1
|
Increasing Ethanol Tolerance and Ethanol Production in an Industrial Fuel Ethanol Saccharomyces cerevisiae Strain. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The stress imposed by ethanol to Saccharomyces cerevisiae cells are one of the most challenging limiting factors in industrial fuel ethanol production. Consequently, the toxicity and tolerance to high ethanol concentrations has been the subject of extensive research, allowing the identification of several genes important for increasing the tolerance to this stress factor. However, most studies were performed with well-characterized laboratory strains, and how the results obtained with these strains work in industrial strains remains unknown. In the present work, we have tested three different strategies known to increase ethanol tolerance by laboratory strains in an industrial fuel–ethanol producing strain: the overexpression of the TRP1 or MSN2 genes, or the overexpression of a truncated version of the MSN2 gene. Our results show that the industrial CAT-1 strain tolerates up to 14% ethanol, and indeed the three strategies increased its tolerance to ethanol. When these strains were subjected to fermentations with high sugar content and cell recycle, simulating the industrial conditions used in Brazilian distilleries, only the strain with overexpression of the truncated MSN2 gene showed improved fermentation performance, allowing the production of 16% ethanol from 33% of total reducing sugars present in sugarcane molasses. Our results highlight the importance of testing genetic modifications in industrial yeast strains under industrial conditions in order to improve the production of industrial fuel ethanol by S. cerevisiae.
Collapse
|
2
|
Ferraz P, Brandão RL, Cássio F, Lucas C. Moniliophthora perniciosa, the Causal Agent of Cacao Witches' Broom Disease Is Killed in vitro by Saccharomyces cerevisiae and Wickerhamomyces anomalus Yeasts. Front Microbiol 2021; 12:706675. [PMID: 34630345 PMCID: PMC8493218 DOI: 10.3389/fmicb.2021.706675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/25/2021] [Indexed: 01/12/2023] Open
Abstract
Cacao plantations from South America have been afflicted with the severe fungal disease known as Witches’ Broom Disease (WBD), caused by the basidiomycete Moniliophthora perniciosa. Yeasts are increasingly recognized as good fungal biocides, although their application is still mostly restricted to the postharvest control of plant and fruit decay. Their possible utilization in the field, in a preharvest phase, is nevertheless promising, particularly if the strains are locally adapted and evolved and if they belong to species considered safe for man and the environment. In this work, a group of yeast strains originating from sugarcane-based fermentative processes in Brazil, the cacao-producing country where the disease is most severe, were tested for their ability to antagonize M. perniciosa in vitro. Wickerhamomyces anomalus LBCM1105 and Saccharomyces cerevisiae strains LBCM1112 from spontaneous fermentations used to produce cachaça, and PE2 widely used in Brazil in the industrial production of bioethanol, efficiently antagonized six strains of M. perniciosa, originating from several South American countries. The two fastest growing fungal strains, both originating from Brazil, were further used to assess the mechanisms underlying the yeasts’ antagonism. Yeasts were able to inhibit fungal growth and kill the fungus at three different temperatures, under starvation, at different culture stages, or using an inoculum from old yeast cultures. Moreover, SEM analysis revealed that W. anomalus and S. cerevisiae PE2 cluster and adhere to the hyphae, push their surface, and fuse to them, ultimately draining the cells. This behavior concurs with that classified as necrotrophic parasitism/mycoparasitism. In particular, W. anomalus within the adhered clusters appear to be ligated to each other through roundish groups of fimbriae-like structures filled with bundles of microtubule-sized formations, which appear to close after cells detach, leaving a scar. SEM also revealed the formation of tube-like structures apparently connecting yeast to hypha. This evidence suggests W. anomalus cells form a network of yeast cells connecting with each other and with hyphae, supporting a possible cooperative collective killing and feeding strategy. The present results provide an initial step toward the formulation of a new eco-friendly and effective alternative for controlling cacao WBD using live yeast biocides.
