1
|
Boiangiu RS, Brinza I, Honceriu I, Mihasan M, Hritcu L. Insights into Pharmacological Activities of Nicotine and 6-Hydroxy-L-nicotine, a Bacterial Nicotine Derivative: A Systematic Review. Biomolecules 2023; 14:23. [PMID: 38254623 PMCID: PMC10813004 DOI: 10.3390/biom14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The purported cognitive benefits associated with nicotine and its metabolites in the brain are a matter of debate. In this review, the impact of the pharmacologically active metabolite of a nicotine derivative produced by bacteria named 6-hydroxy-L-nicotine (6HLN) on memory, oxidative stress, and the activity of the cholinergic system in the brain was examined. A search in the PubMed, Science Direct, Web of Science, and Google Scholar databases, limiting entries to those published between 1992 and 2023, was conducted. The search focused specifically on articles about nicotine metabolites, memory, oxidative stress, and cholinergic system activity, as well as enzymes or pathways related to nicotine degradation in bacteria. The preliminary search resulted in 696 articles, and following the application of exclusion criteria, 212 articles were deemed eligible for inclusion. This review focuses on experimental studies supporting nicotine catabolism in bacteria, and the chemical and pharmacological activities of nicotine and its metabolite 6HLN.
Collapse
Affiliation(s)
| | | | | | - Marius Mihasan
- BioActive Research Group, Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.); (I.H.)
| | - Lucian Hritcu
- BioActive Research Group, Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.); (I.H.)
| |
Collapse
|
2
|
El-Sabeh A, Mlesnita AM, Munteanu IT, Honceriu I, Kallabi F, Boiangiu RS, Mihasan M. Characterisation of the Paenarthrobacter nicotinovorans ATCC 49919 genome and identification of several strains harbouring a highly syntenic nic-genes cluster. BMC Genomics 2023; 24:536. [PMID: 37697273 PMCID: PMC10494377 DOI: 10.1186/s12864-023-09644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Paenarthrobacter nicotinovorans ATCC 49919 uses the pyridine-pathway to degrade nicotine and could provide a renewable source of precursors from nicotine-containing waste as well as a model for studying the molecular evolution of catabolic pathways and their spread by horizontal gene transfer via soil bacterial plasmids. RESULTS In the present study, the strain was sequenced using the Illumina NovaSeq 6000 and Oxford Nanopore Technology (ONT) MinION platforms. Following hybrid assembly with Unicycler, the complete genome sequence of the strain was obtained and used as reference for whole-genome-based phylogeny analyses. A total of 64 related genomes were analysed; five Arthrobacter strains showed both digital DNA-DNA hybridization and average nucleotide identity values over the species threshold when compared to P. nicotinovorans ATCC 49919. Five plasmids and two contigs belonging to Arthrobacter and Paenarthrobacter strains were shown to be virtually identical with the pAO1 plasmid of Paenarthrobacter nicotinovorans ATCC 49919. Moreover, a highly syntenic nic-genes cluster was identified on five plasmids, one contig and three chromosomes. The nic-genes cluster contains two major locally collinear blocks that appear to form a putative catabolic transposon. Although the origins of the nic-genes cluster and the putative transposon still elude us, we hypothesise here that the ATCC 49919 strain most probably evolved from Paenarthrobacter sp. YJN-D or a very closely related strain by acquiring the pAO1 megaplasmid and the nicotine degradation pathway. CONCLUSIONS The data presented here offers another snapshot into the evolution of plasmids harboured by Arthrobacter and Paenarthrobacter species and their role in the spread of metabolic traits by horizontal gene transfer among related soil bacteria.
