1
|
Zhou Y, Sun ML, Lin L, Ledesma-Amaro R, Wang K, Ji XJ, Huang H. Dynamic regulation combined with systematic metabolic engineering for high-level palmitoleic acid accumulation in oleaginous yeast. Metab Eng 2025; 89:33-46. [PMID: 39970999 DOI: 10.1016/j.ymben.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Palmitoleic acid (POA, C16:1Δ9) is widely recognized for its preventive and therapeutic effects in various chronic and cardiovascular diseases, but the current production practices based on plant extraction are both economically and ecologically unsustainable. Although Yarrowia lipolytica is capable of producing POA, it only accumulates to a small percentage of total fatty acids. The present study aimed to enhance the accumulation of POA by employing a two-layer engineering strategy, encompassing the modulation of the fatty acid profile and the promotion of the accumulation of POA-rich lipids. The fatty acid profile was subject to modulation through the engineering of the fatty acid metabolism by expressing heterologous specific fatty acid desaturases CeFat5 and implementing dynamic regulation based on a copper-responsive promoter. Then, the mechanism underlying this improvement of POA production capacity was elucidated. Finally, the POA-rich lipid accumulation ability was enhanced through engineering of the lipid metabolism by overexpressing the heterologous POA-specific triacylglycerol forming acyltransferase, introducing the artificial designed non-carboxylative malonyl-CoA production pathway, and preventing lipid degradation. The resulting optimized yeast strain achieved an impressive POA accumulation accounting for 50.62% of total fatty acids, marking a 37.7-fold improvement over the initial strain. Moreover, a record POA titer of 25.6 g/L was achieved in the bioreactor. Overall, this study introduces a framework for establishing efficient yeast platforms for the accumulation of valuable fatty acids.
Collapse
Affiliation(s)
- Yufan Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - He Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
2
|
Papachristou I, Nazarova N, Wüstner R, Lina R, Frey W, Silve A. Biphasic lipid extraction from microalgae after PEF-treatment reduces the energy demand of the downstream process. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:12. [PMID: 39875923 PMCID: PMC11776281 DOI: 10.1186/s13068-025-02608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND The gradual extrusion of water-soluble intracellular components (such as proteins) from microalgae after pulsed electric field (PEF) treatment is a well-documented phenomenon. This could be utilized in biorefinery applications with lipid extraction taking place after such an 'incubation' period, i.e., a post-PEF-treatment step during which the biomass is left undisturbed before any further processing. The goal of this work was to further explore how this incubation could improve lipid extraction. RESULTS Experiments were conducted on wet, freshly harvested Auxenochlorella protothecoides, treated with 0.25 or 1.5 MJ/kgDW and incubated for 24 h. Lipid extraction took place with a monophasic ethanol:hexane:water, 1:0.41:0.04 vol/vol/vol mixture with a 75.6 mL solvent per 1 g of dry biomass ratio. The kinetics of the extraction were studied with samples taken between 10 and 1080 min from fresh and incubated biomass. The yields at 10 min were significantly increased with incubation compared to without (31.2% dry weight compared to 1.81%, respectively). The experimental data were fitted with the Patricelli model where extraction occurs in two steps, a rapid washing of immediate available lipids and a slower diffusion one. During Nile-Red staining of microalgae and microscopy imaging, a shift of emission from both GFP and RFP channels to mostly RFP was observed indicating an increase in the polarity of the environment of Nile-Red. These led to an adaption of a biphasic ethanol:hexane:water 1:6:0.4 vol/vol/vol solvent with 37 mL solvent per 1 g of dry biomass ratio which while ineffective on fresh biomass, achieved a 27% dry weight yield from incubated microalgae. The extraction efficiency in the biphasic route was lower compared to the monophasic (i.e., 69% and 95%, respectively). It was compensated however, by the significant solvent reduction (37 mL to 75.6 mL respectively), in particular the ethanol minimization. For the extraction of 1 L lipids, it was estimated that the energy consumption ratio for the biphasic process was 1.6 compared to 9.9 for monophasic, making clearly the most preferential one. CONCLUSIONS This biphasic approach significantly reduces solvent consumption and the respective energy requirement for solvent recovery. Incubation thus could majorly improve the commercialization prospects of the process.
