and open new routes to study complex genetics and genetic interactions as well as to engineer novel, superior industrial yeasts. Moreover, the major role of rare variants suggests that there is a plethora of different combinations of mutations that can be explored in genome editing.
Collapse
Affiliation(s)
- Ping-Wei Ho
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Supinya Piampongsant
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Brigida Gallone
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Andrea Del Cortona
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Pieter-Jan Peeters
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Frank Reijbroek
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Jules Verbaet
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Beatriz Herrera
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Jeroen Cortebeeck
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Robbe Nolmans
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Veerle Saels
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Jan Steensels
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
| | - Daniel F. Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Kevin J. Verstrepen
- VIB–KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
- Leuven Institute for Beer Research, Leuven, Belgium
- Labo VIB-CMPG, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Heverlee Belgium
| |
Collapse
|
12
|
Hayat IF, Plan M, Ebert BE, Dumsday G, Vickers CE, Peng B. Auxin-mediated induction of GAL promoters by conditional degradation of Mig1p improves sesquiterpene production in Saccharomyces cerevisiae with engineered acetyl-CoA synthesis. Microb Biotechnol 2021; 14:2627-2642. [PMID: 34499421 PMCID: PMC8601163 DOI: 10.1111/1751-7915.13880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 11/30/2022] Open
Abstract
The yeast Saccharomyces cerevisiae uses the pyruvate dehydrogenase-bypass for acetyl-CoA biosynthesis. This relatively inefficient pathway limits production potential for acetyl-CoA-derived biochemical due to carbon loss and the cost of two high-energy phosphate bonds per molecule of acetyl-CoA. Here, we attempted to improve acetyl-CoA production efficiency by introducing heterologous acetylating aldehyde dehydrogenase and phosphoketolase pathways for acetyl-CoA synthesis to enhance production of the sesquiterpene trans-nerolidol. In addition, we introduced auxin-mediated degradation of the glucose-dependent repressor Mig1p to allow induced expression of GAL promoters on glucose so that production potential on glucose could be examined. The novel genes that we used to reconstruct the heterologous acetyl-CoA pathways did not sufficiently complement the loss of endogenous acetyl-CoA pathways, indicating that superior heterologous enzymes are necessary to establish fully functional synthetic acetyl-CoA pathways and properly explore their potential for nerolidol synthesis. Notwithstanding this, nerolidol production was improved twofold to a titre of ˜ 900 mg l-1 in flask cultivation using a combination of heterologous acetyl-CoA pathways and Mig1p degradation. Conditional Mig1p depletion is presented as a valuable strategy to improve the productivities in the strains engineered with GAL promoters-controlled pathways when growing on glucose.
Collapse
Affiliation(s)
- Irfan Farabi Hayat
- Australian Institute for Bioengineering and Nanotechnology (AIBN)the University of QueenslandBrisbaneQld4072Australia
- School of Chemistry and Molecular Biosciences (SCMB)the University of QueenslandBrisbaneQld4072Australia
| | - Manuel Plan
- Australian Institute for Bioengineering and Nanotechnology (AIBN)the University of QueenslandBrisbaneQld4072Australia
| | - Birgitta E. Ebert
- Australian Institute for Bioengineering and Nanotechnology (AIBN)the University of QueenslandBrisbaneQld4072Australia
| | | | - Claudia E. Vickers
- Australian Institute for Bioengineering and Nanotechnology (AIBN)the University of QueenslandBrisbaneQld4072Australia
- CSIRO Future Science Platform in Synthetic BiologyCommonwealth Scientific and Industrial Research Organisation (CSIRO)Black MountainCanberraACT2601Australia
- ARC Centre of Excellence in Synthetic BiologyQueensland University of TechnologyBrisbaneQld4000Australia
| | - Bingyin Peng
- Australian Institute for Bioengineering and Nanotechnology (AIBN)the University of QueenslandBrisbaneQld4072Australia
- CSIRO Future Science Platform in Synthetic BiologyCommonwealth Scientific and Industrial Research Organisation (CSIRO)Black MountainCanberraACT2601Australia