Collapse
Affiliation(s)
- Amada El-Sabeh
- Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Romania
| | | | | | - Iasmina Honceriu
- Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Romania
| | - Fakhri Kallabi
- Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Romania
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | | | - Marius Mihasan
- Faculty of Biology, Alexandru Ioan Cuza University of Iași, Iași, Romania.
| |
Collapse
|
3
|
Complete Genome Sequences of Two Closely Related Paenarthrobacter nicotinovorans Strains. Microbiol Resour Announc 2022; 11:e0013322. [PMID: 35536014 PMCID: PMC9202424 DOI: 10.1128/mra.00133-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paenarthrobacter nicotinovorans is a soil bacterium that uses the pyridine pathway to degrade nicotine. The genome of strain ATCC 49919 is composed of a ~4.3-Mbp chromosome and a ~165-kbp plasmid. The second strain, termed here nic-, is a cured derivative lacking the plasmid and not able to degrade nicotine.
Collapse
|
4
|
Zhang Z, Mei X, He Z, Xie X, Yang Y, Mei C, Xue D, Hu T, Shu M, Zhong W. Nicotine metabolism pathway in bacteria: mechanism, modification, and application. Appl Microbiol Biotechnol 2022; 106:889-904. [PMID: 35072735 DOI: 10.1007/s00253-022-11763-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 11/02/2022]
Abstract
Nicotine is a harmful pollutant mainly from the waste of tobacco factories. It is necessary to remove nicotine via high efficient strategies such as bioremediation. So far, an increasing number of nicotine degrading strains have been isolated. However, their degrading efficiency and tolerance to high content nicotine is still not high enough for application in real environment. Thus, the modification of nicotine metabolism pathway is obligated and requires comprehensive molecular insights into whole cell metabolism of nicotine degrading strains. Obviously, the development of multi-omics technology has accelerated the mechanism study on microbial degradation of nicotine and supplied more novel strategy of strains modification. So far, three pathways of nicotine degradation, pyridine pathway, pyrrolidine pathway, and the variant of pyridine and pyrrolidine pathway (VPP pathway), have been clearly identified in bacteria. Muti-omics analysis further revealed specific genome architecture, regulation mechanism, and specific genes or enzymes of three pathways, in different strains. Especially, muti-omics analysis revealed that functional modules coexisted in different genome loci and played additional roles on enhanced degradation efficiency in bacteria. Based on the above discovery, genomic editing strategy becomes more feasible to greatly improve bacterial degrading efficiency of nicotine.
Collapse
Affiliation(s)
- Zeling Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Xiaotong Mei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Ziliang He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Xiya Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Yang Yang
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, 310009, People's Republic of China.
| | - Chengyu Mei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Dong Xue
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Tong Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Ming Shu
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, 310009, People's Republic of China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China.
| |
Collapse
|
5
|
Yildiz I. Computational Analysis of the Nicotine Oxidoreductase Mechanism by the ONIOM Method. ACS OMEGA 2021; 6:22422-22428. [PMID: 34497931 PMCID: PMC8412962 DOI: 10.1021/acsomega.1c03357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Nicotine oxidoreductase (NicA2) is a monoamine oxidase (MAO)-based flavoenzyme that catalyzes the oxidation of S-nicotine into N-methylmyosmine. Due to its nanomolar binding affinity toward nicotine, it is seen as an ideal candidate for the treatment of nicotine addiction. Based on the crystal structure of the substrate-bound enzyme, hydrophobic interactions mainly govern the binding of the substrate in the active site through Trp108, Trp364, Trp427, and Leu217 residues. In addition, Tyr308 forms H-bonding with the pyridyl nitrogen of the substrate. Experimental and computational studies support the hydride transfer mechanism for MAO-based enzymes. In this mechanism, a hydride ion transfers from the substrate to the flavin cofactor. In this study, computational models involving the ONIOM method were formulated to study the hydride transfer mechanism based on the crystal structure of the enzyme-substrate complex. The geometry and energetics of the hydride transfer mechanism were analyzed, and the roles of active site residues were highlighted.
