1
|
Zhu Y, Kang J, Gao D, Chen B, Nie Y, Wang H, Wu X. Alcoholamine enhanced fractionation of cellulose from lignocellulosic biomass in ionic liquids. Phys Chem Chem Phys 2023; 25:31444-31456. [PMID: 37962388 DOI: 10.1039/d3cp01757e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Ionic liquid based technology is promising in the pretreatment of lignocelluloses. More efforts are still being made to intensify the separation of the main components in this biomass and to inhibit biopolymer degradation, especially in the fabrication of functional materials where excellent mechanical properties are often requisite. In this study, additives with amino and/or hydroxyl groups were proposed to improve the dissolution of lignocellulosic biomass in ionic liquids and to inhibit the degradation of cellulose. Among the tested additives (i.e., urea, L-2-aminobutyric acid, DL-aminopropanol, 3-aminopropanol and ethanolamine), 3-aminopropanol showed the best performance in enhancing wheat straw dissolution and cellulose recovery in 1-ethyl-3-methylimidazolium acetate ([EMIM]Ac). Further study revealed that this additive could also inhibit cellulose degradation in [EMIM]Ac. The interactions between the ionic liquid and additive were revealed by NMR and IR analysis. It was found that the formation of hydrogen bonds between 3-aminopropanol and [EMIM]Ac changed the interactions between ionic liquids and biomass, resulting in improved dissolution efficiency and inhibition of cellulose degradation. Optimization investigation showed that when using the 3-aminopropanol/[EMIM]Ac composite system as the solvent and pine as the raw biomass, the cellulose content in the recovered cellulose-rich material was increased from 33.3% (for the raw pine) to 66.9%. Correspondingly, the regenerated cellulose spinning in the composite system exhibited improved mechanical properties, with the elongation at break reaching 15.6% and the tensile fracture strength of 184.1 N per tex (in comparison with 9.6% for elongation at break and 99.7 N per tex for tensile fracture strength for the sample obtained in neat [EMIM]Ac).
Collapse
Affiliation(s)
- Yiwei Zhu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), 100083, China.
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Jian Kang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Die Gao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Bingtong Chen
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi Nie
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hui Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaowen Wu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), 100083, China.
| |
Collapse
|
3
|
Sahoo DK, Jena S, Tulsiyan KD, Dutta J, Chakrabarty S, Biswal HS. Amino-Acid-Based Ionic Liquids for the Improvement in Stability and Activity of Cytochrome c: A Combined Experimental and Molecular Dynamics Study. J Phys Chem B 2019; 123:10100-10109. [DOI: 10.1021/acs.jpcb.9b09278] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dipak Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Kiran Devi Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Suman Chakrabarty
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700106, India
| | - Himansu S. Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
4
|
Wu Z. Mixed fermentation of Aspergillus niger and Candida shehatae to produce bioethanol with ionic-liquid-pretreated bagasse. 3 Biotech 2019; 9:41. [PMID: 30675451 PMCID: PMC6328811 DOI: 10.1007/s13205-019-1570-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/03/2019] [Indexed: 10/27/2022] Open
Abstract
In this study, bagasse was pretreated with ionic liquid (IL) 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) and 1% NaOH solution for initial activation of bagasse. A mixed fermentation of treated bagasse by Aspergillus niger and Candida shehatae showed the optimal conditions with the addition of C. shehatae 12 h later at a 1:1 proportion to A. niger. To further improve the ethanol production and obtain optimal fermentation conditions, a Plackett-Burman design was applied to screen the significant formulation and process variables. The optimal ethanol fermentation conditions with IL pretreated bagasse were determined using response surface methodology by Box-Behnken design. Three variables "initial pH, (NH4)2SO4, fermentation time" were regarded as significant factors in the optimization study. The resulting optimum fermentation conditions for bioethanol was identified as: initial pH of 5.89, (NH4)2SO4 concentration of 0.40 g/50 mL, and fermentation time of 3.60 days. The verification experimental ethanol concentration was 8.14 g/L, which agreed with the predicted value. An enhancement of approximately 153.58% compared with initial fermentation conditions in ethanol production was found using optimized conditions. It demonstrated that optimization methodology had a positive effect on the improvement of ethanol production. Under the optimal fermentation medium and conditions, the ethanol production with IL-pretreated bagasse and untreated bagasse was 8.14 g/L and 5.03 g/L, respectively, which exhibited 62% increase, compared to initial conditions with production of 3.21 g/L and 2.67 g/L, respectively, which displayed 20% increase. Both under optimal and original fermentation conditions, compared to the fermentation medium with untreated bagasse, all the results indicated that IL-pretreated bagasse resulted in higher ethanol production than untreated bagasse, demonstrating that IL-pretreated bagasse successfully increased the ethanol production in the mixed fermentation by A. niger and C. shehatae.
Collapse
Affiliation(s)
- Zaiqiang Wu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
| |
Collapse
|