- ARC Centre of Excellence in Synthetic BiologyQueensland University of TechnologyBrisbaneQld4000Australia
| |
Collapse
|
13
|
Identification of the Aldo-Keto Reductase Responsible for d-Galacturonic Acid Conversion to l-Galactonate in Saccharomyces cerevisiae. J Fungi (Basel) 2021; 7:jof7110914. [PMID: 34829203 PMCID: PMC8622349 DOI: 10.3390/jof7110914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
d-galacturonic acid (d-GalUA) is the main constituent of pectin, a complex polysaccharide abundant in several agro-industrial by-products such as sugar beet pulp or citrus peel. During several attempts to valorise d-GalUA by engineering the popular cell factory Saccharomyces cerevisiae, it became obvious that d-GalUA is, to a certain degree, converted to l-galactonate (l-GalA) by an endogenous enzymatic activity. The goal of the current work was to clarify the identity of the responsible enzyme(s). A protein homology search identified three NADPH-dependent unspecific aldo-keto reductases in baker’s yeast (encoded by GCY1, YPR1 and GRE3) that show sequence similarities to known d-GalUA reductases from filamentous fungi. Characterization of the respective deletion mutants and an in vitro enzyme assay with a Gcy1 overproducing strain verified that Gcy1 is mainly responsible for the detectable reduction of d-GalUA to l-GalA.
Collapse
|
14
|
Perpelea A, Wijaya AW, Martins LC, Rippert D, Klein M, Angelov A, Peltonen K, Teleki A, Liebl W, Richard P, Thevelein JM, Takors R, Sá-Correia I, Nevoigt E. Towards valorization of pectin-rich agro-industrial residues: Engineering of Saccharomyces cerevisiae for co-fermentation of d-galacturonic acid and glycerol. Metab Eng 2021; 69:1-14. [PMID: 34648971 DOI: 10.1016/j.ymben.2021.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/08/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Pectin-rich plant biomass residues represent underutilized feedstocks for industrial biotechnology. The conversion of the oxidized monomer d-galacturonic acid (d-GalUA) to highly reduced fermentation products such as alcohols is impossible due to the lack of electrons. The reduced compound glycerol has therefore been considered an optimal co-substrate, and a cell factory able to efficiently co-ferment these two carbon sources is in demand. Here, we inserted the fungal d-GalUA pathway in a strain of the yeast S. cerevisiae previously equipped with an NAD-dependent glycerol catabolic pathway. The constructed strain was able to consume d-GalUA with the highest reported maximum specific rate of 0.23 g gCDW-1 h-1 in synthetic minimal medium when glycerol was added. By means of a 13C isotope-labelling analysis, carbon from both substrates was shown to end up in pyruvate. The study delivers the proof of concept for a co-fermentation of the two 'respiratory' carbon sources to ethanol and demonstrates a fast and complete consumption of d-GalUA in crude sugar beet pulp hydrolysate under aerobic conditions. The future challenge will be to achieve co-fermentation under industrial, quasi-anaerobic conditions.
Collapse
Affiliation(s)
- Andreea Perpelea
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany
| | - Andy Wiranata Wijaya
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany; Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Luís C Martins
- iBB - Institute for Bioengineering and Biosciences/i4HB-Associate Laboratory Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Dorthe Rippert
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany
| | - Mathias Klein
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany
| | - Angel Angelov
- Chair of Microbiology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str 4, 85354, Freising-Weihenstephan, Germany; NGS Competence Center Tübingen, Universitätsklinikum Tübingen, Calwerstraße 7, 72076, Tübingen, Germany
| | - Kaisa Peltonen
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044, VTT Espoo, Finland
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Wolfgang Liebl
- Chair of Microbiology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str 4, 85354, Freising-Weihenstephan, Germany
| | - Peter Richard
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044, VTT Espoo, Finland
| | - Johan M Thevelein
- NovelYeast bv, Open Bio-Incubator, Erasmus High School, Laarbeeklaan 121, 1090, Brussels (Jette), Belgium
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Isabel Sá-Correia
- iBB - Institute for Bioengineering and Biosciences/i4HB-Associate Laboratory Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany.