Collapse
Affiliation(s)
- Ibrahim Yildiz
- Chemistry Department, Khalifa
University, P.O. Box 127788 Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
An NAD-Specific 6-Hydroxy-3-Succinoyl-Semialdehyde-Pyridine Dehydrogenase from Nicotine-Degrading Agrobacterium tumefaciens Strain S33. Microbiol Spectr 2021; 9:e0092421. [PMID: 34378958 PMCID: PMC8552603 DOI: 10.1128/spectrum.00924-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens strain S33 can catabolize nicotine via a hybrid of the pyridine and pyrrolidine pathways. Most of the enzymes involved in this biochemical pathway have been identified and characterized, except for the one catalyzing the oxidation of 6-hydroxy-3-succinoyl-semialdehyde-pyridine to 6-hydroxy-3-succinoylpyridine. Based on a previous genomic and transcriptomic analysis, an open reading frame (ORF) annotated to encode aldehyde dehydrogenase (Ald) in the nicotine-degrading cluster was predicted to be responsible for this step. In this study, we heterologously expressed the enzyme and identified its function by biochemical assay and mass spectrum analysis. It was found that Ald catalyzes the NAD-specific dehydrogenation of 6-hydroxy-3-succinoyl-semialdehyde-pyridine to 6-hydroxy-3-succinoylpyridine. With the nonhydroxylated analog 3-succinoyl-semialdehyde-pyridine (SAP) as a substrate, Ald had a specific activity of 10.05 U/mg at pH 9.0 and apparent Km values of around 58.68 μM and 0.41 mM for SAP and NAD+, respectively. Induction at low temperature and purification and storage in low-salt buffers were helpful to prevent its aggregation and precipitation. Disruption of the ald gene caused a lower growth rate and biomass of strain S33 on nicotine but not on 6-hydroxy-3-succinoylpyridine. Ald has a broad range of substrates, including benzaldehyde, furfural, and acetaldehyde. Recombinant Escherichia coli cells harboring the ald gene can efficiently convert furfural to 2-furoic acid at a specific rate of 0.032 mmol min−1 g dry cells−1, extending the application of Ald in the catalysis of bio-based furan compounds. These findings provide new insights into the biochemical mechanism of the nicotine-degrading hybrid pathway and the possible application of Ald in industrial biocatalysis. IMPORTANCE Nicotine is one of the major toxic N-heterocyclic aromatic alkaloids produced in tobacco plants. Manufacturing tobacco and smoking may lead to some environmental and public health problems. Microorganisms can degrade nicotine by various biochemical pathways, but the biochemical mechanism for nicotine degradation has not been fully elucidated. In this study, we identified an aldehyde dehydrogenase responsible for the oxidation of 6-hydroxy-3-succinoyl-semialdehyde-pyridine to 6-hydroxy-3-succinoylpyridine; this was the only uncharacterized enzyme in the hybrid of the pyridine and pyrrolidine pathways in Agrobacterium tumefaciens S33. Similar to the known aldehyde dehydrogenase, the NAD-specific homodimeric enzyme presents a broad substrate range with high activity in alkaline and low-salt-containing buffers. It can catalyze not only the aldehyde from nicotine degradation but also those of benzaldehyde, furfural, and acetaldehyde. It was found that recombinant Escherichia coli cells harboring the ald gene could efficiently convert furfural to valuable 2-furoic acid, demonstrating its potential application for enzymatic catalysis.
