1
|
Angeltveit CF, Várnai A, Eijsink VGH, Horn SJ. Enhancing enzymatic saccharification yields of cellulose at high solid loadings by combining different LPMO activities. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:39. [PMID: 38461298 PMCID: PMC10924376 DOI: 10.1186/s13068-024-02485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/24/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND The polysaccharides in lignocellulosic biomass hold potential for production of biofuels and biochemicals. However, achieving efficient conversion of this resource into fermentable sugars faces challenges, especially when operating at industrially relevant high solid loadings. While it is clear that combining classical hydrolytic enzymes and lytic polysaccharide monooxygenases (LPMOs) is necessary to achieve high saccharification yields, exactly how these enzymes synergize at high solid loadings remains unclear. RESULTS An LPMO-poor cellulase cocktail, Celluclast 1.5 L, was spiked with one or both of two fungal LPMOs from Thermothielavioides terrestris and Thermoascus aurantiacus, TtAA9E and TaAA9A, respectively, to assess their impact on cellulose saccharification efficiency at high dry matter loading, using Avicel and steam-exploded wheat straw as substrates. The results demonstrate that LPMOs can mitigate the reduction in saccharification efficiency associated with high dry matter contents. The positive effect of LPMO inclusion depends on the type of feedstock and the type of LPMO and increases with the increasing dry matter content and reaction time. Furthermore, our results show that chelating free copper, which may leak out of the active site of inactivated LPMOs during saccharification, with EDTA prevents side reactions with in situ generated H2O2 and the reductant (ascorbic acid). CONCLUSIONS This study shows that sustaining LPMO activity is vital for efficient cellulose solubilization at high substrate loadings. LPMO cleavage of cellulose at high dry matter loadings results in new chain ends and thus increased water accessibility leading to decrystallization of the substrate, all factors making the substrate more accessible to cellulase action. Additionally, this work highlights the importance of preventing LPMO inactivation and its potential detrimental impact on all enzymes in the reaction.
Collapse
Affiliation(s)
- Camilla F Angeltveit
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
2
|
Zhou R, Zhang L, Zeng B, Zhou Y, Jin W, Zhang G. A novel self-purified auxiliary protein enhances the lichenase activity towards lichenan for biomass degradation. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12608-y. [PMID: 37272940 DOI: 10.1007/s00253-023-12608-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Due to the complex composition of lichenan, lichenase alone cannot always hydrolyze it efficiently. Carbohydrate-binding modules (CBMs) and lytic polysaccharide monooxygenases (LPMOs) have been confirmed to increase the hydrolysis efficiency of lichenases. However, their practical application was hampered by the complex and costly preparation procedure, as well as the poor stability of LPMOs. Herein, we discovered a novel and stable auxiliary protein named SCE to boost the hydrolysis efficiency. SCE was composed of SpyCatcher (SC) and elastin-like polypeptides (ELPs) and could be easily and cheaply prepared. Under the optimal conditions, the boosting degree for SCE/lichenase was 1.45, and the reducing sugar yield improved by nearly 45%. The results of high-performance liquid chromatography (HPLC) indicated that SCE had no influence on the hydrolysis pattern of lichenase. Through the experimental verification and bioinformatics analysis, we proposed the role of SCE in promoting the interaction between the lichenase and substrates. These findings endow SC with a novel function in binding to insoluble lichenan, paving the way for biomass degradation and biorefinery. KEY POINTS: • A novel self-purification auxiliary protein that could boost the hydrolysis efficiency of lichenase has been identified. • The protein is highly produced, simple to prepare, well stable, and does not require any external electron donor. • The novel function of SpyCatcher in binding to insoluble lichenan was first demonstrated.
Collapse
Affiliation(s)
- Rui Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian Province, People's Republic of China
| | - Lingzhi Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian Province, People's Republic of China
| | - Bo Zeng
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian Province, People's Republic of China
| | - Yanhong Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian Province, People's Republic of China
| | - Wenhui Jin
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian Province, People's Republic of China
| | - Guangya Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian Province, People's Republic of China.
| |
Collapse
|
3
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Kim IJ, Jeong D, Kim SR. Upstream processes of citrus fruit waste biorefinery for complete valorization. BIORESOURCE TECHNOLOGY 2022; 362:127776. [PMID: 35970501 DOI: 10.1016/j.biortech.2022.127776] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Citrus fruit waste (CW) is a useful biomass and its valorization into fuels and biochemicals has received much attention. For economic feasibility, increased efficiency of the preceding extraction and enzyme saccharification processes is necessary. However, at present, there is a lack of systematic reviews addressing these two integral upstream processes in concert for CW biorefinery. Here, the state-of-the-art advancements in enzyme extraction and saccharification processes-using which relevant essential oils, flavonoids, and sugars can be obtained-are reviewed. Specifically, the extraction options for two commercially available CW-derived products, essential oils and pectin, are discussed. With respect to enzyme saccharification, the use of an undefined commercial mixture routinely results in suboptimal sugar production. In this respect, applicable strategies for enzyme mixture customization are suggested for maximizing the hydrolytic efficiency of CW. The enzyme degradation system for CW-derived carbohydrates and its extensive application for sugar production are also discussed.