| |
Collapse
|
15
|
Xiberras J, Klein M, Prosch C, Malubhoy Z, Nevoigt E. Anaplerotic reactions active during growth of Saccharomyces cerevisiae on glycerol. FEMS Yeast Res 2021; 20:5672635. [PMID: 31821485 DOI: 10.1093/femsyr/foz086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/09/2019] [Indexed: 02/01/2023] Open
Abstract
Anaplerotic reactions replenish TCA cycle intermediates during growth. In Saccharomyces cerevisiae, pyruvate carboxylase and the glyoxylate cycle have been experimentally identified to be the main anaplerotic routes during growth on glucose (C6) and ethanol (C2), respectively. The current study investigates the importance of the two isoenzymes of pyruvate carboxylase (PYC1 and PYC2) and one of the key enzymes of the glyoxylate cycle (ICL1) for growth on glycerol (C3) as a sole carbon source. As the wild-type strains of the CEN.PK family are unable to grow in pure synthetic glycerol medium, a reverse engineered derivative showing a maximum specific growth rate of 0.14 h-1 was used as the reference strain. While the deletion of PYC1 reduced the maximum specific growth rate by about 38%, the deletion of PYC2 had no significant impact, neither in the reference strain nor in the pyc1Δ mutant. The deletion of ICL1 only marginally reduced growth of the reference strain but further decreased the growth rate of the pyc1 deletion strain by 20%. Interestingly, the triple deletion (pyc1Δ pyc2Δ icl1Δ) did not show any growth. Therefore, both the pyruvate carboxylase and the glyoxylate cycle are involved in anaplerosis during growth on glycerol.
Collapse
Affiliation(s)
- Joeline Xiberras
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Mathias Klein
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Celina Prosch
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Zahabiya Malubhoy
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
16
|
Suealek N, Tharavanij T, Hackman RM, Keen CL, Holt RR, Burawat B, Chaikan A, Tiengtip R, Rojpibulstit P. Thai Tea Seed Oil and Virgin Olive Oil Similarly Reduce Plasma Lipids: A Pilot Study within a Healthy Adult Male Population. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nuchanart Suealek
- Department of Preclinical Science Faculty of Medicine Thammasat University, Rangsit Campus Khlong Nueng Khlong Luang Pathum Thani 12120 Thailand
| | - Thipaporn Tharavanij
- Department of Medicine Faculty of Medicine, Center of Excellence in Applied Epidemiology Thammasat University, Rangsit Campus Khlong Nueng Khlong Luang Pathum Thani 12120 Thailand
| | - Robert M. Hackman
- Department of Nutrition University of California, Davis Davis California 95616 United States
| | - Carl L. Keen
- Department of Nutrition University of California, Davis Davis California 95616 United States
- Department of Internal Medicine University of California, Davis Sacramento California 95817 United States
| | - Roberta R. Holt
- Department of Nutrition University of California, Davis Davis California 95616 United States
| | - Benjapun Burawat
- Nutrition and Food Service Division Thammasat University Hospital Khlong Nueng Khlong Luang Pathum Thani 12120 Thailand
| | - Ammara Chaikan
- Department of Preclinical Science Faculty of Medicine Thammasat University, Rangsit Campus Khlong Nueng Khlong Luang Pathum Thani 12120 Thailand
| | - Rattana Tiengtip
- Department of Preclinical Science Faculty of Medicine Thammasat University, Rangsit Campus Khlong Nueng Khlong Luang Pathum Thani 12120 Thailand
| | - Panadda Rojpibulstit
- Department of Preclinical Science Faculty of Medicine Thammasat University, Rangsit Campus Khlong Nueng Khlong Luang Pathum Thani 12120 Thailand
| |
Collapse
|
17
|
Xiberras J, Klein M, de Hulster E, Mans R, Nevoigt E. Engineering Saccharomyces cerevisiae for Succinic Acid Production From Glycerol and Carbon Dioxide. Front Bioeng Biotechnol 2020; 8:566. [PMID: 32671027 PMCID: PMC7332542 DOI: 10.3389/fbioe.2020.00566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Previously, our lab replaced the endogenous FAD-dependent pathway for glycerol catabolism in S. cerevisiae by the synthetic NAD-dependent dihydroxyacetone (DHA) pathway. The respective modifications allow the full exploitation of glycerol’s higher reducing power (compared to sugars) for the production of the platform chemical succinic acid (SA) via a reductive, carbon dioxide fixing and redox-neutral pathway in a production host robust for organic acid production. Expression cassettes for three enzymes converting oxaloacetate to SA in the cytosol (“SA module”) were integrated into the genome of UBR2CBS-DHA, an optimized CEN.PK derivative. Together with the additional expression of the heterologous dicarboxylic acid transporter DCT-02 from Aspergillus niger, a maximum SA titer of 10.7 g/L and a yield of 0.22 ± 0.01 g/g glycerol was achieved in shake flask (batch) cultures. Characterization of the constructed strain under controlled conditions in a bioreactor supplying additional carbon dioxide revealed that the carbon balance was closed to 96%. Interestingly, the results of the current study indicate that the artificial “SA module” and endogenous pathways contribute to the SA production in a highly synergistic manner.