Collapse
Affiliation(s)
- Pedro Ferraz
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho-Campus de Gualtar, Braga, Portugal.,Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho-Campus de Gualtar, Braga, Portugal
| | - Rogelio Lopes Brandão
- Nucleus of Research in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Fernanda Cássio
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho-Campus de Gualtar, Braga, Portugal.,Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho-Campus de Gualtar, Braga, Portugal
| | - Cândida Lucas
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho-Campus de Gualtar, Braga, Portugal.,Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho-Campus de Gualtar, Braga, Portugal
| |
Collapse
|
3
|
Srivastava RK, Shetti NP, Reddy KR, Kwon EE, Nadagouda MN, Aminabhavi TM. Biomass utilization and production of biofuels from carbon neutral materials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116731. [PMID: 33607352 DOI: 10.1016/j.envpol.2021.116731] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 05/22/2023]
Abstract
The availability of organic matters in vast quantities from the agricultural/industrial practices has long been a significant environmental challenge. These wastes have created global issues in increasing the levels of BOD or COD in water as well as in soil or air segments. Such wastes can be converted into bioenergy using a specific conversion platform in conjunction with the appropriate utilization of the methods such as anaerobic digestion, secondary waste treatment, or efficient hydrolytic breakdown as these can promote bioenergy production to mitigate the environmental issues. By the proper utilization of waste organics and by adopting innovative approaches, one can develop bioenergy processes to meet the energy needs of the society. Waste organic matters from plant origins or other agro-sources, biopolymers, or complex organic matters (cellulose, hemicelluloses, non-consumable starches or proteins) can be used as cheap raw carbon resources to produce biofuels or biogases to fulfill the ever increasing energy demands. Attempts have been made for bioenergy production by biosynthesizing, methanol, n-butanol, ethanol, algal biodiesel, and biohydrogen using different types of organic matters via biotechnological/chemical routes to meet the world's energy need by producing least amount of toxic gases (reduction up to 20-70% in concentration) in order to promote sustainable green environmental growth. This review emphasizes on the nature of available wastes, different strategies for its breakdown or hydrolysis, efficient microbial systems. Some representative examples of biomasses source that are used for bioenergy production by providing critical information are discussed. Furthermore, bioenergy production from the plant-based organic matters and environmental issues are also discussed. Advanced biofuels from the organic matters are discussed with efficient microbial and chemical processes for the promotion of biofuel production from the utilization of plant biomasses.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to Be University), Rushikonda, Visakhapatnam, 530045, (A.P.), India
| | - Nagaraj P Shetti
- Department of Chemistry, K. L. E. Institute of Technology, Gokul, Hubballi, 580027, Karnataka, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45324, USA
| | | |
Collapse
|
4
|
High Gravity and Very High Gravity Fermentation of Sugarcane Molasses by Flocculating Saccharomyces cerevisiae: Experimental Investigation and Kinetic Modeling. Appl Biochem Biotechnol 2020; 193:807-821. [PMID: 33196971 DOI: 10.1007/s12010-020-03466-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
Substantial progress has been made in ethanol fermentation technology under high gravity (HG) and very high gravity (VHG), which offer environmental and economic benefits. HG and VHG processes increase the productivity of ethanol, reduce distillation costs, and enable higher yields. The aim of the present study was to evaluate the use of sugarcane molasses as the medium component along with flocculating yeasts for fermentation in a fed-batch process employing this promising technology. We evaluated fed-batch fermentation, HG, and VHG involving a molasses-based medium with high concentrations of reducing sugars (209, 222, and 250 g/L). Fermentation of 222 g/L of total reducing sugars achieved 89.45% efficiency, with a final ethanol concentration of 104.4 g/L, whereas the highest productivity (2.98 g/(L.h)) was achieved with the fermentation of 209 g/L of total reducing sugars. The ethanol concentration achieved with the fermentation of 222 g/L of total reducing sugars was close to the value obtained for P'max (105.35 g/L). The kinetic model provided a good fit to the experimental data regarding the fermentation of 222 g/L. The results revealed that sugarcane molasses and flocculating yeasts can be efficiently used in HG fermentation to reduce the costs of the process and achieve high ethanol titers.
