1
|
Stengel JP, Lehr AL, Aboagye EA, Chea JD, Yenkie KM. Development of an Interactive Software Tool for Designing Solvent Recovery Processes. Ind Eng Chem Res 2023; 62:2090-2103. [PMID: 36972192 PMCID: PMC10035026 DOI: 10.1021/acs.iecr.2c02920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Solvents are used in chemical and pharmaceutical industries as a reaction medium, selective dissolution and extraction media, and dilution agents. Thus, a sizable amount of solvent waste is generated due to process inefficiencies. Most common ways of handling solvent waste are on-site, off-site disposal, and incineration, which have a considerable negative environmental impact. Solvent recovery is typically not used because of potential difficulties in achieving required purity guidelines, as well as additional infrastructure and investments that are needed. To this end, this problem must be studied carefully by involving aspects from capital needs, environmental benefits, and comparison with traditional disposal methods, while achieving the required purity. Thus, we have developed a user-friendly software tool that allows engineers to easily access solvent recovery options and predict an economical and environmentally favorable strategy, given a solvent-containing waste stream. This consists of a maximal process flow diagram that encompasses multiple stages of separations and technologies within those stages. This process flow diagram develops the superstructure that provides multiple technology pathway options for any solvent waste stream. Separation technologies are placed in different stages; depending on the component, they can separate in terms of their physical and chemical properties. A comprehensive chemical database is created to store all relevant chemical and physical properties. The pathway prediction is modeled as an economic optimization problem in General Algebraic Modeling Systems (GAMS). With GAMS code as the backend, a Graphical User Interface (GUI) is created in Matlab App Designer to provide a user-friendly tool to the chemical industry. This tool can act as a guidance system to assist professional engineers and provide an easy comparative estimate in the early stages of process design.
Collapse
Affiliation(s)
- Jake P. Stengel
- Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey08028, United States
| | - Austin L. Lehr
- Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey08028, United States
| | - Emmanuel A. Aboagye
- Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey08028, United States
| | - John D. Chea
- Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey08028, United States
| | - Kirti M. Yenkie
- Department of Chemical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey08028, United States
| |
Collapse
|
2
|
Lee JA, Kim HU, Na JG, Ko YS, Cho JS, Lee SY. Factors affecting the competitiveness of bacterial fermentation. Trends Biotechnol 2022; 41:798-816. [PMID: 36357213 DOI: 10.1016/j.tibtech.2022.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Sustainable production of chemicals and materials from renewable non-food biomass using biorefineries has become increasingly important in an effort toward the vision of 'net zero carbon' that has recently been pledged by countries around the world. Systems metabolic engineering has allowed the efficient development of microbial strains overproducing an increasing number of chemicals and materials, some of which have been translated to industrial-scale production. Fermentation is one of the key processes determining the overall economics of bioprocesses, but has recently been attracting less research attention. In this Review, we revisit and discuss factors affecting the competitiveness of bacterial fermentation in connection to strain development by systems metabolic engineering. Future perspectives for developing efficient fermentation processes are also discussed.
Collapse
Affiliation(s)
- Jong An Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea
| | - Hyun Uk Kim
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea; Systems Biology and Medicine Laboratory, Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Yoo-Sung Ko
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea
| | - Jae Sung Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
3
|
Luo J, Efimova E, Volke DC, Santala V, Santala S. Engineering cell morphology by CRISPR interference in Acinetobacter baylyi ADP1. Microb Biotechnol 2022; 15:2800-2818. [PMID: 36005297 DOI: 10.1111/1751-7915.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022] Open
Abstract
Microbial production of intracellular compounds can be engineered by redirecting the carbon flux towards products and increasing the cell size. Potential engineering strategies include exploiting clustered regularly interspaced short palindromic repeats interference (CRISPRi)-based tools for controlling gene expression. Here, we applied CRISPRi for engineering Acinetobacter baylyi ADP1, a model bacterium for synthesizing intracellular storage lipids, namely wax esters. We first established an inducible CRISPRi system for strain ADP1, which enables tightly controlled repression of target genes. We then targeted the glyoxylate shunt to redirect carbon flow towards wax esters. Second, we successfully employed CRISPRi for modifying cell morphology by repressing ftsZ, an essential gene required for cell division, in combination with targeted knock-outs to generate significantly enlarged filamentous or spherical cells respectively. The engineered cells sustained increased wax ester production metrics, demonstrating the potential of cell morphology engineering in the production of intracellular lipids.