Collapse
|
7
|
Mihăşan M, Boiangiu RŞ, Guzun D, Babii C, Aslebagh R, Channaveerappa D, Dupree E, Darie CC. Time-Dependent Analysis of Paenarthrobacter nicotinovorans pAO1 Nicotine-Related Proteome. ACS OMEGA 2021; 6:14242-14251. [PMID: 34124447 PMCID: PMC8190789 DOI: 10.1021/acsomega.1c01020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/10/2021] [Indexed: 05/08/2023]
Abstract
Paenarthrobacter nicotinovorans is a soil Gram-positive nicotine-degrading microorganism (NDM) that harbors a 165 kb pAO1 catabolic megaplasmid. The nicotine catabolic genes on pAO1 have been sequenced, but not all the details on the regulation and interplay of this pathway with the general metabolism of the cell are available. To address this issue at the protein level, a time-based shotgun proteomics study was performed. P. nicotinovorans was grown in the presence or absence of nicotine, and the cells were harvested at three different time intervals: 7, 10, and 24 h after inoculation. The cells were lysed, separated on SDS-PAGE, and digested by in-gel digestion using trypsin, and the resulting peptide mixture was analyzed using nanoliquid chromatography tandem mass spectrometry. We found an extensive number of proteins that are both plasmidal- and chromosomal-encoded and that work together in the energetic metabolism via the Krebs cycle and nicotine pathway. These data provide insight into the adaptation of the bacterial cells to the nicotine metabolic intermediates and could serve as a basis for future attempts to genetically engineer the pAO1-encoded catabolic pathway for increased bioremediation efficiency or for the production of valuable chemicals. The mass-spectrometry-based proteomics data have been deposited to the PRIDE partner repository with the data set identifier PXD012577.
Collapse
Affiliation(s)
- Marius Mihăşan
- Biochemistry
and Molecular Biology Laboratory, Department of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Blvd, no 20A, Iasi 700506, Romania
- Biochemistry
& Proteomics Group, Department of Chemistry & Biomolecular
Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699-5810, United States
| | - Răzvan Ştefan Boiangiu
- Biochemistry
and Molecular Biology Laboratory, Department of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Blvd, no 20A, Iasi 700506, Romania
| | - Doina Guzun
- Biochemistry
and Molecular Biology Laboratory, Department of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Blvd, no 20A, Iasi 700506, Romania
| | - Cornelia Babii
- Biochemistry
and Molecular Biology Laboratory, Department of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Blvd, no 20A, Iasi 700506, Romania
| | - Roshanak Aslebagh
- Biochemistry
& Proteomics Group, Department of Chemistry & Biomolecular
Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699-5810, United States
| | - Devika Channaveerappa
- Biochemistry
& Proteomics Group, Department of Chemistry & Biomolecular
Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699-5810, United States
| | - Emmalyn Dupree
- Biochemistry
& Proteomics Group, Department of Chemistry & Biomolecular
Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699-5810, United States
| | - Costel C. Darie
- Biochemistry
& Proteomics Group, Department of Chemistry & Biomolecular
Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699-5810, United States
| |
Collapse
|
8
|
Rid Enhances the 6-Hydroxypseudooxynicotine Dehydrogenase Reaction in Nicotine Degradation by Agrobacterium tumefaciens S33. Appl Environ Microbiol 2021; 87:AEM.02769-20. [PMID: 33514517 DOI: 10.1128/aem.02769-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/17/2021] [Indexed: 02/03/2023] Open
Abstract
Agrobacterium tumefaciens S33 degrades nicotine through a hybrid of the pyridine and pyrrolidine pathways. The oxidation of 6-hydroxypseudooxynicotine to 6-hydroxy-3-succinoyl-semialdehyde-pyridine by 6-hydroxypseudooxynicotine dehydrogenase (Pno) is an important step in the breakdown of the N-heterocycle in this pathway. Although Pno has been characterized, the reaction is not fully understood; what is known is that it starts at a high speed followed by a rapid drop in the reaction rate, leading to the formation of a very small amount of product. In this study, we speculated that an unstable imine intermediate that is toxic with regard to the metabolism is produced in the reaction. We found that a Rid protein (designated Rid-NC) encoded by a gene in the nicotine-degrading gene cluster enhanced the reaction. Rid is a widely distributed family of small proteins with various functions, and some subfamilies have deaminase activity to eliminate the toxicity of the reactive intermediate, imine. Biochemical analyses showed that Rid-NC relieved the toxicity of the presumed imine intermediate produced in the Pno reaction and that, in the presence of Rid-NC, Pno maintained a high level of activity and the amount of the reaction product was increase by at least 5-fold. Disruption of the rid-NC