Collapse
Affiliation(s)
- Joeline Xiberras
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
| | - Mathias Klein
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
| | - Erik de Hulster
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Robert Mans
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
| |
Collapse
|
18
|
Zeng BX, Yao MD, Wang Y, Xiao WH, Yuan YJ. Metabolic Engineering of Saccharomyces cerevisiae for Enhanced Dihydroartemisinic Acid Production. Front Bioeng Biotechnol 2020; 8:152. [PMID: 32258005 PMCID: PMC7090239 DOI: 10.3389/fbioe.2020.00152] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/14/2020] [Indexed: 11/13/2022] Open
Abstract
Direct bioproduction of DHAA (dihydroartemisinic acid) rather than AA (artemisinic acid), as suggested by previous work would decrease the cost of semi-biosynthesis artemisinin by eliminating the step of initial hydrogenation of AA. The major challenge in microbial production of DHAA is how to efficiently manipulate consecutive key enzymes ADH1 (artemisinic alcohol dehydrogenase), DBR2 [artemisinic aldehyde Δ11(13) reductase] and ALDH1 (aldehyde dehydrogenase) to redirect metabolic flux and elevate the ratio of DHAA to AA (artemisinic acid). Herein, DHAA biosynthesis was achieved in Saccharomyces cerevisiae by introducing a series of heterologous enzymes: ADS (amorpha-4,11-diene synthase), CYP71AV1 (amorphadiene oxidase), ADH1, DBR2 and ALDH1, obtaining initial DHAA/AA ratio at 2.53. The flux toward DHAA was enhanced by pairing fusion proteins DBR2-ADH1 and DBR2-ALDH1, leading to 1.75-fold increase in DHAA/AA ratio (to 6.97). Moreover, to promote the substrate preference of ALDH1 to dihydroartemisinic aldehyde (the intermediate for DHAA synthesis) over artemisinic aldehyde (the intermediate for AA synthesis), two rational engineering strategies, including downsizing the active pocket and enhancing the stability of enzyme/cofactor complex, were proposed to engineer ALDH1. It was found that the mutant H194R, which showed better stability of the enzyme/NAD+ complex, obtained the highest DHAA to AA ratio at 3.73 among all the mutations. Then the mutant H194R was incorporated into above rebuilt fusion proteins, resulting in the highest ratio of DHAA to AA (10.05). Subsequently, the highest DHAA reported titer of 1.70 g/L (DHAA/AA ratio of 9.84) was achieved through 5 L bioreactor fermentation. The study highlights the synergy of metabolic engineering and protein engineering in metabolic flux redirection to get the most efficient product to the chemical process, and simplified downstream conversion process.