Collapse
Affiliation(s)
- Jin Luo
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Elena Efimova
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Daniel Christoph Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ville Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Suvi Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| |
Collapse
|
4
|
Abstract
Recovering waste solvent for reuse presents an excellent alternative to improving the greenness of industrial processes. Implementing solvent recovery practices in the chemical industry is necessary, given the increasing focus on sustainability to promote a circular economy. However, the systematic design of recovery processes is a daunting task due to the complexities associated with waste stream composition, techno-economic analysis, and environmental assessment. Furthermore, the challenges to satisfy the desired product specifications, particularly in pharmaceuticals and specialty chemical industries, may also deter solvent recovery and reuse practices. To this end, this review presents a systems-level approach including various methodologies that can be implemented to design and evaluate efficient solvent recovery pathways.
Collapse
Affiliation(s)
- Emmanuel A Aboagye
- Department of Chemical Engineering, Henry M. Rowan College of Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
| | - John D Chea
- Department of Chemical Engineering, Henry M. Rowan College of Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
| | - Kirti M Yenkie
- Department of Chemical Engineering, Henry M. Rowan College of Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, NJ, 08028, USA
| |
Collapse
|
5
|
Current Pretreatment/Cell Disruption and Extraction Methods Used to Improve Intracellular Lipid Recovery from Oleaginous Yeasts. Microorganisms 2021; 9:microorganisms9020251. [PMID: 33513696 PMCID: PMC7910848 DOI: 10.3390/microorganisms9020251] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
The production of lipids from oleaginous yeasts involves several stages starting from cultivation and lipid accumulation, biomass harvesting and finally lipids extraction. However, the complex and relatively resistant cell wall of yeasts limits the full recovery of intracellular lipids and usually solvent extraction is not sufficient to effectively extract the lipid bodies. A pretreatment or cell disruption method is hence a prerequisite prior to solvent extraction. In general, there are no recovery methods that are equally efficient for different species of oleaginous yeasts. Each method adopts different mechanisms to disrupt cells and extract the lipids, thus a systematic evaluation is essential before choosing a particular method. In this review, mechanical (bead mill, ultrasonication, homogenization and microwave) and nonmechanical (enzyme, acid, base digestions and osmotic shock) methods that are currently used for the disruption or permeabilization of oleaginous yeasts are discussed based on their principle, application and feasibility, including their effects on the lipid yield. The attempts of using conventional and “green” solvents to selectively extract lipids are compared. Other emerging methods such as automated pressurized liquid extraction, supercritical fluid extraction and simultaneous in situ lipid recovery using capturing agents are also reviewed to facilitate the choice of more effective lipid recovery methods.
Collapse
|
6
|
Chea JD, Lehr AL, Stengel JP, Savelski MJ, Slater CS, Yenkie KM. Evaluation of Solvent Recovery Options for Economic Feasibility through a Superstructure-Based Optimization Framework. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06725] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- John D. Chea
- Department of Chemical Engineering, Henry M. Rowan College of Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Austin L. Lehr
- Department of Chemical Engineering, Henry M. Rowan College of Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Jake P. Stengel
- Department of Chemical Engineering, Henry M. Rowan College of Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Mariano J. Savelski
- Department of Chemical Engineering, Henry M. Rowan College of Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - C. Stewart Slater
- Department of Chemical Engineering, Henry M. Rowan College of Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Kirti M. Yenkie
- Department of Chemical Engineering, Henry M. Rowan College of Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
7
|
|
8
|
Wu W, Yenkie KM, Maravelias CT. Synthesis and analysis of separation processes for extracellular chemicals generated from microbial conversions. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s42480-019-0022-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Recent advances in metabolic engineering have enabled the production of chemicals via bio-conversion using microbes. However, downstream separation accounts for 60–80% of the total production cost in many cases. Previous work on microbial production of extracellular chemicals has been mainly restricted to microbiology, biochemistry, metabolomics, or techno-economic analysis for specific product examples such as succinic acid, xanthan gum, lycopene, etc. In these studies, microbial production and separation technologies were selected apriori without considering any competing alternatives. However, technology selection in downstream separation and purification processes can have a major impact on the overall costs, product recovery, and purity. To this end, we apply a superstructure optimization based framework that enables the identification of critical technologies and their associated parameters in the synthesis and analysis of separation processes for extracellular chemicals generated from microbial conversions. We divide extracellular chemicals into three categories based on their physical properties, such as water solubility, physical state, relative density, volatility, etc. We analyze three major extracellular product categories (insoluble light, insoluble heavy and soluble) in detail and provide suggestions for additional product categories through extension of our analysis framework. The proposed analysis and results provide significant insights for technology selection and enable streamlined decision making when faced with any microbial product that is released extracellularly. The parameter variability analysis for the product as well as the associated technologies and comparison with novel alternatives is a key feature which forms the basis for designing better bioseparation strategies that have potential for commercial scalability and can compete with traditional chemical production methods.
