1
|
Feng N, Hu J, Zhao X, Chen J, Tang F, Liang S, Zhu X, Yang X, Yang H, Wu Q. Lignin nanoparticles formation by multiscale structure control to regulate morphology and their adsorption, nucleation, and growth on chitin nanofibers. J Colloid Interface Sci 2025; 677:918-927. [PMID: 39128286 DOI: 10.1016/j.jcis.2024.07.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
The lignin nanoparticles (LNPs) synthesis relies on lignin polymers with heterogeneous molecules and properties, which impose significant limitations on the preparation and property regulation. The multiscale structure of lignin from monomers to oligomers, provides a potential pathway for precise regulation of its physical and chemical properties. The study addresses this challenge by employing coniferyl alcohol and sinapyl alcohol as monomers and separately utilizing the Zulaufverfaren (ZL) and Zutropfverfaren (ZT) methods to synthesize different types of lignin dehydrogenation polymers (DHPs) including guaiacyl (G)-ZL-DHP, G-ZT-DHP, syringyl (S)-ZL-DHP, and S-ZT-DHP. The investigation highlights the chemical bonds as essential components of lignin primary structure. Additionally, the secondary structure is influenced by branched and linear molecular structures. G unit provides some branching points, which are utilized and amplified in the ZL process of DHPs synthesis. The branched DHPs aggregate at the edge and form rod-like LNPs. While linear DHPs aggregate around the center, presenting polygonal LNPs. The study identifies that the branched LNPs, characterized by more surface charges and lower steric hindrance, can form a stable complex with chitin nanofibers. Emulsions with varying oil-to-water ratios were subsequently prepared, opening a new window for the application of LNPs in fields such as food and cosmetics.
Collapse
Affiliation(s)
- Nianjie Feng
- School of Material Science & Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China; Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, and Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jiaxin Hu
- School of Material Science & Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Xiangdong Zhao
- School of Material Science & Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jingqian Chen
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, and Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Fei Tang
- School of Material Science & Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Shuang Liang
- School of Material Science & Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Xiaotian Zhu
- School of Material Science & Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Xu Yang
- School of Material Science & Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Haitao Yang
- School of Material Science & Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Qian Wu
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, and Department of Wood Science, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; School of Life Sciences and Health, Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
2
|
Freitas CDT, Costa JH, Germano TA, de O Rocha R, Ramos MV, Bezerra LP. Class III plant peroxidases: From classification to physiological functions. Int J Biol Macromol 2024; 263:130306. [PMID: 38387641 DOI: 10.1016/j.ijbiomac.2024.130306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Peroxidases (EC 1.11.1.7) are involved in a wide range of physiological processes, hence their broad distribution across biological systems. These proteins can be classified as haem or non-haem enzymes. According to the RedOxiBase database, haem peroxidases are approximately 84 % of all known peroxidase enzymes. Class III plant peroxidases are haem-enzymes that share similar three-dimensional structures and a common catalytic mechanism for hydrogen peroxide degradation. They exist as large multigene families and are involved in metabolizing Reactive Oxygen Species (ROS), hormone synthesis and decomposition, fruit growth, defense, and cell wall synthesis and maintenance. As a result, plant peroxidases gained attention in research and became one of the most extensively studied groups of enzymes. This review provides an update on the database, classification, phylogeny, mechanism of action, structure, and physiological functions of class III plant peroxidases.
Collapse
Affiliation(s)
- Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici, Fortaleza, Ceará CEP 60451-970, Brazil.