Collapse
Affiliation(s)
- In Jung Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Deokyeol Jeong
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea; Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
5
|
Long L, Hu Y, Sun F, Gao W, Hao Z, Yin H. Advances in lytic polysaccharide monooxygenases with the cellulose-degrading auxiliary activity family 9 to facilitate cellulose degradation for biorefinery. Int J Biol Macromol 2022; 219:68-83. [PMID: 35931294 DOI: 10.1016/j.ijbiomac.2022.07.240] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/18/2022]
Abstract
One crucial step in processing the recalcitrant lignocellulosic biomass is the fast hydrolysis of natural cellulose to fermentable sugars that can be subsequently converted to biofuels and bio-based chemicals. Recent studies have shown that lytic polysaccharide monooxygenase (LPMOs) with auxiliary activity family 9 (AA9) are capable of efficiently depolymerizing the crystalline cellulose via regioselective oxidation reaction. Intriguingly, the catalysis by AA9 LPMOs requires reductant to provide electrons, and lignin and its phenolic derivatives can be oxidized, releasing reductant to activate the reaction. The activity of AA9 LPMOs can be enhanced by in-situ generation of H2O2 in the presence of O2. Although scientific understanding of these enzymes remains somewhat unknown or controversial, structure modifications on AA9 LPMOs through protein engineering have emerged in recent years, which are prerequisite for their extensive applications in the development of cellulase-mediated lignocellulosic biorefinery processes. In this review, we critically comment on advances in studies for AA9 LPMOs, i.e., characteristic of AA9 LPMOs catalysis, external electron donors to AA9 LPMOs, especially the role of the oxidization of lignin and its derivatives, and AA9 LPMOs protein engineering as well as their extensive applications in the bioprocessing of lignocellulosic biomass. Perspectives are also highlighted for addressing the challenges.
Collapse
Affiliation(s)
- Lingfeng Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yun Hu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Wa Gao
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS(, Dalian 116023, China
| | - Zhikui Hao
- Institute of Applied Biotechnology, School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS(, Dalian 116023, China
| |
Collapse
|
6
|
Liu N, Yu W, Guo X, Chen J, Xia D, Yu J, Li D. Oxidative cleavage of cellulose in the horse gut. Microb Cell Fact 2022; 21:38. [PMID: 35279161 PMCID: PMC8917663 DOI: 10.1186/s12934-022-01767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/01/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Lytic polysaccharide monooxygenases (LPMOs) belonging to the auxiliary activity 9 family (AA9) are widely found in aerobic fungi. These enzymes are O2-dependent copper oxidoreductases that catalyze the oxidative cleavage of cellulose. However, studies that have investigated AA9 LPMOs of aerobic fungi in the herbivore gut are scare. To date, whether oxidative cleavage of cellulose occurs in the herbivore gut is unknown.
Results
We report for the first time experimental evidence that AA9 LPMOs from aerobic thermophilic fungi catalyze the oxidative cleavage of cellulose present in the horse gut to C1-oxidized cellulose and C1- and C4-oxidized cello-oligosaccharides. We isolated and identified three thermophilic fungi and measured their growth and AA9 LPMO expression at 37 °C in vitro. We also assessed the expression and the presence of AA9 LPMOs from thermophilic fungi in situ. Finally, we used two recombinant AA9 LPMOs and a native AA9 LPMO from thermophilic fungi to cleave cellulose to yield C1-oxidized products at 37 °C in vitro.
Conclusions
The oxidative cleavage of cellulose occurs in the horse gut. This finding will broaden the known the biological functions of the ubiquitous LPMOs and aid in determining biological significance of aerobic thermophilic fungi.