Collapse
Affiliation(s)
- Bo-Xuan Zeng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Ming-Dong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Wen-Hai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Ying-Jin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| |
Collapse
|
19
|
Isakova EP, Matushkina IN, Popova TN, Dergacheva DI, Gessler NN, Klein OI, Semenikhina AV, Deryabina YI, La Porta N, Saris NEL. Metabolic Remodeling during Long-Lasting Cultivation of the Endomyces magnusii Yeast on Oxidative and Fermentative Substrates. Microorganisms 2020; 8:E91. [PMID: 31936585 PMCID: PMC7022524 DOI: 10.3390/microorganisms8010091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 11/22/2022] Open
Abstract
In this study, we evaluated the metabolic profile of the aerobic microorganism of Endomyces magnusii with a complete respiration chain and well-developed mitochondria system during long-lasting cultivation. The yeast was grown in batches using glycerol and glucose as the sole carbon source for a week. The profile included the cellular biological and chemical parameters, which determined the redox status of the yeast cells. We studied the activities of the antioxidant systems (catalases and superoxide dismutases), glutathione system enzymes (glutathione peroxidase and reductase), aconitase, as well as the main enzymes maintaining NADPH levels in the cells (glucose-6-phosphate dehydrogenase and NADP+-isocitrate dehydrogenase) during aging of Endomyces magnusii on two kinds of substrates. We also investigated the dynamics of change in oxidized and reduced glutathione, conjugated dienes, and reactive oxidative species in the cells at different growth stages, including the deep stationary stages. Our results revealed a similar trend in the changes in the activity of all the enzymes tested, which increased 2-4-fold upon aging. The yeast cytosol had a very high reduced glutathione content, 22 times than that of Saccharomyces cerevisiae, and remained unchanged during growth, whereas there was a 7.5-fold increase in the reduced glutathione-to-oxidized glutathione ratio. The much higher level of reactive oxidative species was observed in the cells in the late and deep stationary phases, especially in the cells using glycerol. Cell aging of the culture grown on glycerol, which promotes active oxidative phosphorylation in the mitochondria, facilitated the functioning of powerful antioxidant systems (catalases, superoxide dismutases, and glutathione system enzymes) induced by reactive oxidative species. Moreover, it stimulated NADPH synthesis, regulating the cytosolic reduced glutathione level, which in turn determines the redox potential of the yeast cell during the early aging process.
Collapse
Affiliation(s)
- Elena P. Isakova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (D.I.D.); (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Irina N. Matushkina
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl.,1, 394000 Voronezh, Russia; (I.N.M.); (T.N.P.); (A.V.S.)
| | - Tatyana N. Popova
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl.,1, 394000 Voronezh, Russia; (I.N.M.); (T.N.P.); (A.V.S.)
| | - Darya I. Dergacheva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (D.I.D.); (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Natalya N. Gessler
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (D.I.D.); (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Olga I. Klein
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (D.I.D.); (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Anastasya V. Semenikhina
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl.,1, 394000 Voronezh, Russia; (I.N.M.); (T.N.P.); (A.V.S.)
| | - Yulia I. Deryabina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia; (D.I.D.); (N.N.G.); (O.I.K.); (Y.I.D.)
| | - Nicola La Porta
- IASMA Research and Innovation Centre, Fondazione Edmund, Mach, Department of Sustainable Agroecosystems and Bioresources, Via Mach 1, 38010 San Michele all’Adige, Italy
| | - Nils-Eric L. Saris
- Department of Food and Environmental Sciences, University of Helsinki, Viikki Biocenter 1, POB 56, 00014 Helsinki, Finland;
| |
Collapse
|
20
|
Genomewide and Enzymatic Analysis Reveals Efficient d-Galacturonic Acid Metabolism in the Basidiomycete Yeast Rhodosporidium toruloides. mSystems 2019; 4:4/6/e00389-19. [PMID: 31848309 PMCID: PMC6918025 DOI: 10.1128/msystems.00389-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biorefining of renewable feedstocks is one of the most promising routes to replace fossil-based products. Since many common fermentation hosts, such as Saccharomyces cerevisiae, are naturally unable to convert many component plant cell wall polysaccharides, the identification of organisms with broad catabolism capabilities represents an opportunity to expand the range of substrates used in fermentation biorefinery approaches. The red basidiomycete yeast Rhodosporidium toruloides is a promising and robust host for lipid- and terpene-derived chemicals. Previous studies demonstrated assimilation of a range of substrates, from C5/C6 sugars to aromatic molecules similar to lignin monomers. In the current study, we analyzed the potential of R. toruloides to assimilate d-galacturonic acid, a major sugar in