| | - José H Costa
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici, Fortaleza, Ceará CEP 60451-970, Brazil
| | - Thais A Germano
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici, Fortaleza, Ceará CEP 60451-970, Brazil
| | - Raquel de O Rocha
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven 06511, CT, USA
| | - Márcio V Ramos
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici, Fortaleza, Ceará CEP 60451-970, Brazil
| | - Leandro P Bezerra
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici, Fortaleza, Ceará CEP 60451-970, Brazil
| |
Collapse
|
3
|
Sapouna I, Kärkönen A, McKee LS. The impact of xylan on the biosynthesis and structure of extracellular lignin produced by a Norway spruce tissue culture. PLANT DIRECT 2023; 7:e500. [PMID: 37312800 PMCID: PMC10258647 DOI: 10.1002/pld3.500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/18/2023] [Accepted: 05/11/2023] [Indexed: 06/15/2023]
Abstract
In order to develop more economic uses of lignin, greater knowledge regarding its native structure is required. This can inform the development of optimized extraction methods that preserve desired structural properties. Current extraction methods alter the polymeric structure of lignin, leading to a loss of valuable structural groups or the formation of new non-native ones. In this study, Norway spruce (Picea abies) tissue-cultured cells that produce lignin extracellularly in a suspension medium were employed. This system enables the investigation of unaltered native lignin, as no physicochemical extraction steps are required. For the first time, this culture was used to investigate the interactions between lignin and xylan, a secondary cell wall hemicellulose, and to study the importance of lignin-carbohydrate complexes (LCCs) on the polymerization and final structure of extracellular lignin (ECL). This has enabled us to study the impact of xylan on monolignol composition and structure of the final lignin polymer. We find that the addition of xylan to the solid culture medium accelerates cell growth and impacts the ratio of monolignols in the lignin. However, the presence of xylan in the lignin polymerization environment does not significantly alter the structural properties of lignin as analyzed by two-dimensional nuclear magnetic resonance (NMR) spectroscopy and size exclusion chromatography (SEC). Nevertheless, our data indicate that xylan can act as a nucleation point, leading to more rapid lignin polymerization, an important insight into biopolymer interactions during cell wall synthesis in wood. Lignin structure and interactions with a secondary cell wall hemicellulose were investigated in a model cell culture: we found that the polymerization and final structure of lignin are altered when the hemicellulose is present during cell growth and monolignol production. The physicochemical interactions between lignin and xylan partly define the extractability and utility of native lignin in high value applications, so this work has implications for lignin extraction as well as fundamental plant biology.
Collapse
Affiliation(s)
- Ioanna Sapouna
- Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholmSweden
- Division of GlycoscienceDepartment of ChemistryKTH Royal Institute of TechnologyAlbaNova University CenterStockholmSweden
| | - Anna Kärkönen
- Production SystemsNatural Resources Institute Finland (Luke)HelsinkiFinland
- Viikki Plant Science CentreDepartment of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
| | - Lauren Sara McKee
- Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholmSweden
- Division of GlycoscienceDepartment of ChemistryKTH Royal Institute of TechnologyAlbaNova University CenterStockholmSweden
| |
Collapse
|
4
|
Zhou J, Yue Y, Wei X, Xie Y. Preparation and Anti-Lung Cancer Activity Analysis of Guaiacyl-Type Dehydrogenation Polymer. Molecules 2023; 28:molecules28083589. [PMID: 37110827 PMCID: PMC10142027 DOI: 10.3390/molecules28083589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
In this paper, guaiacyl dehydrogenated lignin polymer (G-DHP) was synthesized using coniferin as a substrate in the presence of β-glucosidase and laccase. Carbon-13 nuclear magnetic resonance (13C-NMR) determination revealed that the structure of G-DHP was relatively similar to that of ginkgo milled wood lignin (MWL), with both containing β-O-4, β-5, β-1, β-β, and 5-5 substructures. G-DHP fractions with different molecular weights were obtained by classification with different polar solvents. The bioactivity assay indicated that the ether-soluble fraction (DC2) showed the strongest inhibition of A549 lung cancer cells, with an IC50 of 181.46 ± 28.01 μg/mL. The DC2 fraction was further purified using medium-pressure liquid chromatography. Anti-cancer analysis revealed that the D4 and D5 compounds from DC2 had better anti-tumor activity, with IC50 values of 61.54 ± 17.10 μg/mL and 28.61 ± 8.52 μg/mL, respectively. Heating electrospray ionization tandem mass spectrometry (HESI-MS) results showed that both the D4 and D5 were β-5-linked dimers of coniferyl aldehyde, and the 13C-NMR and 1H-NMR analyses confirmed the structure of the D5. Together, these results indicate that the presence of an aldehyde group on the side chain of the phenylpropane unit of G-DHP enhances its anticancer activity.