Collapse
|
7
|
Zhang X, Chen K, Long L, Ding S. Two C1-oxidizing AA9 lytic polysaccharide monooxygenases from Sordaria brevicollis differ in thermostability, activity, and synergy with cellulase. Appl Microbiol Biotechnol 2021; 105:8739-8759. [PMID: 34748039 DOI: 10.1007/s00253-021-11677-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022]
Abstract
Cellulolytic fungi usually have multiple genes for C1-oxidizing auxiliary activity 9 (AA9) lytic polysaccharide monooxygenases (LPMOs) in their genomes, but their potential functional differences are less understood. In this study, two C1-oxidizing AA9 LPMOs, SbLPMO9A and SbLPMO9B, were identified from Sordaria brevicollis, and their differences, particularly in terms of thermostability, reducing agent specificity, and synergy with cellulase, were explored. The two enzymes exhibited weak binding to cellulose and intolerance to hydrogen peroxide. Their oxidative activity was influenced by cellulose crystallinity and surface morphology, and both enzymes tended to oxidize celluloses of lower crystallinity and high surface area. Comparably, SbLPMO9A had much better thermostability than SbLPMO9B, which may be attributed to the presence of a carbohydrate binding module 1 (CBM1)-like sequence at its C-terminus. In addition, the two enzymes exhibited different specificities and responsivities toward electron donors. SbLPMO9A and SbLPMO9B were able to boost the catalytic efficiency of endoglucanase I (EGI) on physically and chemically pretreated substrates but with different degrees of synergy. Substrate- and enzyme-specific synergism was observed by comparing the synergistic action of SbLPMO9A or SbLPMO9B with commercial Celluclast 1.5L on three kinds of cellulosic substrates. On regenerated amorphous cellulose and PFI (Papirindustriens Forskningsinstitut)-fibrillated bleached eucalyptus pulp, SbLPMO9B showed a higher synergistic effect than SbLPMO9A, while on delignified wheat straw, the synergistic effect of SbLPMO9A was higher than that of SbLPMO9B. On account of its excellent thermostability and boosting effect on the enzymatic hydrolysis of delignified wheat straw, SbLPMO9A may have high application potential in biorefineries for lignocellulosic biomass. KEY POINTS: • C1-oxidizing SbLPMO9A displayed higher thermostability than SbLPMO9B, probably due to the presence of a CBM1-like module. • The oxidative activity of the two SbLPMO9s on celluloses increased with decreasing cellulose crystallinity or increasing beating degree. • The two SbLPMO9s boosted the catalytic efficiency of cellulase, but the synergistic effect was substrate- and enzyme-specific.
Collapse
Affiliation(s)
- Xi Zhang
- The Co‑Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Kaixiang Chen
- The Co‑Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Liangkun Long
- The Co‑Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Shaojun Ding
- The Co‑Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
8
|
Semenova MV, Gusakov AV, Telitsin VD, Sinitsyn AP. Enzymatic Destruction of Cellulose: Characteristics of the Kinetic Interaction of Lytic Polysaccharide Monooxygenases and Individual Cellulases. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821050136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Higasi PMR, Velasco JA, Pellegrini VOA, de Araújo EA, França BA, Keller MB, Labate CA, Blossom BM, Segato F, Polikarpov I. Light-stimulated T. thermophilus two-domain LPMO9H: Low-resolution SAXS model and synergy with cellulases. Carbohydr Polym 2021; 260:117814. [PMID: 33712158 DOI: 10.1016/j.carbpol.2021.117814] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/19/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs), monocopper enzymes that oxidatively cleave recalcitrant polysaccharides, have important biotechnological applications. Thermothelomyces thermophilus is a rich source of biomass-active enzymes, including many members from auxiliary activities family 9 LPMOs. Here, we report biochemical and structural characterization of recombinant TtLPMO9H which oxidizes cellulose at the C1 and C4 positions and shows enhanced activity in light-driven catalysis assays. TtLPMO9H also shows activity against xyloglucan. The addition of TtLPMO9H to endoglucanases from four different glucoside hydrolase families (GH5, GH12, GH45 and GH7) revealed that the product formation was remarkably increased when TtLPMO9H was combined with GH7 endoglucanase. Finally, we determind the first low resolution small-angle X-ray scattering model of the two-domain TtLPMO9H in solution that shows relative positions of its two functional domains and a conformation of the linker peptide, which can be relevant for the catalytic oxidation of cellulose and xyloglucan.
Collapse
Affiliation(s)
- Paula M R Higasi
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense 400, São Carlos, São Paulo, Brazil
| | - Josman A Velasco
- Lorena School of Engineering, University of São Paulo, Estrada Municipal do Campinho s/n, Lorena, São Paulo, Brazil
| | - Vanessa O A Pellegrini
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense 400, São Carlos, São Paulo, Brazil
| | - Evandro A de Araújo
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense 400, São Carlos, São Paulo, Brazil
| | - Bruno Alves França
- Lorena School of Engineering, University of São Paulo, Estrada Municipal do Campinho s/n, Lorena, São Paulo, Brazil
| | - Malene B Keller
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Carlos A Labate
- Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias 11, Piracicaba, São Paulo, Brazil
| | - Benedikt M Blossom
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Fernando Segato
- Lorena School of Engineering, University of São Paulo, Estrada Municipal do Campinho s/n, Lorena, São Paulo, Brazil
| | - Igor Polikarpov
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense 400, São Carlos, São Paulo, Brazil.