Collapse
Affiliation(s)
- Ioannis Papachristou
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.
| | - Natalja Nazarova
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Rüdiger Wüstner
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Robin Lina
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Wolfgang Frey
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Aude Silve
- Institute for Pulsed Power and Microwave Technology (IHM), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Gao W, Liu J, Zhang P, Zeng XA, Han Z, Teng Y. Physicochemical, structural and functional properties of pomelo peel pectin extracted by combination of pulsed electric field and cellulase hydrolysis. Int J Biol Macromol 2024; 278:134469. [PMID: 39102911 DOI: 10.1016/j.ijbiomac.2024.134469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
In this study, pectin extracted from pomelo peel was investigated using three different combination methods of pulsed electric field (PEF) and cellulase. Three action sequences were performed, including PEF treatment followed by enzymatic hydrolysis, enzymatic hydrolysis followed by PEF treatment, and enzymatic hydrolysis simultaneously treated by PEF. The three corresponding pectins were namely PEP, EPP and SP. The physiochemical, molecular structural and functional properties of the three pectins were determined. The results showed that PEP had excellent physiochemical properties, with the highest yield (12.08 %), total sugar (80.17 %) and total phenol content (38.20 %). The monosaccharide composition and FT-IR analysis indicated that the three pectins were similar. The molecular weights of PEP, EPP and SP were 51.13, 88.51 and 40.00 kDa, respectively. PEP showed the best gel properties, emulsification stability and antioxidant capacity among the three products, due to its high galacturonic acid and total phenol content, appropriate protein and low molecular weight. The mechanism of PEF-assisted cellulase hydrolysis of pomelo peel was also revealed by SEM analysis. These results suggested that PEF pretreatment was the best method, which not only improved the efficiency of enzymatic extraction, but also reduced resource waste and increased financial benefits.
Collapse
Affiliation(s)
- Wenhong Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jiajing Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Peilin Zhang
- Guangdong Polytechnic Normal University, Guangzhou 510665, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yongxin Teng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
Optimized infrared-assisted extraction to obtain total lipid from microalgae Scenedesmus obliquus: a green approach. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2023. [DOI: 10.1515/ijcre-2022-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Abstract
Microalgae oil has great potential to address the growing energy demand and dependence on fossil fuels. However, the multilayered cell walls of microalgae hinder efficient extraction and enhanced lipid recovery. In this study, we develop a novel protocol based on near infrared-assisted extraction (NIRAE) technology to extract efficiently total lipids from Scenedesmus obliquus. Under a greener solvent extraction approach, the effect of nine non-polar/polar solvent systems in various ratios on lipid yield was tested, and the results were compared with Soxhlet, Folch, and Bligh–Dyer methods. The highest oil yields were NIRAE 15.43%, and Soxhlet 22.24%, using AcoEt/MeOH (1:2 v/v). For Folch and Bligh–Dyer, 9.11 and 10%, respectively. The optimized NIRAE conditions obtained using response surface methodology (RSM): 43.8 min, solvent/biomass 129.90:1 (m/v), and AcOEt/MeOH 0.57:2.43 (v/v) increased the oil yield significantly to 24.20%. In contrast to conventional methods, the overall optimized NIRAE process satisfied the requirements of a green extraction because of the simple and safe operation, less solvent toxicity, lower extraction time, and solvent and energy consumption.
Collapse
|
5
|
Simulation and Techno-Economical Evaluation of a Microalgal Biofertilizer Production Process. BIOLOGY 2022; 11:biology11091359. [PMID: 36138838 PMCID: PMC9495801 DOI: 10.3390/biology11091359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary The world’s population is expected to increase to almost 10,000 million by 2025, thus requiring an increase in agricultural production to meet the demand for food. Hence, an increase in fertilizer production will be needed, but with more environmentally sustainable fertilizers than those currently used. Traditional nitrogenous fertilizers (TNFs, inorganic compounds, for example nitrates and ammonium) are currently the most consumed. Biofertilizers concentrated in amino acids (BCAs) are a more sustainable alternative to TNF and could reduce the demand for TNFs. BCAs are widely used in intensive agriculture as growth and fruit formation enhancers, as well as in situations of stress for the plant, helping it to recover its vigor. In addition, BCAs minimize or contribute to reducing the damage caused by pests and diseases, have an immediate action, giving a full utilization and, lastly and most importantly, they produce savings in the crop. The objective of this work is to propose a process for the production of biofertilizer concentrated in free amino acids from microalgal biomass produced in a wastewater treatment plant and to carry out techno-economic evaluation in such a way as to determine the viability of the proposal. Abstract Due to population growth in the coming years, an increase in agricultural production will soon be mandatory, thus requiring fertilizers that are more environmentally sustainable than the currently most-consumed fertilizers since these are important contributors to climate change and water pollution. The objective of this work is the techno-economic evaluation of the production of biofertilizer concentrated in free amino acids from microalgal biomass produced in a wastewater treatment plant, to determine its economic viability. A process proposal has been made in six stages that have been modelled and simulated with the ASPEN Plus simulator. A profitability analysis has been carried out using a Box–Behnken-type response surface statistical design with three factors—the cost of the biomass sludge, the cost of the enzymes, and the sale price of the biofertilizer. It was found that the most influential factor in profitability is the sale price of the biofertilizer. According to a proposed representative base case, in which the cost of the biomass sludge is set to 0.5 EUR/kg, the cost of the enzymes to 20.0 EUR/kg, and the sale price of the biofertilizer to 3.5 EUR/kg, which are reasonable costs, it is concluded that the production of the biofertilizer would be economically viable.