Collapse
Affiliation(s)
- Junyi Zhou
- Research Institute of Pulp & Paper Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yuanyuan Yue
- Research Institute of Pulp & Paper Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xin Wei
- Research Institute of Pulp & Paper Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yimin Xie
- Research Institute of Pulp & Paper Engineering, Hubei University of Technology, Wuhan 430068, China
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
5
|
Wei X, Cui S, Xie Y. Synthesis and Antibacterial Properties of Oligomeric Dehydrogenation Polymer from Lignin Precursors. Molecules 2022; 27:1466. [PMID: 35268566 PMCID: PMC8911982 DOI: 10.3390/molecules27051466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 12/05/2022] Open
Abstract
The lignin precursors of coniferin and syringin were synthesised, and guaiacyl-type and guaiacyl-syringyl-type oligomeric lignin dehydrogenation polymers (DHP and DHP-GS) were prepared with the bulk method. The carbon-13 nuclear magnetic resonance spectroscopy showed that both DHP-G and DHP-GS contained β-O-4, β-5, β-β, β-1, and 5-5 substructures. Extraction with petroleum ether, ether, ethanol, and acetone resulted in four fractions for each of DHP-G (C11-C14) and DHP-GS (C21-C24). The antibacterial experiments showed that the fractions with lower molecular weight had relatively strong antibacterial activity. The ether-soluble fractions (C12 of DHP-G and C22 of DHP-GS) had strong antibacterial activities against E. coli and S. aureus. The C12 and C22 fractions were further separated by preparative chromatography, and 10 bioactive compounds (G1-G5 and GS1-GS5) were obtained. The overall antibacterial activities of these 10 compounds was stronger against E. coli than S. aureus. Compounds G1, G2, G3, and GS1, which had the most significant antibacterial activities, contained β-5 substructures. Of these, G1 had the best antibacterial activity. Its inhibition zone diameter was 19.81 ± 0.82 mm, and the minimum inhibition concentration was 56.3 ± 6.20 μg/mL. Atmospheric pressure chemical ionisation mass spectrometry (APCI-MS) showed that the antibacterial activity of G1 was attributable to a phenylcoumarin dimer, while the introduction of syringyl units reduced antibacterial activity.
Collapse
Affiliation(s)
- Xin Wei
- Research Institute of Pulp and Paper Engineering, Hubei University of Technology, Wuhan 430068, China; (X.W.); (S.C.)
| | - Sheng Cui
- Research Institute of Pulp and Paper Engineering, Hubei University of Technology, Wuhan 430068, China; (X.W.); (S.C.)
| | - Yimin Xie
- Research Institute of Pulp and Paper Engineering, Hubei University of Technology, Wuhan 430068, China; (X.W.); (S.C.)
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
6
|
Singh AK, Bilal M, Iqbal HMN, Meyer AS, Raj A. Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: Status, opportunities and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145988. [PMID: 33684751 DOI: 10.1016/j.scitotenv.2021.145988] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
Lignin modifying enzymes from fungi and bacteria are potential biocatalysts for sustainable mitigation of different potentially toxic pollutants in wastewater. Notably, the paper and pulp industry generates enormous amounts of wastewater containing high amounts of complex lignin-derived chlorinated phenolics and sulfonated pollutants. The presence of these compounds in wastewater is a critical issue from environmental and toxicological perspectives. Some chloro-phenols are harmful to the environment and human health, as they exert carcinogenic, mutagenic, cytotoxic, and endocrine-disrupting effects. In order to address these most urgent concerns, the use of oxidative lignin modifying enzymes for bioremediation has come into focus. These enzymes catalyze modification of phenolic and non-phenolic lignin-derived substances, and include laccase and a range of peroxidases, specifically lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP), and dye-decolorizing peroxidase (DyP). In this review, we explore the key pollutant-generating steps in paper and pulp processing, summarize the most recently reported toxicological effects of industrial lignin-derived phenolic compounds, especially chlorinated phenolic pollutants, and outline bioremediation approaches for pollutant mitigation in wastewater from this industry, emphasizing the oxidative catalytic potential of oxidative lignin modifying enzymes in this regard. We highlight other emerging biotechnical approaches, including phytobioremediation, bioaugmentation, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based technology, protein engineering, and degradation pathways prediction, that are currently gathering momentum for the mitigation of wastewater pollutants. Finally, we address current research needs and options for maximizing sustainable biobased and biocatalytic degradation of toxic industrial wastewater pollutants.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Anne S Meyer
- Department for Biotechnology and Biomedicine, Technical University of Denmark, Building 221, DK-2800 Lyngby, Denmark.