many pectin-rich agricultural waste streams, including sugar beet pulp and citrus peels. d-Galacturonic acid is not a preferred substrate for many fungi, but its metabolism was found to be on par with those of d-glucose and d-xylose in R. toruloides A genomewide analysis by combined transcriptome sequencing (RNA-seq) and RB-TDNA-seq revealed those genes with high relevance for fitness on d-galacturonic acid. While R. toruloides was found to utilize the nonphosphorylative catabolic pathway known from ascomycetes, the maximal velocities of several enzymes exceeded those previously reported. In addition, an efficient downstream glycerol catabolism and a novel transcription factor were found to be important for d-galacturonic acid utilization. These results set the basis for use of R. toruloides as a potential host for pectin-rich waste conversions and demonstrate its suitability as a model for metabolic studies with basidiomycetes.IMPORTANCE The switch from the traditional fossil-based industry to a green and sustainable bioeconomy demands the complete utilization of renewable feedstocks. Many currently used bioconversion hosts are unable to utilize major components of plant biomass, warranting the identification of microorganisms with broader catabolic capacity and characterization of their unique biochemical pathways. d-Galacturonic acid is a plant component of bioconversion interest and is the major backbone sugar of pectin, a plant cell wall polysaccharide abundant in soft and young plant tissues. The red basidiomycete and oleaginous yeast Rhodosporidium toruloides has been previously shown to utilize a range of sugars and aromatic molecules. Using state-of-the-art functional genomic methods and physiological and biochemical assays, we elucidated the molecular basis underlying the efficient metabolism of d-galacturonic acid. This study identified an efficient pathway for uronic acid conversion to guide future engineering efforts and represents the first detailed metabolic analysis of pectin metabolism in a basidiomycete fungus.
Collapse
|
21
|
Aßkamp MR, Klein M, Nevoigt E. Involvement of the external mitochondrial NADH dehydrogenase Nde1 in glycerol metabolism by wild-type and engineered Saccharomyces cerevisiae strains. FEMS Yeast Res 2019; 19:5420478. [PMID: 30915433 DOI: 10.1093/femsyr/foz026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/20/2019] [Indexed: 12/17/2022] Open
Abstract
Glycerol is an attractive substrate for microbial fermentations due to its higher degree of reduction compared to glucose. The replacement of the native FAD-dependent glycerol catabolic pathway in Saccharomyces cerevisiae by an artificial NADH-delivering dihydroxyacetone (DHA) pathway is supposed to facilitate the capturing of electrons in fermentation products. This requires that the electrons from the cytosolic NADH are not exclusively transferred to oxygen. However, the external NADH dehydrogenases (Nde1/2) and the L-glycerol 3-phosphate shuttle (composed of Gpd1/2 and Gut2), both coupled to the respiratory chain, are known to contribute to cytosolic NAD+ regeneration during growth on non-fermentable carbon sources. In order to evaluate the role of these mechanisms during growth on glycerol, we deleted GPD1/2, GUT2 as well as NDE1/2, separately and in combinations in both the glycerol-utilizing wild-type strain CBS 6412-13A and the corresponding engineered strain CBS DHA in which glycerol is catabolized by the DHA pathway. Particularly, the nde1Δ mutants showed a significant reduction in growth rate and the nde1∆ nde2∆ double deletion mutants did not grow at all in synthetic glycerol medium. The current work also demonstrates a positive impact of deleting NDE1 on the production of the fermentation product 1,2-propanediol in an accordingly engineered S. cerevisiae strain.
Collapse
Affiliation(s)
- Maximilian R Aßkamp
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Mathias Klein
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
22
|
Sandberg TE, Salazar MJ, Weng LL, Palsson BO, Feist AM. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab Eng 2019; 56:1-16. [PMID: 31401242 DOI: 10.1016/j.ymben.2019.08.004] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022]
Abstract
Harnessing the process of natural selection to obtain and understand new microbial phenotypes has become increasingly possible due to advances in culturing techniques, DNA sequencing, bioinformatics, and genetic engineering. Accordingly, Adaptive Laboratory Evolution (ALE) experiments represent a powerful approach both to investigate the evolutionary forces influencing strain phenotypes, performance, and stability, and to acquire production strains that contain beneficial mutations. In this review, we summarize and categorize the applications of ALE to various aspects of microbial physiology pertinent to industrial bioproduction by collecting case studies that highlight the multitude of ways in which evolution can facilitate the strain construction process. Further, we discuss principles that inform experimental design, complementary approaches such as computational modeling that help maximize utility, and the future of ALE as an efficient strain design and build tool driven by growing adoption and improvements in automation.