Collapse
|
6
|
Knappert J, Nolte J, Friese N, Yang Y, Lindenberger C, Rauh C, McHardy C. Decay of Trichomes of Arthrospira platensis After Permeabilization Through Pulsed Electric Fields (PEFs) Causes the Release of Phycocyanin. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.934552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cyanobacterium Arthrospira platensis is a promising source of edible proteins and other highly valuable substances such as the blue pigment-protein complex phycocyanin. Pulsed electric field (PEF) technology has recently been studied as a way of permeabilizing the cell membrane, thereby enhancing the mass transfer of water-soluble cell metabolites. Unfortunately, the question of the release mechanism is not sufficiently clarified in published literature. In this study, the degree of cell permeabilization (cell disintegration index) was directly measured by means of a new method using fluorescent dye propidium iodide (PI). The method allows for conclusions to be drawn about the effects of treatment time, electric field strength, and treatment temperature. Using a self-developed algorithm for image segmentation, disintegration of trichomes was observed over a period of 3 h. This revealed a direct correlation between cell disintegration index and decay of trichomes. This decay, in turn, could be brought into a direct temporal relationship with the release of phycocyanin. For the first time, this study reveals the relationship between permeabilization and the kinetics of particle decay and phycocyanin extraction, thus contributing to a deeper understanding of the release of cell metabolites in response to PEF. The results will facilitate the design of downstream processes to produce sustainable products from Arthrospira platensis.
Collapse
|
7
|
Rahman MM, Hosano N, Hosano H. Recovering Microalgal Bioresources: A Review of Cell Disruption Methods and Extraction Technologies. Molecules 2022; 27:2786. [PMID: 35566139 PMCID: PMC9104913 DOI: 10.3390/molecules27092786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Microalgae have evolved into a promising sustainable source of a wide range of compounds, including protein, carbohydrates, biomass, vitamins, animal feed, and cosmetic products. The process of extraction of intracellular composites in the microalgae industry is largely determined by the microalgal species, cultivation methods, cell wall disruption techniques, and extraction strategies. Various techniques have been applied to disrupt the cell wall and recover the intracellular molecules from microalgae, including non-mechanical, mechanical, and combined methods. A comprehensive understanding of the cell disruption processes in each method is essential to improve the efficiency of current technologies and further development of new methods in this field. In this review, an overview of microalgal cell disruption techniques and an analysis of their performance and challenges are provided. A number of studies on cell disruption and microalgae extraction are examined in order to highlight the key challenges facing the field of microalgae and their future prospects. In addition, the amount of product recovery for each species of microalgae and the important parameters for each technique are discussed. Finally, pulsed electric field (PEF)-assisted treatments, which are becoming an attractive option due to their simplicity and effectiveness in extracting microalgae compounds, are discussed in detail.
Collapse
Affiliation(s)
- Md. Mijanur Rahman
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Nushin Hosano
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Hamid Hosano
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan;
| |
Collapse
|
8
|
Microalgal Biorefinery Concepts’ Developments for Biofuel and Bioproducts: Current Perspective and Bottlenecks. Int J Mol Sci 2022; 23:ijms23052623. [PMID: 35269768 PMCID: PMC8910654 DOI: 10.3390/ijms23052623] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023] Open
Abstract
Microalgae have received much interest as a biofuel feedstock. However, the economic feasibility of biofuel production from microalgae does not satisfy capital investors. Apart from the biofuels, it is necessary to produce high-value co-products from microalgae fraction to satisfy the economic aspects of microalgae biorefinery. In addition, microalgae-based wastewater treatment is considered as an alternative for the conventional wastewater treatment in terms of energy consumption, which is suitable for microalgae biorefinery approaches. The energy consumption of a microalgae wastewater treatment system (0.2 kW/h/m3) was reduced 10 times when compared to the conventional wastewater treatment system (to 2 kW/h/m3). Microalgae are rich in various biomolecules such as carbohydrates, proteins, lipids, pigments, vitamins, and antioxidants; all these valuable products can be utilized by nutritional, pharmaceutical, and cosmetic industries. There are several bottlenecks associated with microalgae biorefinery. Hence, it is essential to promote the sustainability of microalgal biorefinery with innovative ideas to produce biofuel with high-value products. This review attempted to bring out the trends and promising solutions to realize microalgal production of multiple products at an industrial scale. New perspectives and current challenges are discussed for the development of algal biorefinery concepts.