| |
Collapse
|
10
|
A comparative biochemical investigation of the impeding effect of C1-oxidizing LPMOs on cellobiohydrolases. J Biol Chem 2021; 296:100504. [PMID: 33675751 PMCID: PMC8047454 DOI: 10.1016/j.jbc.2021.100504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 03/02/2021] [Indexed: 11/20/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are known to act synergistically with glycoside hydrolases in industrial cellulolytic cocktails. However, a few studies have reported severe impeding effects of C1-oxidizing LPMOs on the activity of reducing-end cellobiohydrolases. The mechanism for this effect remains unknown, but it may have important implications as reducing-end cellobiohydrolases make up a significant part of such cocktails. To elucidate whether the impeding effect is general for different reducing-end cellobiohydrolases and study the underlying mechanism, we conducted a comparative biochemical investigation of the cooperation between a C1-oxidizing LPMO from Thielavia terrestris and three reducing-end cellobiohydrolases; Trichoderma reesei (TrCel7A), T. terrestris (TtCel7A), and Myceliophthora heterothallica (MhCel7A). The enzymes were heterologously expressed in the same organism and thoroughly characterized biochemically. The data showed distinct differences in synergistic effects between the LPMO and the cellobiohydrolases; TrCel7A was severely impeded, TtCel7A was moderately impeded, while MhCel7A was slightly boosted by the LPMO. We investigated effects of C1-oxidations on cellulose chains on the activity of the cellobiohydrolases and found reduced activity against oxidized cellulose in steady-state and pre-steady-state experiments. The oxidations led to reduced maximal velocity of the cellobiohydrolases and reduced rates of substrate complexation. The extent of these effects differed for the cellobiohydrolases and scaled with the extent of the impeding effect observed in the synergy experiments. Based on these results, we suggest that C1-oxidized chain ends are poor attack sites for reducing-end cellobiohydrolases. The severity of the impeding effects varied considerably among the cellobiohydrolases, which may be relevant to consider for optimization of industrial cocktails.
Collapse
|
11
|
Shi Y, Chen K, Long L, Ding S. A highly xyloglucan active lytic polysaccharide monooxygenase EpLPMO9A from Eupenicillium parvum 4-14 shows boosting effect on hydrolysis of complex lignocellulosic substrates. Int J Biol Macromol 2020; 167:202-213. [PMID: 33271180 DOI: 10.1016/j.ijbiomac.2020.11.177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Accepted: 11/25/2020] [Indexed: 01/22/2023]
Abstract
The recently identified lytic polysaccharide monooxygenases (LPMOs) are important auxiliary proteins which contribute to lignocellulose biodegradation by oxidatively cleaving the glycosidic bonds in cellulose and other polysaccharides. The vast differences in terms of substrate specificity and regioselectivity within LPMOs provide us new possibilities to find promising candidates for the use in enzyme cocktails in biorefinery applications. In this study, a highly xyloglucan active family AA9 lytic polysaccharide monooxygenase EpLPMO9A was identified from Eupenicillium parvum 4-14. EpLPMO9A exhibited a mixed C1/C4 oxidative cleavage activity on cellulose and xyloglucan with a broad range of pH stability and good thermal stability at 40 °C. It showed a higher boosting effect on the enzymatic saccharification of complex lignocellulosic substrates associated with xyloglucan than on the lignocellulosic substrates without xyloglucan particularly in low commercial cellulase dosage cases. The oxidative cleavage of xyloglucan by EpLPMO9A may facilitate to open up the sterical hindrance of cellulose by xyloglucan and thereby increase accessibility for cellulase to lignocellulosic substrates. The discovery of more and more hemicellulose-active LPMOs and their contribution to breaking down the barriers by oxidatively acting on hemicellulose may expand our knowledge for their functions of LPMOs in lignocellulose biodegradation.
Collapse
Affiliation(s)
- Yuexin Shi
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Kaixiang Chen
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Liangkun Long
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Shaojun Ding
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
12
|
Synergistic Action of a Lytic Polysaccharide Monooxygenase and a Cellobiohydrolase from Penicillium funiculosum in Cellulose Saccharification under High-Level Substrate Loading. Appl Environ Microbiol 2020; 86:AEM.01769-20. [PMID: 32978122 DOI: 10.1128/aem.01769-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are crucial industrial enzymes required in the biorefinery industry as well as in the natural carbon cycle. These enzymes, known to catalyze the oxidative cleavage of glycosidic bonds, are produced by numerous bacterial and fungal species to assist in the degradation of cellulosic biomass. In this study, we annotated and performed structural analysis of an uncharacterized LPMO from Penicillium funiculosum (PfLPMO9) based on computational methods in an attempt to understand the behavior of this enzyme in biomass degradation. PfLPMO9 exhibited 75% and 36% sequence identities with LPMOs from Thermoascus aurantiacus (TaLPMO9A) and Lentinus similis (LsLPMO9A), respectively. Furthermore, multiple fungal genetic manipulation tools were employed to simultaneously overexpress LPMO and cellobiohydrolase I (CBH1) in a catabolite-derepressed strain of Penicillium funiculosum, PfMig188 (an engineered variant of P. funiculosum), to improve its saccharification performance toward acid-pretreated wheat straw (PWS) at 20% substrate loading. The resulting transformants showed improved LPMO and CBH1 expression at both the transcriptional and translational levels, with ∼200% and ∼66% increases in ascorbate-induced LPMO and Avicelase activities, respectively. While the secretome of PfMig88 overexpressing LPMO or CBH1 increased the saccharification of PWS by 6% or 13%, respectively, over the secretome of PfMig188 at the same protein concentration, the simultaneous overexpression of these two genes led to a 20% increase in saccharification efficiency over that observed with PfMig188, which accounted for 82% saccharification of PWS under 20% substrate loading.IMPORTANCE The enzymatic hydrolysis of cellulosic biomass by cellulases continues to be a significant bottleneck in the development of second-generation biobased industries. While increasing efforts are being made to obtain indigenous cellulases for biomass hydrolysis, the high production cost of this enzyme remains a crucial challenge affecting its wide availability for the efficient utilization of cellulosic materials. This is because it is challenging to obtain an enzymatic cocktail with balanced activity from a single host. This report describes the annotation and structural analysis of an uncharacterized lytic polysaccharide monooxygenase (LPMO) gene in Penicillium funiculosum and its impact on biomass deconstruction upon overexpression in a catabolite-derepressed strain of P. funiculosum Cellobiohydrolase I (CBH1), which is the most important enzyme produced by many cellulolytic fungi for the saccharification of crystalline cellulose, was further overexpressed simultaneously with LPMO. The resulting secretome was analyzed for enhanced LPMO and exocellulase activities and the corresponding improvement in saccharification performance (by ∼20%) under high-level substrate loading using a minimal amount of protein.