Collapse
|
5
|
Cruz ML, de Resende MM, Ribeiro EJ. Improvement of ethanol production in fed-batch fermentation using a mixture of sugarcane juice and molasse under very high-gravity conditions. Bioprocess Biosyst Eng 2020; 44:617-625. [PMID: 33131002 DOI: 10.1007/s00449-020-02462-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022]
Abstract
Ethanol fermentation in very high gravity (VHG) saves energy consumption for ethanol distillation. As the technology offers high ethanol yield and low waste generation and it can be operated at low cost, it could be more efficient at an industrial scale than other ethanol production methods. This work studied ethanol production using a fed-batch bioreactor with a working volume of 1.5 L. The main objective of this research was evaluate the effects of temperature, sugar concentration, and cellular concentration using a Central Composite Design (CCD). Experimental conditions were selected using the surface response technique obtained from the CCD, and the results were validated to test the reproducibility. The following operating conditions were selected: temperature of 27.0 °C, sugar concentration 300.0 g/L, and cell concentration 15.0% (v/v). Under these conditions, after 30 h of fermentation the ethanol concentration, productivity and yield were 135.0 g/L, 4.42 g/(L·h) and 90.0%, respectively. All sugar was completely consumed.
Collapse
Affiliation(s)
- Mariana Lopes Cruz
- Faculty of Chemical Engineering, Federal University of Uberlândia, Av. João Naves de Ávila, 2121, , Campus Santa Mônica - Bloco 1K, Uberlândia, MG, 38408-144, Brazil
| | - Miriam Maria de Resende
- Faculty of Chemical Engineering, Federal University of Uberlândia, Av. João Naves de Ávila, 2121, , Campus Santa Mônica - Bloco 1K, Uberlândia, MG, 38408-144, Brazil.
| | - Eloízio Júlio Ribeiro
- Faculty of Chemical Engineering, Federal University of Uberlândia, Av. João Naves de Ávila, 2121, , Campus Santa Mônica - Bloco 1K, Uberlândia, MG, 38408-144, Brazil
| |
Collapse
|
6
|
Brandão ACT, de Resende MM, Ribeiro EJ. Alcoholic fermentation with high sugar and cell concentration at moderate temperatures using flocculant yeasts. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0589-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Walker GM, Basso TO. Mitigating stress in industrial yeasts. Fungal Biol 2019; 124:387-397. [PMID: 32389301 DOI: 10.1016/j.funbio.2019.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 01/19/2023]
Abstract
The yeast, Saccharomyces cerevisiae, is the premier fungal cell factory exploited in industrial biotechnology. In particular, ethanol production by yeast fermentation represents the world's foremost biotechnological process, with beverage and fuel ethanol contributing significantly to many countries economic and energy sustainability. During industrial fermentation processes, yeast cells are subjected to several physical, chemical and biological stress factors that can detrimentally affect ethanol yields and overall production efficiency. These stresses include ethanol toxicity, osmostress, nutrient starvation, pH and temperature shock, as well as biotic stress due to contaminating microorganisms. Several cell physiological and genetic approaches to mitigate yeast stress during industrial fermentations can be undertaken, and such approaches will be discussed with reference to stress mitigation in yeasts employed in Brazilian bioethanol processes. This article will highlight the importance of furthering our understanding of key aspects of yeast stress physiology and the beneficial impact this can have more generally on enhancing industrial fungal bioprocesses.
Collapse
Affiliation(s)
| | - Thiago O Basso
- Department of Chemical Engineering, Universidade de São Paulo, Brazil.
| |
Collapse
|
8
|
The Use of CRISPR-Cas9 Genome Editing to Determine the Importance of Glycerol Uptake in Wine Yeast During Icewine Fermentation. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5040093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The high concentration of sugars in Icewine juice causes formidable stress for the fermenting Saccharomyces cerevisiae, causing cells to lose water and shrink in size. Yeast can combat this stress by increasing the internal concentration of glycerol by activating the high osmolarity glycerol response to synthesize glycerol and by actively transporting glycerol into the cell from the environment. The H+/glycerol symporter, Stl1p, has been previously characterized as being glucose repressed and inactivated, despite osmotic stress induction. To further investigate the role of Stl1p in Icewine fermentations, we developed a rapid single plasmid CRISPR-Cas9-based genome editing method to construct a strain of the common Icewine yeast, S. cerevisiae K1-V1116, that lacks STL1. In an Icewine fermentation, the ∆STL1 strain had reduced fermentation performance, and elevated glycerol and acetic acid production compared to the parent. These results demonstrate that glycerol uptake by Stl1p has a significant role during osmotically challenging Icewine fermentations in K1-V1116 despite potential glucose downregulation.
Collapse
|
9
|
Yang H, Zong X, Xu Y, Li W, Zeng Y, Zhao H. Efficient fermentation of very high-gravity worts by brewer's yeast with wheat gluten hydrolysates and their ultrafiltration fractions supplementations. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|