1
|
Ma Q, Yi J, Tang Y, Geng Z, Zhang C, Sun W, Liu Z, Xiong W, Wu H, Xie X. Co-utilization of carbon sources in microorganisms for the bioproduction of chemicals. Biotechnol Adv 2024; 73:108380. [PMID: 38759845 DOI: 10.1016/j.biotechadv.2024.108380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/14/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Carbon source is crucial for the cell growth and metabolism in microorganisms, and its utilization significantly affects the synthesis efficiency of target products in microbial cell factories. Compared with a single carbon source, co-utilizing carbon sources provide an alternative approach to optimize the utilization of different carbon sources for efficient biosynthesis of many chemicals with higher titer/yield/productivity. However, the efficiency of bioproduction is significantly limited by the sequential utilization of a preferred carbon source and secondary carbon sources, attributed to carbon catabolite repression (CCR). This review aimed to introduce the mechanisms of CCR and further focus on the summary of the strategies for co-utilization of carbon sources, including alleviation of CCR, engineering of the transport and metabolism of secondary carbon sources, compulsive co-utilization in single culture, co-utilization of carbon sources via co-culture, and evolutionary approaches. The findings of representative studies with a significant improvement in the bioproduction of chemicals via the co-utilization of carbon sources were discussed in this review. It suggested that by combining rational metabolic engineering and irrational evolutionary approaches, co-utilizing carbon sources can significantly contribute to the bioproduction of chemicals.
Collapse
Affiliation(s)
- Qian Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinhang Yi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yulin Tang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zihao Geng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chunyue Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenchao Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhengkai Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenwen Xiong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Heyun Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
López-Pérez PA, López-López M, Núñez-Colín CA, Mukhtar H, Aguilar-López R, Peña-Caballero V. A novel nonlinear sliding mode observer to estimate biomass for lactic acid production. CHEMICAL PRODUCT AND PROCESS MODELING 2022. [DOI: 10.1515/cppm-2021-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract
This study deals with the problem of estimating the amount of biomass and lactic acid concentration in a lactic acid production process. A continuous stirred tank bioreactor was used for the culture of Lactobacillus helveticus. A nonlinear sliding mode observer is proposed and designed, which gives an estimate of both the biomass and lactic acid concentrations as a function of glucose uptake from the culture medium. Numerical results are given to illustrate the effectiveness of the proposed observer against a standard sliding-mode observer. It was found that the proposed observer worked very well for the benchmark bioreactor model. Also, the numerical results indicated that the proposed estimation methodology was robust to the uncertainties associated with un-modelled dynamics. These new sensing technologies, when coupled to software models, improve performance for smart process control, monitoring, and prediction.
Collapse
Affiliation(s)
- Pablo A. López-Pérez
- Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo , Carretera Apan-Calpulalpan, Km.8., Chimalpa Tlalayote s/n, 43900, Colonia Chimalpa , Apan , Hgo. , Mexico
| | - Milagros López-López
- University of Guanajuato , Av. Ing. Barros Sierra No. 201 Ejido de Santa María del Refugio, C.P. 38140 Celaya , Guanajuato , Mexico
| | - Carlos A. Núñez-Colín
- University of Guanajuato , Av. Ing. Barros Sierra No. 201 Ejido de Santa María del Refugio, C.P. 38140 Celaya , Guanajuato , Mexico
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University , Katchery Road , Lahore 54000 , Pakistan
| | - Ricardo Aguilar-López
- Departamento de Biotecnología y Bioingeniería , CINVESTAV-IPN , Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, 07360 , México City , CDMX. , Mexico
| | - Vicente Peña-Caballero
- University of Guanajuato , Av. Ing. Barros Sierra No. 201 Ejido de Santa María del Refugio, C.P. 38140 Celaya , Guanajuato , Mexico
| |
Collapse
|
3
|
He N, Jia J, Qiu Z, Fang C, Lidén G, Liu X, Bao J. Cyclic L-lactide synthesis from lignocellulose biomass by biorefining with complete inhibitor removal and highly simultaneous sugars assimilation. Biotechnol Bioeng 2022; 119:1903-1915. [PMID: 35274740 DOI: 10.1002/bit.28082] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/02/2022]
Abstract
Cyclic chiral lactide is the monomer chemical for polymerization of high molecular weight polylactic acid (PLA). The synthesis of cyclic L-lactide starts from poly-condensation of L-lactic acid to a low molecular weight pre-polymer and then depolymerized to cyclic L-lactide. Lignocellulose biomass is the most promising carbohydrate feedstock for lactic acid production, but the synthesis of cyclic L-lactide from L-lactic acid produced from lignocellulose has so far not been successful. The major barriers are the impurities of residual sugars and inhibitors in the crude cellulosic L-lactic acid product. Here we show a successful cyclic L-lactide synthesis from cellulosic L-lactic acid by lignocellulose biorefining with complete inhibitor removal and coordinated sugars assimilation. The removal of inhibitors from lignocellulose pretreatment was accomplished by biodetoxification using a unique fungus Amorphotheca resinae ZN1. The non-glucose sugars were completely and simultaneously assimilated at the same rate with glucose by the engineered L-lactic acid bacterium Pediococcus acidilactici. The L-lactic acid production from wheat straw was comparable to that from corn starch with high optical pure (99.6%), high L-lactic acid titer (129.4 g/L), minor residual total sugars (~2.2 g/L), and inhibitors free. The cyclic L-lactide was successfully synthesized from the regularly purified L-lactic acid and verified by detailed characterizations. This study paves the technical foundation of carbon neutral production of biodegradable PLA from lignocellulose biomass. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Niling He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jia Jia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhongyang Qiu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, 111 West Changjiang Road, Huaian, Jiangsu, 223300, China
| | - Chun Fang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, 221 00, Lund, Sweden
| | - Xiucai Liu
- Cathay Biotech Inc, 1690 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
4
|
Wang Y, Chan KL, Abdel-Rahman MA, Sonomoto K, Leu SY. Correction to: Dynamic simulation of continuous mixed sugar fermentation with increasing cell retention time for lactic acid production using Enterococcus mundtii QU 25. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:140. [PMID: 32788925 PMCID: PMC7416399 DOI: 10.1186/s13068-020-01772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
[This corrects the article DOI: 10.1186/s13068-020-01752-6.].
Collapse
Affiliation(s)
- Ying Wang
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101 Sichuan China
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Ka-Lai Chan
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Mohamed Ali Abdel-Rahman
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Motooka, Nishi‐ku, Fukuoka, Japan
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, PN:11884, Nasr City, Cairo, Egypt
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Motooka, Nishi‐ku, Fukuoka, Japan
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|