Collapse
|
13
|
A fast and easy strategy for lytic polysaccharide monooxygenase-cleavable His 6-Tag cloning, expression, and purification. Enzyme Microb Technol 2020; 143:109704. [PMID: 33375972 DOI: 10.1016/j.enzmictec.2020.109704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 11/22/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are industrially important enzymes able to enhance the enzymatic lignocellulose saccharification in synergism with classical glycoside hydrolases. Fungal LPMOs have been classified as AA9, AA11, and AA13-16 families showing a diverse specificity for substrates such as soluble and insoluble beta-glucans, chitin, starch, and xylan, besides cellulose. These enzymes are still not fully characterized, and for example this is testify by their mechanism of oxidation regularly reviewed multiple times in the last decade. Noteworthy is that despite the extremely large abundance in the entire Tree of Life, our structural and functional knowledge is based on a restricted pool of LPMO, and probably one of the main reason reside in the challenging posed by their heterologous expression. Notably, the lack of a simple cloning protocol that could be universally applied to LPMO, hinders the conversion of the ever-increasing available genomic information to actual new enzymes. Here, we provide an easy and fast protocol for cloning, expression, and purification of active LPMOs in the following architecture: natural signal peptide, LPMO enzyme, TEV protease site, and His6-Tag. For this purpose, a commercial methanol inducible expression vector was initially modified to allow the LPMO expression containing the above characteristics. Gibson assembly, a one-step isothermal DNA assembly, was adopted for the direct assembly of intron-less or intron-containing genes and the modified expression vector. Moreover, His6-tagged LPMO constructs can be submitted to TEV proteolysis for removal of the questionable C-terminal His6-Tag, obtaining a close-to-native form of LPMO. We successfully applied this method to clone, express, and purify six LPMOs from AA9 family with different regioselectivities. The proposed protocol, provided as step-by-step, could be virtually applied in many laboratories thanks to the choice of popular and commons materials.
Collapse
|
14
|
Østby H, Hansen LD, Horn SJ, Eijsink VGH, Várnai A. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. J Ind Microbiol Biotechnol 2020; 47:623-657. [PMID: 32840713 PMCID: PMC7658087 DOI: 10.1007/s10295-020-02301-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Efficient saccharification of lignocellulosic biomass requires concerted development of a pretreatment method, an enzyme cocktail and an enzymatic process, all of which are adapted to the feedstock. Recent years have shown great progress in most aspects of the overall process. In particular, increased insights into the contributions of a wide variety of cellulolytic and hemicellulolytic enzymes have improved the enzymatic processing step and brought down costs. Here, we review major pretreatment technologies and different enzyme process setups and present an in-depth discussion of the various enzyme types that are currently in use. We pay ample attention to the role of the recently discovered lytic polysaccharide monooxygenases (LPMOs), which have led to renewed interest in the role of redox enzyme systems in lignocellulose processing. Better understanding of the interplay between the various enzyme types, as they may occur in a commercial enzyme cocktail, is likely key to further process improvements.
Collapse
Affiliation(s)
- Heidi Østby
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Line Degn Hansen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway.