gene led to slower growth of strain S33 on nicotine. The mechanism of Rid-NC-mediated detoxification of the imine intermediate was discussed. A phylogenetic analysis indicated that Rid-NC belongs to the rarely studied Rid6 subfamily. These results further our understanding of the biochemical mechanism of nicotine degradation and provide new insights into the function of the Rid6 subfamily proteins.IMPORTANCE Rid is a family of proteins that participate in metabolite damage repair and is widely distributed in different organisms. In this study, we found that Rid-NC, which belongs to the Rid6 subfamily, promoted the 6-hydroxypseudooxynicotine dehydrogenase (Pno) reaction in the hybrid of the pyridine and pyrrolidine pathways for nicotine degradation by Agrobacterium tumefaciens S33. Rid-NC hydrolyzed the presumed reactive imine intermediate produced in the reaction to remove its toxicity on Pno. The finding furthers our understanding of the metabolic process of the toxic N-heterocyclic aromatic compounds in microorganisms. This study demonstrated that the Rid family of proteins also functions in the metabolism of N-heterocyclic aromatic alkaloids, in addition to the amino acid metabolism, and that Rid6-subfamily proteins also have deaminase activity, similar to the RidA subfamily. The ability of reactive imines to damage a non-pyridoxal-5'-phosphate-dependent enzyme was reported. This study provides new insights into the function of the Rid family of proteins.
Collapse
|
9
|
Yildiz I, Yildiz BS. Mechanistic study of L-6-hydroxynicotine oxidase by DFT and ONIOM methods. J Mol Model 2021; 27:53. [PMID: 33507404 DOI: 10.1007/s00894-020-04646-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
L-6-Hydroxynicotine oxidase (LHNO) is a member of monoamine oxidase (MAO) family and catalyzes conversion of (S)-6-hydroxynicotine to 6-hydroxypseudooxynicotine during bacterial degradation of nicotine. Recent studies indicated that the enzyme catalyzes oxidation of carbon-nitrogen bond instead of previously proposed carbon-carbon bond. Based on kinetics and mutagenesis studies, Asn166, Tyr311, and Lys287 as well as an active site water molecule have roles in the catalysis of the enzyme. A number of studies including experimental and computational methods support hydride transfer mechanism in MAO family as a common mechanism in which a hydride ion transfer from amine substrate to flavin cofactor is the rate-limiting step. In this study, we formulated computational models to study the hydride transfer mechanism using crystal structure of enzyme-substrate complex. The calculations involved ONIOM and DFT methods, and we evaluated the geometry and energetics of the hydride transfer process while probing the roles of active site residues. Based on the calculations involving hydride, radical, and polar mechanisms, it was concluded that hydride transfer mechanism is the only viable mechanism for LHNO.
Collapse
Affiliation(s)
- Ibrahim Yildiz
- Chemistry Department, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Banu Sizirici Yildiz
- CIVE Department, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Huang H, Shang J, Wang S. Physiology of a Hybrid Pathway for Nicotine Catabolism in Bacteria. Front Microbiol 2020; 11:598207. [PMID: 33281798 PMCID: PMC7688666 DOI: 10.3389/fmicb.2020.598207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/07/2020] [Indexed: 11/21/2022] Open
Abstract
Nicotine is a major N-heterocyclic aromatic alkaloid produced in tobacco plants and the main toxic chemical in tobacco waste. Due to its complex physiological effects and toxicity, it has become a concern both in terms of public health and the environment. A number of bacteria belonging to the genera Arthrobacter and Pseudomonas can degrade nicotine via the pyridine and pyrrollidine pathways. Recently, a novel hybrid of the pyridine and pyrrolidine pathways (also known as the VPP pathway) was found in the Rhizobiale group bacteria Agrobacterium tumefaciens S33, Shinella sp. HZN7 and Ochrobactrum sp. SJY1 as well as in other group bacteria. The special mosaic pathway has attracted much attention from microbiologists in terms of the study of their molecular and biochemical mechanisms. This will benefit the development of new biotechnologies in terms of the use of nicotine, the enzymes involved in its catabolism, and the microorganisms capable of degrading the alkaloid. In this pathway, some metabolites are hydroxylated in the pyridine ring or modified in the side chain with active groups, which can be used as precursors for the synthesis of some important compounds in the pharmaceutical and agricultural industries. Moreover, some enzymes may be used for industrial biocatalysis to transform pyridine derivatives into desired chemicals. Here, we review the molecular and biochemical basis of the hybrid nicotine-degrading pathway and discuss the electron transport in its oxidative degradation for energy conservation and bacterial growth.