Collapse
|
9
|
Pawar PP, Odaneth AA, Vadgama RN, Lali AM. Simultaneous lipid biosynthesis and recovery for oleaginous yeast Yarrowia lipolytica. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:237. [PMID: 31624499 PMCID: PMC6781333 DOI: 10.1186/s13068-019-1576-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Recent trends in bioprocessing have underlined the significance of lignocellulosic biomass conversions for biofuel production. These conversions demand at least 90% energy upgradation of cellulosic sugars to generate renewable drop-in biofuel precursors (Heff/C ~ 2). Chemical methods fail to achieve this without substantial loss of carbon; whereas, oleaginous biological systems propose a greener upgradation route by producing oil from sugars with 30% theoretical yields. However, these oleaginous systems cannot compete with the commercial volumes of vegetable oils in terms of overall oil yields and productivities. One of the significant challenges in the commercial exploitation of these microbial oils lies in the inefficient recovery of the produced oil. This issue has been addressed using highly selective oil capturing agents (OCA), which allow a concomitant microbial oil production and in situ oil recovery process. RESULTS Adsorbent-based oil capturing agents were employed for simultaneous in situ oil recovery in the fermentative production broths. Yarrowia lipolytica, a model oleaginous yeast, was milked incessantly for oil production over 380 h in a media comprising of glucose as a sole carbon and nutrient source. This was achieved by continuous online capture of extracellular oil from the aqueous media and also the cell surface, by fluidizing the fermentation broth over an adsorbent bed of oil capturing agents (OCA). A consistent oil yield of 0.33 g per g of glucose consumed, corresponding to theoretical oil yield over glucose, was achieved using this approach. While the incorporation of the OCA increased the oil content up to 89% with complete substrate consumptions, it also caused an overall process integration. CONCLUSION The nondisruptive oil capture mediated by an OCA helped in accomplishing a trade-off between microbial oil production and its recovery. This strategy helped in realizing theoretically efficient sugar-to-oil bioconversions in a continuous production process. The process, therefore, endorses a sustainable production of molecular drop-in equivalents through oleaginous yeasts, representing as an absolute microbial oil factory.
Collapse
Affiliation(s)
- Pratik Prashant Pawar
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga East, Mumbai, Maharashtra 400019 India
| | - Annamma Anil Odaneth
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga East, Mumbai, Maharashtra 400019 India
| | - Rajeshkumar Natwarlal Vadgama
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga East, Mumbai, Maharashtra 400019 India
| | - Arvind Mallinath Lali
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga East, Mumbai, Maharashtra 400019 India
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga East, Mumbai, Maharashtra 400019 India
| |
Collapse
|
10
|
Current Bottlenecks and Challenges of the Microalgal Biorefinery. Trends Biotechnol 2019; 37:242-252. [DOI: 10.1016/j.tibtech.2018.09.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 01/02/2023]
|
11
|
Wu W, Maravelias CT. Synthesis and techno-economic assessment of microbial-based processes for terpenes production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:294. [PMID: 30386431 PMCID: PMC6203976 DOI: 10.1186/s13068-018-1285-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/09/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Recent advances in metabolic engineering enable the production of chemicals from sugars through microbial bio-conversion. Terpenes have attracted substantial attention due to their relatively high prices and wide applications in different industries. To this end, we synthesize and assess processes for microbial production of terpenes. RESULTS To explain a counterintuitive experimental phenomenon where terpenes such as limonene (normal boiling point 176 °C) are often found to be 100% present in the vapor phase after bio-conversion (operating at only ~ 30 °C), we first analyze the vapor-liquid equilibrium for systems containing terpenes. Then, we propose alternative production configurations, which are further studied, using limonene as an example, in several case studies. Next, we perform economic assessment of the alternative processes and identify the major cost components. Finally, we extend the assessment to account for different process parameters, terpene products, ways to address terpene toxicity (microbial engineering vs. solvent use), and cellulosic biomass as a feedstock. We identify the key cost drivers to be (1) feed glucose concentration (wt%), (2) product yield (% of maximum theoretical yield) and (3) VVM (Volume of air per Volume of broth liquid per Minute, i.e., aeration rate in min-1). The production of limonene, based on current experimental data, is found to be economically infeasible (production cost ~ 465 $/kg vs. market selling price ~ 7 $/kg), but higher glucose concentration and yield can lower the cost. Among 12 terpenes studied, limonene appears to be the most reasonable short-term target because of its large market size (~ 160 million $/year in the US) and the relatively easier to achieve break-even yield (~ 30%, assuming a 14 wt% feed glucose concentration and 0.1 min-1 VVM). CONCLUSIONS The methods proposed in this work are applicable to a range of terpenes as well as other extracellular insoluble chemicals with density lower than that of water, such as fatty acids. The results provide guidance for future research in metabolic engineering toward terpenes production in terms of setting targets for key design parameters.
Collapse
Affiliation(s)
- Wenzhao Wu
- Dept. of Chemical and Biological Engineering and DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 USA
| | - Christos T. Maravelias
- Dept. of Chemical and Biological Engineering and DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 USA
| |
Collapse
|