| |
Collapse
|
15
|
Li Y, Liu X, Liu M, Wang Y, Zou Y, You Y, Yang L, Hu J, Zhang H, Zheng X, Wang P, Zhang Z. Magnaporthe oryzae Auxiliary Activity Protein MoAa91 Functions as Chitin-Binding Protein To Induce Appressorium Formation on Artificial Inductive Surfaces and Suppress Plant Immunity. mBio 2020; 11:e03304-19. [PMID: 32209696 PMCID: PMC7157532 DOI: 10.1128/mbio.03304-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/24/2020] [Indexed: 02/02/2023] Open
Abstract
The appressoria that are generated by the rice blast fungus Magnaporthe oryzae in response to surface cues are important for successful colonization. Previous work showed that regulators of G-protein signaling (RGS) and RGS-like proteins play critical roles in appressorium formation. However, the mechanisms by which these proteins orchestrate surface recognition for appressorium induction remain unclear. Here, we performed comparative transcriptomic studies of ΔMorgs mutant and wild-type strains and found that M. oryzae Aa91 (MoAa91), a homolog of the auxiliary activity family 9 protein (Aa9), was required for surface recognition of M. oryzae We found that MoAA91 was regulated by the MoMsn2 transcription factor and that its disruption resulted in defects in both appressorium formation on the artificial inductive surface and full virulence of the pathogen. We further showed that MoAa91 was secreted into the apoplast space and was capable of competing with the immune receptor chitin elicitor-binding protein precursor (CEBiP) for chitin binding, thereby suppressing chitin-induced plant immune responses. In summary, we have found that MoAa91 is a novel signaling molecule regulated by RGS and RGS-like proteins and that MoAa91 not only governs appressorium development and virulence but also functions as an effector to suppress host immunity.IMPORTANCE The rice blast fungus Magnaporthe oryzae generates infection structure appressoria in response to surface cues largely due to functions of signaling molecules, including G-proteins, regulators of G-protein signaling (RGS), mitogen-activated protein (MAP) kinase pathways, cAMP signaling, and TOR signaling pathways. M. oryzae encodes eight RGS and RGS-like proteins (MoRgs1 to MoRgs8), and MoRgs1, MoRgs3, MoRgs4, and MoRgs7 were found to be particularly important in appressorium development. To explore the mechanisms by which these proteins regulate appressorium development, we have performed a comparative in planta transcriptomic study and identified an auxiliary activity family 9 protein (Aa9) homolog that we named MoAa91. We showed that MoAa91 was secreted from appressoria and that the recombinant MoAa91 could compete with a chitin elicitor-binding protein precursor (CEBiP) for chitin binding, thereby suppressing chitin-induced plant immunity. By identifying MoAa91 as a novel signaling molecule functioning in appressorium development and an effector in suppressing host immunity, our studies revealed a novel mechanism by which RGS and RGS-like proteins regulate pathogen-host interactions.
Collapse
Affiliation(s)
- Ying Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Yang Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Yibin Zou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Yimei You
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Lina Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Jiexiong Hu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Ping Wang
- Department of Pediatrics, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana, USA
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| |
Collapse
|
16
|
Zhou X, Zhu H. Current understanding of substrate specificity and regioselectivity of LPMOs. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-0300-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AbstractRenewable biomass such as cellulose and chitin are the most abundant sustainable sources of energy and materials. However, due to the low degradation efficiency of these recalcitrant substrates by conventional hydrolases, these biomass resources cannot be utilized efficiently. In 2010, the discovery of lytic polysaccharide monooxygenases (LPMOs) led to a major breakthrough. Currently, LPMOs are distributed in 7 families in CAZy database, including AA9–11 and AA13–16, with different species origins, substrate specificity and oxidative regioselectivity. Effective application of LPMOs in the biotransformation of biomass resources needs the elucidation of the molecular basis of their function. Since the discovery of LPMOs, great advances have been made in the study of their substrate specificity and regioselectivity, as well as their structural basis, which will be reviewed below.
Collapse
|
17
|
Zhang R. Functional characterization of cellulose-degrading AA9 lytic polysaccharide monooxygenases and their potential exploitation. Appl Microbiol Biotechnol 2020; 104:3229-3243. [PMID: 32076777 DOI: 10.1007/s00253-020-10467-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 12/25/2019] [Accepted: 02/12/2020] [Indexed: 01/05/2023]
Abstract
Cellulose-degrading auxiliary activity family 9 (AA9) lytic polysaccharide monooxygenases (LPMOs) are known to be widely distributed among filamentous fungi and participate in the degradation of lignocellulose via the oxidative cleavage of celluloses, cello-oligosaccharides, or hemicelluloses. AA9 LPMOs have been reported to have extensive interactions with not only cellulases but also oxidases. The addition of AA9 LPMOs can greatly reduce the amount of cellulase needed for saccharification and increase the yield of glucose. The discovery of AA9 LPMOs has greatly changed our understanding of how fungi degrade cellulose. In this review, apart from summarizing the recent discoveries related to their catalytic reaction, functional diversity, and practical applications, the stability, expression system, and protein engineering of AA9 LPMOs are reviewed for the first time. This review may provide a reference value to further broaden the substrate range of AA9 LPMOs, expand the scope of their practical applications, and realize their customization for industrial utilization.Key Points• The stability and expression system of AA9 LPMOs are reviewed for the first time.• The protein engineering of AA9 LPMOs is systematically summarized for the first time.• The latest research results on the catalytic mechanism of AA9 LPMOs are summarized.• The application of AA9 LPMOs and their relationship with other enzymes are reviewed.
Collapse
Affiliation(s)
- Ruiqin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237, China.