Collapse
Affiliation(s)
- Haiyan Huang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China.,Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Jinmeng Shang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Shuning Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
11
|
6-Hydroxypseudooxynicotine Dehydrogenase Delivers Electrons to Electron Transfer Flavoprotein during Nicotine Degradation by Agrobacterium tumefaciens S33. Appl Environ Microbiol 2019; 85:AEM.00454-19. [PMID: 30926728 DOI: 10.1128/aem.00454-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/22/2019] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens S33 degrades nicotine via a novel hybrid of the pyridine and the pyrrolidine pathways. The hybrid pathway consists of at least six steps involved in oxidoreductive reactions before the N-heterocycle can be broken down. Collectively, the six steps allow electron transfer from nicotine and its intermediates to the final acceptor O2 via the electron transport chain (ETC). 6-Hydroxypseudooxynicotine oxidase, renamed 6-hydroxypseudooxynicotine dehydrogenase in this study, has been characterized as catalyzing the fourth step using the artificial electron acceptor 2,6-dichlorophenolindophenol. Here, we used biochemical, genetic, and liquid chromatography-mass spectrometry (LC-MS) analyses to determine that 6-hydroxypseudooxynicotine dehydrogenase utilizes the electron transfer flavoprotein (EtfAB) as the physiological electron acceptor to catalyze the dehydrogenation of pseudooxynicotine, an analogue of the true substrate 6-hydroxypseudooxynicotine, in vivo, into 3-succinoyl-semialdehyde-pyridine. NAD(P)+, O2, and ferredoxin could not function as electron acceptors. The oxygen atom in the aldehyde group of the product 3-succinoyl-semialdehyde-pyridine was verified to be derived from H2O. Disruption of the etfAB genes in the nicotine-degrading gene cluster decreased the growth rate of A. tumefaciens S33 on nicotine but not on 6-hydroxy-3-succinoylpyridine, an intermediate downstream of the hybrid pathway, indicating the requirement of EtfAB for efficient nicotine degradation. The electrons were found to be further transferred from the reduced EtfAB to coenzyme Q by the catalysis of electron transfer flavoprotein:ubiquinone oxidoreductase. These results aid in an in-depth understanding of the electron transfer process and energy metabolism involved in the nicotine oxidation and provide novel insights into nicotine catabolism in bacteria.IMPORTANCE Nicotine has been studied as a model for toxic N-heterocyclic aromatic compounds. Microorganisms can catabolize nicotine via various pathways and conserve energy from its oxidation. Although several oxidoreductases have been characterized to participate in nicotine degradation, the electron transfer involved in these processes is poorly understood. In this study, we found that 6-hydroxypseudooxynicotine dehydrogenase, a key enzyme in the hybrid pyridine and pyrrolidine pathway for nicotine degradation in Agrobacterium tumefaciens S33, utilizes EtfAB as a physiological electron acceptor. Catalyzed by the membrane-associated electron transfer flavoprotein:ubiquinone oxidoreductase, the electrons are transferred from the reduced EtfAB to coenzyme Q, which then could enter into the classic ETC. Thus, the route for electron transport from the substrate to O2 could be constructed, by which ATP can be further sythesized via chemiosmosis to support the baterial growth. These findings provide new knowledge regarding the catabolism of N-heterocyclic aromatic compounds in microorganisms.