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Abstract
Caffeine is a verified bioactive substance suitable for wood protection against pests. Unlike studies of the biocidal effects of caffeine, caffeine-wood bonds and interactions with wood polymer structures have not been studied whatsoever thus far. For this reason, caffeine (1 g/L) interactions with the main wood components (cellulose; hemicellulose; lignin and its precursors conipheryl alcohol, sinapyl alcohol, coumaryl alcohol) were analyzed in the present study. Caffeine concentrations were analyzed using UV–VIS spectrometry at wavelength 287 nm. The results confirmed caffeine variable binding with wood components in comparison to controls (pure caffeine). Cellulose and sinapyl alcohol did not interact with caffeine. Caffeine was bonded with the rest of the wood components in an increasing rank: conipheryl alcohol = lignin < hemicellulose < coumaryl alcohol. These results have a significant role in the protection of wood depending on its chemical composition and the wood species.
Collapse
|
8
|
Happs RM, Addison B, Doeppke C, Donohoe BS, Davis MF, Harman-Ware AE. Comparison of methodologies used to determine aromatic lignin unit ratios in lignocellulosic biomass. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:58. [PMID: 33676549 PMCID: PMC7936455 DOI: 10.1186/s13068-021-01897-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/08/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Multiple analytical methods have been developed to determine the ratios of aromatic lignin units, particularly the syringyl/guaiacyl (S/G) ratio, of lignin biopolymers in plant cell walls. Chemical degradation methods such as thioacidolysis produce aromatic lignin units that are released from certain linkages and may induce chemical changes rendering it difficult to distinguish and determine the source of specific aromatic lignin units released, as is the case with nitrobenzene oxidation methodology. NMR methods provide powerful tools used to analyze cell walls for lignin composition and linkage information. Pyrolysis-mass spectrometry methods are also widely used, particularly as high-throughput methodologies. However, the different techniques used to analyze aromatic lignin unit ratios frequently yield different results within and across particular studies, making it difficult to interpret and compare results. This also makes it difficult to obtain meaningful insights relating these measurements to other characteristics of plant cell walls that may impact biomass sustainability and conversion metrics for the production of bio-derived fuels and chemicals. RESULTS The authors compared the S/G lignin unit ratios obtained from thioacidolysis, pyrolysis-molecular beam mass spectrometry (py-MBMS), HSQC liquid-state NMR and solid-state (ss) NMR methodologies of pine, several genotypes of poplar, and corn stover biomass. An underutilized approach to deconvolute ssNMR spectra was implemented to derive S/G ratios. The S/G ratios obtained for the samples did not agree across the different methods, but trends were similar with the most agreement among the py-MBMS, HSQC NMR and deconvoluted ssNMR methods. The relationship between S/G, thioacidolysis yields, and linkage analysis determined by HSQC is also addressed. CONCLUSIONS This work demonstrates that different methods using chemical, thermal, and non-destructive NMR techniques to determine native lignin S/G ratios in plant cell walls may yield different results depending on species and linkage abundances. Spectral deconvolution can be applied to many hardwoods with lignin dominated by S and G units, but the results may not be reliable for some woody and grassy species of more diverse lignin composition. HSQC may be a better method for analyzing lignin in those species given the wealth of information provided on additional aromatic moieties and bond linkages. Additionally, trends or correlations in lignin characteristics such as S/G ratios and lignin linkages within the same species such as poplar may not necessarily exhibit the same trends or correlations made across different biomass types. Careful consideration is required when choosing a method to measure S/G ratios and the benefits and shortcomings of each method discussed here are summarized.
Collapse
Affiliation(s)
- Renee M Happs
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Bennett Addison
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Crissa Doeppke
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Bryon S Donohoe
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Mark F Davis
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Anne E Harman-Ware
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
9
|
Zhu D, Adebisi WA, Ahmad F, Sethupathy S, Danso B, Sun J. Recent Development of Extremophilic Bacteria and Their Application in Biorefinery. Front Bioeng Biotechnol 2020; 8:483. [PMID: 32596215 PMCID: PMC7303364 DOI: 10.3389/fbioe.2020.00483] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
The biorefining technology for biofuels and chemicals from lignocellulosic biomass has made great progress in the world. However, mobilization of laboratory research toward industrial setup needs to meet a series of criteria, including the selection of appropriate pretreatment technology, breakthrough in enzyme screening, pathway optimization, and production technology, etc. Extremophiles play an important role in biorefinery by providing novel metabolic pathways and catalytically stable/robust enzymes that are able to act as biocatalysts under harsh industrial conditions on their own. This review summarizes the potential application of thermophilic, psychrophilic alkaliphilic, acidophilic, and halophilic bacteria and extremozymes in the pretreatment, saccharification, fermentation, and lignin valorization process. Besides, the latest studies on the engineering bacteria of extremophiles using metabolic engineering and synthetic biology technologies for high-efficiency biofuel production are also introduced. Furthermore, this review explores the comprehensive application potential of extremophiles and extremozymes in biorefinery, which is partly due to their specificity and efficiency, and points out the necessity of accelerating the commercialization of extremozymes.