- Department of Bioengineering, Huainan Normal University, No. 278 Xueyuannan Road, Huainan, 232038, China.
| |
Collapse
|
18
|
Drzeżdżon J, Jacewicz D, Sielicka A, Chmurzyński L. MALDI-MS for polymer characterization – Recent developments and future prospects. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Identification of a thermostable fungal lytic polysaccharide monooxygenase and evaluation of its effect on lignocellulosic degradation. Appl Microbiol Biotechnol 2019; 103:5739-5750. [DOI: 10.1007/s00253-019-09928-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 05/22/2019] [Indexed: 11/27/2022]
|
20
|
de Gouvêa PF, Gerolamo LE, Bernardi AV, Pereira LMS, Uyemura SA, Dinamarco TM. Lytic Polysaccharide Monooxygenase from Aspergillus fumigatus can Improve Enzymatic Cocktail Activity During Sugarcane Bagasse Hydrolysis. Protein Pept Lett 2019; 26:377-385. [DOI: 10.2174/0929866526666190228163629] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
Abstract
Background:
Lytic Polysaccharide Monooxygenases (LPMOs) are auxiliary accessory
enzymes that act synergistically with cellulases and which are increasingly being used in secondgeneration
bioethanol production from biomasses. Several LPMOs have been identified in various
filamentous fungi, including Aspergillus fumigatus. However, many LPMOs have not been characterized
yet.
Objective:
To report the role of uncharacterized A. fumigatus AfAA9_B LPMO.
Methods:
qRT-PCR analysis was employed to analyze the LPMO gene expression profile in different
carbon sources. The gene encoding an AfAA9_B (Afu4g07850) was cloned into the vector pET-
28a(+), expressed in the E. coli strain RosettaTM (DE3) pLysS, and purified by a Ni2+-nitrilotriacetic
(Ni-NTA) agarose resin. To evaluate the specific LPMO activity, the purified protein peroxidase
activity was assessed. The auxiliary LPMO activity was investigated by the synergistic activity in
Celluclast 1.5L enzymatic cocktail.
Results:
LPMO was highly induced in complex biomass like sugarcane bagasse (SEB), Avicel®
PH-101, and CM-cellulose. The LPMO gene encoded a protein comprising 250 amino acids, without
a CBM domain. After protein purification, the AfAA9_B molecular mass estimated by SDSPAGE
was 35 kDa. The purified protein specific peroxidase activity was 8.33 ± 1.9 U g-1. Upon
addition to Celluclast 1.5L, Avicel® PH-101 and SEB hydrolysis increased by 18% and 22%, respectively.
Conclusion:
A. fumigatus LPMO is a promising candidate to enhance the currently available enzymatic
cocktail and can therefore be used in second-generation ethanol production.
Collapse
Affiliation(s)
- Paula Fagundes de Gouvêa
- Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Luis Eduardo Gerolamo
- Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Aline Vianna Bernardi
- Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Lucas Matheus Soares Pereira
- Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Sergio Akira Uyemura
- Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Taisa Magnani Dinamarco
- Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
21
|
Petrović DM, Bissaro B, Chylenski P, Skaugen M, Sørlie M, Jensen MS, Aachmann FL, Courtade G, Várnai A, Eijsink VGH. Methylation of the N-terminal histidine protects a lytic polysaccharide monooxygenase from auto-oxidative inactivation. Protein Sci 2019; 27:1636-1650. [PMID: 29971843 DOI: 10.1002/pro.3451] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/29/2022]
Abstract
The catalytically crucial N-terminal histidine (His1) of fungal lytic polysaccharide monooxygenases (LPMOs) is post-translationally modified to carry a methylation. The functional role of this methylation remains unknown. We have carried out an in-depth functional comparison of two variants of a family AA9 LPMO from Thermoascus aurantiacus (TaLPMO9A), one with, and one without the methylation on His1. Various activity assays showed that the two enzyme variants are identical in terms of substrate preferences, cleavage specificities and the ability to activate molecular oxygen. During the course of this work, new functional features of TaLPMO9A were discovered, in particular the ability to cleave xyloglucan, and these features were identical for both variants. Using a variety of techniques, we further found that methylation has minimal effects on the pKa of His1, the affinity for copper and the redox potential of bound copper. The two LPMOs did, however, show clear differences in their resistance against oxidative damage. Studies with added hydrogen peroxide confirmed recent claims that low concentrations of H2 O2 boost LPMO activity, whereas excess H2 O2 leads to LPMO inactivation. The methylated variant of TaLPMO9A, produced in Aspergillus oryzae, was more resistant to excess H2 O2 and showed better process performance when using conditions that promote generation of reactive-oxygen species. LPMOs need to protect themselves from reactive oxygen species generated in their active sites and this study shows that methylation of the fully conserved N-terminal histidine provides such protection.