Collapse
|
12
|
Mihăşan M, Babii C, Aslebagh R, Channaveerappa D, Dupree EJ, Darie CC. Exploration of Nicotine Metabolism in Paenarthrobacter nicotinovorans pAO1 by Microbial Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:515-529. [DOI: 10.1007/978-3-030-15950-4_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Proteomics based analysis of the nicotine catabolism in Paenarthrobacter nicotinovorans pAO1. Sci Rep 2018; 8:16239. [PMID: 30390017 PMCID: PMC6214936 DOI: 10.1038/s41598-018-34687-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Paenarthrobacter nicotinovorans is a nicotine-degrading microorganism that shows a promising biotechnological potential for the production of compounds with industrial and pharmaceutical importance. Its ability to use nicotine was linked to the presence of the catabolic megaplasmid pAO1. Although extensive work has been performed on the molecular biology of nicotine degradation in this bacterium, only half of the genes putatively involved have been experimentally linked to nicotine. In the current approach, we used nanoLC-MS/MS to identify a total of 801 proteins grouped in 511 non-redundant protein clusters when P. nicotinovorans was grown on citrate, nicotine and nicotine and citrate as the only carbon sources. The differences in protein abundance showed that deamination is preferred when citrate is present. Several putative genes from the pAO1 megaplasmid have been shown to have a nicotine-dependent expression, including a hypothetical polyketide cyclase. We hypothesize that the enzyme would hydrolyze the N1-C6 bond from the pyridine ring with the formation of α-keto- glutaramate. Two chromosomally-encoded proteins, a malate dehydrogenase, and a D-3-phosphoglycerate dehydrogenase were shown to be strongly up-regulated when nicotine was the sole carbon source and could be related to the production the α-keto-glutarate. The data have been deposited to the ProteomeXchange with identifier PXD008756.
Collapse
|
14
|
Zhang H, Zhao R, Huang C, Li J, Shao Y, Xu J, Shu M, Zhong W. Selective and faster nicotine biodegradation by genetically modified Pseudomonas sp. JY-Q in the presence of glucose. Appl Microbiol Biotechnol 2018; 103:339-348. [DOI: 10.1007/s00253-018-9445-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 01/12/2023]
|
15
|
Fitzpatrick PF. The enzymes of microbial nicotine metabolism. Beilstein J Org Chem 2018; 14:2295-2307. [PMID: 30202483 PMCID: PMC6122326 DOI: 10.3762/bjoc.14.204] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/20/2018] [Indexed: 12/27/2022] Open
Abstract
Because of nicotine's toxicity and the high levels found in tobacco and in the waste from tobacco processing, there is a great deal of interest in identifying bacteria capable of degrading it. A number of microbial pathways have been identified for nicotine degradation. The first and best-understood is the pyridine pathway, best characterized for Arthrobacter nicotinovorans, in which the first reaction is hydroxylation of the pyridine ring. The pyrrolidine pathway, which begins with oxidation of a carbon-nitrogen bond in the pyrrolidine ring, was subsequently characterized in a number of pseudomonads. Most recently, a hybrid pathway has been described, which incorporates the early steps in the pyridine pathway and ends with steps in the pyrrolidine pathway. This review summarizes the present status of our understanding of these pathways, focusing on what is known about the individual enzymes involved.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| |
Collapse
|
16
|
Liu X, Wang W, Hu H, Lu X, Zhang L, Xu P, Tang H. 2-Hydroxy-4-(3′-oxo-3′H-benzofuran-2′-yliden)but-2-enoic acid biosynthesis from dibenzofuran using lateral dioxygenation in a Pseudomonas putida strain B6-2 (DSM 28064). BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0209-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|