Collapse
Affiliation(s)
- Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Wasiu Adewale Adebisi
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Fiaz Ahmad
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Blessing Danso
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Antúnez-Argüelles E, Herrera-Bulnes M, Torres-Ariño A, Mirón-Enríquez C, Soriano-García M, Robles-Gómez E. Enzymatic-assisted polymerization of the lignin obtained from a macroalgae consortium, using an extracellular laccase-like enzyme (Tg-laccase) from Tetraselmis gracilis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:739-747. [PMID: 32181694 DOI: 10.1080/10934529.2020.1738171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
In the past decade, Mexican coasts have received an enormous influx of macroalgae species, producing serious environmental and public health concerns. Here, we developed a green methodology to generate a new polymer from the lignin contained in the macroalgae. The methodology consists in lignin extraction-by-boiling and its subsequent polymerization with a laccase-like enzyme from the green algae Tetraselmis gracilis (Tg-laccase). Mass spectrometry revealed the presence of guaiacyl (G), p-hydroxyphenyl (H), and sinapyl alcohol as the main monolignols in the lignin from Sargassum sp. On the other hand, MALDI-TOF spectra shows an increase in the size of the lignin chain after enzymatic polymerization process with Tg-laccase. Besides, the characterization of the novel polymer -using 1H NMR, FTIR, SEC-FPLC, and UV/Vis- allowed establishing that during the polymerization process there is a decrease in the number of phenolic groups as well as loss of aromatic protons, which allowed proposing a polimerizacion mechanism. This methodology could be promising in the development of a new lignin-based polymer and would open a new direction for the environmental management of the macroalgae on the Mexican beaches.
Collapse
Affiliation(s)
- Erika Antúnez-Argüelles
- Laboratorio de química orgánica, Ingeniería ambiental, Universidad del Mar, Puerto Ángel, Oaxaca, México
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City, México
| | - Marlo Herrera-Bulnes
- Laboratorio de química orgánica, Ingeniería ambiental, Universidad del Mar, Puerto Ángel, Oaxaca, México
| | - Alejandra Torres-Ariño
- Laboratorio de Biotecnología de Microalgas, Instituto de Industrias, Universidad del Mar, campus Puerto Ángel, Puerto Ángel, Oaxaca, México
| | - Coral Mirón-Enríquez
- Laboratorio de química orgánica, Ingeniería ambiental, Universidad del Mar, Puerto Ángel, Oaxaca, México
| | - Manuel Soriano-García
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City, México
| | - Edson Robles-Gómez
- Laboratorio de química orgánica, Ingeniería ambiental, Universidad del Mar, Puerto Ángel, Oaxaca, México
| |
Collapse
|
11
|
Lignin polymerization: how do plants manage the chemistry so well? Curr Opin Biotechnol 2018; 56:75-81. [PMID: 30359808 DOI: 10.1016/j.copbio.2018.10.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/05/2018] [Accepted: 10/03/2018] [Indexed: 11/22/2022]
Abstract
The final step of lignin biosynthesis is the polymerization of monolignols in apoplastic cell wall domains. In this process, monolignols secreted by lignifying cells, or occasionally neighboring non-lignifying and/or other lignifying cells, are activated by cell-wall-localized oxidation systems, such as laccase/O2 and/or peroxidase/H2O2, for combinatorial radical coupling to make the final lignin polymers. Plants can precisely control when, where, and which types of lignin polymers are assembled at tissue and cellular levels, but do not control the polymers' exact chemical structures per se. Recent studies have begun to identify specific laccase and peroxidase proteins responsible for lignin polymerization in specific cell types and during different developmental stages. The coordination of polymerization machinery localization and monolignol supply is likely critical for the spatio-temporal patterning of lignin polymerization. Further advancement in this research area will continue to increase our capacity to manipulate lignin content/structure in biomass to meet our own biotechnological purposes.
Collapse
|