Collapse
Affiliation(s)
- Dejan M Petrović
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Bastien Bissaro
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Piotr Chylenski
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Morten Skaugen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Marianne S Jensen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Finn L Aachmann
- Department of Biotechnology and Food Science, NOBIPOL, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Gaston Courtade
- Department of Biotechnology and Food Science, NOBIPOL, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
22
|
Tang J, Long L, Cao Y, Ding S. Expression and characterization of two glucuronoyl esterases from Thielavia terrestris and their application in enzymatic hydrolysis of corn bran. Appl Microbiol Biotechnol 2019; 103:3037-3048. [DOI: 10.1007/s00253-019-09662-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/08/2019] [Accepted: 01/22/2019] [Indexed: 01/13/2023]
|
23
|
de Paula RG, Antoniêto ACC, Ribeiro LFC, Srivastava N, O'Donovan A, Mishra PK, Gupta VK, Silva RN. Engineered microbial host selection for value-added bioproducts from lignocellulose. Biotechnol Adv 2019; 37:107347. [PMID: 30771467 DOI: 10.1016/j.biotechadv.2019.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/27/2019] [Accepted: 02/08/2019] [Indexed: 12/12/2022]
Abstract
Lignocellulose is a rich and sustainable globally available carbon source and is considered a prominent alternative raw material for producing biofuels and valuable chemical compounds. Enzymatic hydrolysis is one of the crucial steps of lignocellulose degradation. Cellulolytic and hemicellulolytic enzyme mixes produced by different microorganisms including filamentous fungi, yeasts and bacteria, are used to degrade the biomass to liberate monosaccharides and other compounds for fermentation or conversion to value-added products. During biomass pretreatment and degradation, toxic compounds are produced, and undesirable carbon catabolic repression (CCR) can occur. In order to solve this problem, microbial metabolic pathways and transcription factors involved have been investigated along with the application of protein engineering to optimize the biorefinery platform. Engineered Microorganisms have been used to produce specific enzymes to breakdown biomass polymers and metabolize sugars to produce ethanol as well other biochemical compounds. Protein engineering strategies have been used for modifying lignocellulolytic enzymes to overcome enzymatic limitations and improving both their production and functionality. Furthermore, promoters and transcription factors, which are key proteins in this process, are modified to promote microbial gene expression that allows a maximum performance of the hydrolytic enzymes for lignocellulosic degradation. The present review will present a critical discussion and highlight the aspects of the use of microorganisms to convert lignocellulose into value-added bioproduct as well combat the bottlenecks to make the biorefinery platform from lignocellulose attractive to the market.
Collapse
Affiliation(s)
- Renato Graciano de Paula
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Liliane Fraga Costa Ribeiro
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, U.P, India
| | - Anthonia O'Donovan
- School of Science and Computing, Galway-Mayo Institute of Technology, Galway, Ireland
| | - P K Mishra
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, U.P, India
| | - Vijai K Gupta
- ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia.
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
24
|
Frommhagen M, Westphal AH, van Berkel WJH, Kabel MA. Distinct Substrate Specificities and Electron-Donating Systems of Fungal Lytic Polysaccharide Monooxygenases. Front Microbiol 2018; 9:1080. [PMID: 29896168 PMCID: PMC5987398 DOI: 10.3389/fmicb.2018.01080] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/07/2018] [Indexed: 12/27/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are powerful enzymes that oxidatively cleave glycosidic bonds in polysaccharides. The ability of these copper enzymes to boost the degradation of lignocellulose has greatly stimulated research efforts and biocatalytic applications within the biorefinery field. Initially found as oxidizing recalcitrant substrates, such as chitin and cellulose, it is now clear that LPMOs cleave a broad range of oligo- and poly-saccharides and make use of various electron-donating systems. Herein, substrate specificities and electron-donating systems of fungal LPMOs are summarized. A closer look at LPMOs as part of the fungal enzyme machinery might provide insights into their role in fungal growth and plant-pathogen interactions to further stimulate the search for novel LPMO applications.
Collapse
Affiliation(s)
- Matthias Frommhagen
- Laboratory of Food Chemistry, Wageningen University and Research, Wageningen, Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
25
|
Liu B, Kognole AA, Wu M, Westereng B, Crowley MF, Kim S, Dimarogona M, Payne CM, Sandgren M. Structural and molecular dynamics studies of a C1‐oxidizing lytic polysaccharide monooxygenase from
Heterobasidion irregulare
reveal amino acids important for substrate recognition. FEBS J 2018; 285:2225-2242. [DOI: 10.1111/febs.14472] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/28/2018] [Accepted: 04/09/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Bing Liu
- Department of Molecular Sciences Swedish University of Agricultural Sciences Uppsala Sweden
| | - Abhishek A. Kognole
- Department of Chemical and Materials Engineering University of Kentucky Lexington KY USA
| | - Miao Wu
- Department of Molecular Sciences Swedish University of Agricultural Sciences Uppsala Sweden
| | - Bjørge Westereng
- Department of Chemistry, Biotechnology, and Food Science Norwegian University of Life Sciences Ås Norway
| | | | - Seonah Kim
- Biosciences Center National Renewable Energy Laboratory Golden CO USA
| | - Maria Dimarogona
- Department of Molecular Sciences Swedish University of Agricultural Sciences Uppsala Sweden
- Department of Chemical Engineering University of Patras Greece
| | - Christina M. Payne
- Department of Chemical and Materials Engineering University of Kentucky Lexington KY USA
- Directorate of Engineering Division of Chemical, Bioengineering, Environmental, and Transport Systems National Science Foundation Alexandria VA USA
| | - Mats Sandgren
- Department of Molecular Sciences Swedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|