Collapse
Affiliation(s)
- Troy E Sandberg
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA
| | - Michael J Salazar
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA
| | - Liam L Weng
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
23
|
Kawai K, Kanesaki Y, Yoshikawa H, Hirasawa T. Identification of metabolic engineering targets for improving glycerol assimilation ability of Saccharomyces cerevisiae based on adaptive laboratory evolution and transcriptome analysis. J Biosci Bioeng 2019; 128:162-169. [DOI: 10.1016/j.jbiosc.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 11/29/2022]
|
24
|
Yu T, Dabirian Y, Liu Q, Siewers V, Nielsen J. Strategies and challenges for metabolic rewiring. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coisb.2019.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Tomàs-Gamisans M, Ødum ASR, Workman M, Ferrer P, Albiol J. Glycerol metabolism of Pichia pastoris (Komagataella spp.) characterised by 13C-based metabolic flux analysis. N Biotechnol 2019; 50:52-59. [DOI: 10.1016/j.nbt.2019.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/12/2022]
|
26
|
Xiberras J, Klein M, Nevoigt E. Glycerol as a substrate for Saccharomyces cerevisiae based bioprocesses - Knowledge gaps regarding the central carbon catabolism of this 'non-fermentable' carbon source. Biotechnol Adv 2019; 37:107378. [PMID: 30930107 DOI: 10.1016/j.biotechadv.2019.03.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
Glycerol is an interesting alternative carbon source in industrial bioprocesses due to its higher degree of reduction per carbon atom compared to sugars. During the last few years, significant progress has been made in improving the well-known industrial platform organism Saccharomyces cerevisiae with regard to its glycerol utilization capability, particularly in synthetic medium. This provided a basis for future metabolic engineering focusing on the production of valuable chemicals from glycerol. However, profound knowledge about the central carbon catabolism in synthetic glycerol medium is a prerequisite for such incentives. As a matter of fact, the current assumptions about the actual in vivo fluxes active on glycerol as the sole carbon source have mainly been based on omics data collected in complex media or were even deduced from studies with other non-fermentable carbon sources, such as ethanol or acetate. A number of uncertainties have been identified which particularly regard the role of the glyoxylate cycle, the subcellular localization of the respective enzymes, the contributions of mitochondrial transporters and the active anaplerotic reactions under these conditions. The review scrutinizes the current knowledge, highlights the necessity to collect novel experimental data using cells growing in synthetic glycerol medium and summarizes the current state of the art with regard to the production of valuable fermentation products from a carbon source that has been considered so far as 'non-fermentable' for the yeast S. cerevisiae.
Collapse
Affiliation(s)
- Joeline Xiberras
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Mathias Klein
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University gGmbH, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
27
|
Engineering Saccharomyces cerevisiae for co-utilization of D-galacturonic acid and D-glucose from citrus peel waste. Nat Commun 2018; 9:5059. [PMID: 30498222 PMCID: PMC6265301 DOI: 10.1038/s41467-018-07589-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/19/2018] [Indexed: 11/08/2022] Open
Abstract
Pectin-rich biomasses, such as citrus peel and sugar beet pulp, hold promise as inexpensive feedstocks for microbial fermentations as enzymatic hydrolysis of their component polysaccharides can be accomplished inexpensively to yield high concentrations of fermentable sugars and D-galacturonic acid (D-galUA). In this study, we tackle a number of challenges associated with engineering a microbial strain to convert pectin-rich hydrolysates into commodity and specialty chemicals. First, we engineer D-galUA utilization into yeast, Saccharomyces cerevisiae. Second, we identify that the mechanism of D-galUA uptake into yeast is mediated by hexose transporters and that consumption of D-galUA is inhibited by D-glucose. Third, we enable co-utilization of D-galUA and D-glucose by identifying and expressing a heterologous transporter, GatA, from Aspergillus niger. Last, we demonstrate the use of this transporter for production of the platform chemical, meso-galactaric acid, directly from industrial Navel orange peel waste.
