1
|
Chou KJ, Croft T, Hebdon SD, Magnusson LR, Xiong W, Reyes LH, Chen X, Miller EJ, Riley DM, Dupuis S, Laramore KA, Keller LM, Winkelman D, Maness PC. Engineering the cellulolytic bacterium, Clostridium thermocellum, to co-utilize hemicellulose. Metab Eng 2024; 83:193-205. [PMID: 38631458 DOI: 10.1016/j.ymben.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
Consolidated bioprocessing (CBP) of lignocellulosic biomass holds promise to realize economic production of second-generation biofuels/chemicals, and Clostridium thermocellum is a leading candidate for CBP due to it being one of the fastest degraders of crystalline cellulose and lignocellulosic biomass. However, CBP by C. thermocellum is approached with co-cultures, because C. thermocellum does not utilize hemicellulose. When compared with a single-species fermentation, the co-culture system introduces unnecessary process complexity that may compromise process robustness. In this study, we engineered C. thermocellum to co-utilize hemicellulose without the need for co-culture. By evolving our previously engineered xylose-utilizing strain in xylose, an evolved clonal isolate (KJC19-9) was obtained and showed improved specific growth rate on xylose by ∼3-fold and displayed comparable growth to a minimally engineered strain grown on the bacteria's naturally preferred substrate, cellobiose. To enable full xylan deconstruction to xylose, we recombinantly expressed three different β-xylosidase enzymes originating from Thermoanaerobacterium saccharolyticum into KJC19-9 and demonstrated growth on xylan with one of the enzymes. This recombinant strain was capable of co-utilizing cellulose and xylan simultaneously, and we integrated the β-xylosidase gene into the KJC19-9 genome, creating the KJCBXint strain. The strain, KJC19-9, consumed monomeric xylose but accumulated xylobiose when grown on pretreated corn stover, whereas the final KJCBXint strain showed significantly greater deconstruction of xylan and xylobiose. This is the first reported C. thermocellum strain capable of degrading and assimilating hemicellulose polysaccharide while retaining its cellulolytic capabilities, unlocking significant potential for CBP in advancing the bioeconomy.
Collapse
Affiliation(s)
- Katherine J Chou
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA.
| | - Trevor Croft
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Skyler D Hebdon
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Lauren R Magnusson
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Wei Xiong
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Luis H Reyes
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA; Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Xiaowen Chen
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Emily J Miller
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Danielle M Riley
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Sunnyjoy Dupuis
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Kathrin A Laramore
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Lisa M Keller
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Dirk Winkelman
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| | - Pin-Ching Maness
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80228, USA
| |
Collapse
|
2
|
Hamal EK, Alfassi G, Antonenko M, Rein DM, Cohen Y. Cellulose-coated emulsion micro-particles self-assemble with yeasts for cellulose bio-conversion. Sci Rep 2024; 14:5499. [PMID: 38448579 PMCID: PMC10918086 DOI: 10.1038/s41598-024-56204-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
In the quest for alternative renewable energy sources, a new self-assembled hybrid configuration of cellulose-coated oil-in-water emulsion particles with yeast was formed. In this research, the addition of yeasts (S. cerevisiae) to the micro-particle emulsion revealed a novel self-assembly configuration in which the yeast cell is connected to surrounding cellulose-coated micro-particles. This hybrid configuration may enhance the simultaneous saccharification and fermentation process by substrate channeling. Glucose produced by hydrolysis of the cellulose shells coating the micro-particles, catalyzed by cellulytic enzymes attached to their coating, is directly fermented to ethanol by the yeasts to which the particles are connected. The results indicate ethanol yield of 62%, based on the cellulose content of the emulsion, achieved by the yeast/micro-particle hybrids. The functionality of this hybrid configuration is expected to serve as a micro-reactor for a cascade of biochemical reactions in a "one-pot" consolidated process transforming cellulose to valuable chemicals, such as biodiesel.
Collapse
Affiliation(s)
- Ester Korkus Hamal
- Department of Chemical Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel.
| | - Gilad Alfassi
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Margarita Antonenko
- Department of Chemical Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Dmitry M Rein
- Department of Chemical Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Yachin Cohen
- Department of Chemical Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| |
Collapse
|
3
|
Hu Y, Li K, Bai Y, Li H, Chen J. Effect of combined ultrasonic and enzymatic assisted treatment on the fermentation process of whole Lycium barbarum (goji berry) fruit. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
4
|
Wang M, Qiao J, Sheng Y, Wei J, Cui H, Li X, Yue G. Bioconversion of corn fiber to bioethanol: Status and perspectives. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 157:256-268. [PMID: 36577277 DOI: 10.1016/j.wasman.2022.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Due to the rising demand for green energy, bioethanol has attracted increasing attention from academia and industry. Limited by the bottleneck of bioethanol yield in traditional corn starch dry milling processes, an increasing number of studies focus on fully utilizing all corn ingredients, especially kernel fiber, to further improve the bioethanol yield. This mini-review addresses the technological challenges and opportunities on the way to achieving the efficient conversion of corn fiber. Significant advances during the review period include the detailed characterization of different forms of corn kernel fiber and the development of off-line and in-situ conversion strategies. Lessons from cellulosic ethanol technologies offer new ways to utilize corn fiber in traditional processes. However, the commercialization of corn kernel fiber conversion may be hampered by enzyme cost, conversion efficiency, and overall process economics. Thus, future studies should address these technical limitations.
Collapse
Affiliation(s)
- Minghui Wang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Jie Qiao
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Yijie Sheng
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Junnan Wei
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Xiujuan Li
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China.
| | - Guojun Yue
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China; SDIC Biotech Investment Co., Ltd., Beijing 100034, China
| |
Collapse
|
5
|
Meir I, Alfassi G, Arazi Y, Rein DM, Fishman A, Cohen Y. Lipase Catalyzed Transesterification of Model Long-Chain Molecules in Double-Shell Cellulose-Coated Oil-in-Water Emulsion Particles as Microbioreactors. Int J Mol Sci 2022; 23:12122. [PMID: 36292979 PMCID: PMC9603428 DOI: 10.3390/ijms232012122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Lipase-catalyzed transesterification is prevalent in industrial production and is an effective alternative to chemical catalysis. However, due to lipases' unique structure, the reaction requires a biphasic system, which suffers from a low reaction efficiency caused by a limited interfacial area. The use of emulsion particles was found to be an effective way to increase the surface area and activity. This research focuses on cellulose as a natural surfactant for oil-in-water emulsions and evaluates the ability of lipase, introduced into the emulsion's aqueous phase, to integrate with the emulsion microparticles and catalyze the transesterification reaction of high molecular weight esters dissolved in the particles' cores. Cellulose-coated emulsion particles' morphology was investigated by light, fluorescence and cryogenic scanning electron microscopy, which reveal the complex emulsion structure. Lipase activity was evaluated by measuring the hydrolysis of emulsified p-nitrophenyl dodecanoate and by the transesterification of emulsified methyl laurate and oleyl alcohol dissolved in decane. Both experiments demonstrated that lipase introduced in the aqueous medium can penetrate the emulsion particles, localize at the inner oil core interface and perform effective catalysis. Furthermore, in this system, lipase successfully catalyzed a transesterification reaction rather than hydrolysis, despite the dominant presence of water.
Collapse
Affiliation(s)
- Itzhak Meir
- Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Gilad Alfassi
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel 2161002, Israel
| | - Yael Arazi
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Dmitry M. Rein
- Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Yachin Cohen
- Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|