Collapse
|
9
|
Biodegradable Solvents: A Promising Tool to Recover Proteins from Microalgae. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The world will face a significant protein demand in the next few decades, and due to the environmental concerns linked to animal protein, new sustainable protein sources must be found. In this regard, microalgae stand as an outstanding high-quality protein source. However, different steps are needed to separate the proteins from the microalgae biomass and other biocompounds. The protein recovery from the disrupted biomass is usually the bottleneck of the process, and it typically employs organic solvents or harsh conditions, which are both detrimental to protein stability and planet health. Different techniques and methods are applied for protein recovery from various matrices, such as precipitation, filtration, chromatography, electrophoresis, and solvent extraction. Those methods will be reviewed in this work, discussing their advantages, drawbacks, and applicability to the microalgae biorefinery process. Special attention will be paid to solvent extraction performed with ionic liquids (ILs) and deep eutectic solvents (DESs), which stand as promising solvents to perform efficient protein separations with reduced environmental costs compared to classical alternatives. Finally, several solvent recovery options will be analyzed to reuse the solvent employed and isolate the proteins from the solvent phase.
Collapse
|
10
|
Application of Pulsed Electric Fields and High-Pressure Homogenization in Biorefinery Cascade of C. vulgaris Microalgae. Foods 2022; 11:foods11030471. [PMID: 35159621 PMCID: PMC8834027 DOI: 10.3390/foods11030471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, a cascaded cell disintegration process, based on pulsed electric fields (PEF - 20 kV/cm, 100 kJ/kgSUSP.) and high-pressure homogenization (HPH - 150 MPa, 5 passes) was designed for the efficient and selective release of intracellular compounds (water-soluble proteins, carbohydrates, and lipids) from C. vulgaris suspensions during extraction in water (25 °C, 1 h) and ethyl acetate (25 °C, 3 h). Recovery yields of target compounds from cascaded treatments (PEF + HPH) were compared with those observed when applying PEF and HPH treatments individually. Particle size distribution and scanning electron microscopy analyses showed that PEF treatment alone did not induce any measurable effect on cell shape/structure, whereas HPH caused complete cell fragmentation and debris formation, with an undifferentiated release of intracellular matter. Spectra measurements demonstrated that, in comparison with HPH alone, cascaded treatments increased the selectivity of extraction and improved the yields of carbohydrates and lipids, while higher yields of water-soluble proteins were measured for HPH alone. This work, therefore, demonstrates the feasibility of sequentially applying PEF and HPH treatments in the biorefinery of microalgae, projecting a beneficial impact in terms of process economics due to the potential reduction of the energy requirements for separation/purification stages.
Collapse
|
11
|
A Critical Review on Pulsed Electric Field: A Novel Technology for the Extraction of Phytoconstituents. Molecules 2021; 26:molecules26164893. [PMID: 34443475 PMCID: PMC8400384 DOI: 10.3390/molecules26164893] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Different parts of a plant (seeds, fruits, flower, leaves, stem, and roots) contain numerous biologically active compounds called “phytoconstituents” that consist of phenolics, minerals, amino acids, and vitamins. The conventional techniques applied to extract these phytoconstituents have several drawbacks including poor performance, low yields, more solvent use, long processing time, and thermally degrading by-products. In contrast, modern and advanced extraction nonthermal technologies such as pulsed electric field (PEF) assist in easier and efficient identification, characterization, and analysis of bioactive ingredients. Other advantages of PEF include cost-efficacy, less time, and solvent consumption with improved yields. This review covers the applications of PEF to obtain bioactive components, essential oils, proteins, pectin, and other important materials from various parts of the plant. Numerous studies compiled in the current evaluation concluded PEF as the best solution to extract phytoconstituents used in the food and pharmaceutical industries. PEF-assisted extraction leads to a higher yield, utilizes less solvents and energy, and it saves a lot of time compared to traditional extraction methods. PEF extraction design should be safe and efficient enough to prevent the degradation of phytoconstituents and oils.
Collapse
|