Collapse
|
28
|
Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr Opin Biotechnol 2018; 50:47-56. [DOI: 10.1016/j.copbio.2017.10.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 02/01/2023]
|
29
|
Strucko T, Zirngibl K, Pereira F, Kafkia E, Mohamed ET, Rettel M, Stein F, Feist AM, Jouhten P, Patil KR, Forster J. Laboratory evolution reveals regulatory and metabolic trade-offs of glycerol utilization in Saccharomyces cerevisiae. Metab Eng 2018. [PMID: 29534903 DOI: 10.1016/j.ymben.2018.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Most microbial species, including model eukaryote Saccharomyces cerevisiae, possess genetic capability to utilize many alternative nutrient sources. Yet, it remains an open question whether these manifest into assimilatory phenotypes. Despite possessing all necessary pathways, S. cerevisiae grows poorly or not at all when glycerol is the sole carbon source. Here we discover, through multiple evolved lineages, genetic determinants underlying glycerol catabolism and the associated fitness trade-offs. Most evolved lineages adapted through mutations in the HOG pathway, but showed hampered osmotolerance. In the other lineages, we find that only three mutations cause the improved phenotype. One of these contributes counter-intuitively by decoupling the TCA cycle from oxidative phosphorylation, and thereby hampers ethanol utilization. Transcriptomics, proteomics and metabolomics analysis of the re-engineered strains affirmed the causality of the three mutations at molecular level. Introduction of these mutations resulted in improved glycerol utilization also in industrial strains. Our findings not only have a direct relevance for improving glycerol-based bioprocesses, but also illustrate how a metabolic pathway can remain unexploited due to fitness trade-offs in other, ecologically important, traits.
Collapse
Affiliation(s)
- Tomas Strucko
- Technical University of Denmark, Novo Nordisk Foundation Center for Biosustainability, Kongens Lyngby, Denmark; European Molecular Biology Laboratory, Structural and Computation Biology Unit, Heidelberg, Germany
| | - Katharina Zirngibl
- European Molecular Biology Laboratory, Structural and Computation Biology Unit, Heidelberg, Germany
| | - Filipa Pereira
- European Molecular Biology Laboratory, Structural and Computation Biology Unit, Heidelberg, Germany
| | - Eleni Kafkia
- European Molecular Biology Laboratory, Structural and Computation Biology Unit, Heidelberg, Germany
| | - Elsayed T Mohamed
- Technical University of Denmark, Novo Nordisk Foundation Center for Biosustainability, Kongens Lyngby, Denmark
| | - Mandy Rettel
- European Molecular Biology Laboratory, Structural and Computation Biology Unit, Heidelberg, Germany
| | - Frank Stein
- European Molecular Biology Laboratory, Structural and Computation Biology Unit, Heidelberg, Germany
| | - Adam M Feist
- Technical University of Denmark, Novo Nordisk Foundation Center for Biosustainability, Kongens Lyngby, Denmark; Department of Bioengineering, University of California, 9500 Gilman Drive La Jolla, San Diego, CA 92093, USA
| | - Paula Jouhten
- European Molecular Biology Laboratory, Structural and Computation Biology Unit, Heidelberg, Germany
| | - Kiran Raosaheb Patil
- European Molecular Biology Laboratory, Structural and Computation Biology Unit, Heidelberg, Germany.
| | - Jochen Forster
- Technical University of Denmark, Novo Nordisk Foundation Center for Biosustainability, Kongens Lyngby, Denmark
| |
Collapse
|
30
|
Ho PW, Klein M, Futschik M, Nevoigt E. Glycerol positive promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae. FEMS Yeast Res 2018; 18:4898018. [DOI: 10.1093/femsyr/foy019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/21/2018] [Indexed: 01/27/2023] Open
Affiliation(s)
- Ping-Wei Ho
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Mathias Klein
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Matthias Futschik
- School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, Devon, PL4 8AA, UK
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, 8005-139, Portugal
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|