1
|
Wang L, Guo Y, Li M, Chen X, Yang K, Liu Z, Zheng Y. Antibiotic-Free High-Level l-Methionine Production in Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25791-25800. [PMID: 39523813 DOI: 10.1021/acs.jafc.4c06697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
l-Methionine, a valuable sulfur-containing amino acid, holds great significance as a feed additive, nutraceutical, pharmaceutical, or even in the cosmetic industry. However, achieving efficient microbial production of l-methionine remains challenging due to its complex biosynthetic pathway and plasmid loss during fermentation. Herein, l-methionine biosynthesis was improved by enhancing succinyl-CoA supply, introducing a direct-sulfurylation pathway, and weakening the l-threonine branched pathway. The engineered strain produced 21.55 g/L l-methionine with a yield of 0.14 g/g glucose in a 5 L bioreactor. To eliminate the need for antibiotics and minimize plasmid loss, the hok/sok system was incorporated into the plasmid. The resulting plasmid pAm10 enabled strain M2 thrBA1G to produce 20.39 g/L of l-methionine without antibiotics in 5 L of fed-batch cultivation, a 42.58% increase compared to the control. This study highlights the potential of plasmid-based antibiotic-free fermentation for efficient and cost-effective production of l-methionine, as well as other amino acids or chemicals.
Collapse
Affiliation(s)
- Lijuan Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yingying Guo
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Mengyue Li
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiaowen Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Kun Yang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
2
|
Lu N, Wei M, Yang X, Li Y, Sun H, Yan Q, Zhang H, He J, Ma J, Xia M, Zhang C. Growth-coupled production of L-isoleucine in Escherichia coli via metabolic engineering. Metab Eng 2024; 86:181-193. [PMID: 39413988 DOI: 10.1016/j.ymben.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/02/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
L-isoleucine, an essential amino acid, is widely used in the pharmaceutical and food industries. However, the current production efficiency is insufficient to meet the increasing demands. In this study, we aimed to develop an efficient L-isoleucine-producing strain of Escherichia coli. First, accumulation of L-isoleucine was achieved by employing feedback-resistant enzymes. Next, a growth-coupled L-isoleucine synthetic pathway was established by introducing the metA-metB-based α-ketobutyrate-generating bypass, which significantly increased L-isoleucine production to 7.4 g/L. Upon employing an activity-improved cystathionine γ-synthase mutant obtained from adaptive laboratory evolution, L-isoleucine production further increased to 8.5 g/L. Subsequently, the redox flux was improved by bypassing the NADPH-dependent aspartate aminotransferase pathway and employing the NADH-dependent pathway and transhydrogenase. Finally, L-isoleucine efflux was enhanced by modifying the transport system. After fed-batch fermentation for 48 h, the resultant strain, ISO-12, reached an L-isoleucine production titer of 51.5 g/L and yield of 0.29 g/g glucose. The strains developed in this study achieved a higher L-isoleucine production efficiency than those reported previously. These strategies will aid in the development of cell factories that produce L-isoleucine and related products.
Collapse
Affiliation(s)
- Nan Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Minhua Wei
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xuejing Yang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yingzi Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Hao Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qianyu Yan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Haibin Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jilong He
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jie Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Menglei Xia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Chenglin Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
3
|
Wang Y, Wen J. Available Strategies for Improving the Biosynthesis of Methionine: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17166-17175. [PMID: 39074311 DOI: 10.1021/acs.jafc.4c02728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Methionine is the only nonpolar α-amino acid containing sulfur among the eight essential amino acids and is closely related to the metabolism of sulfur-containing compounds in the human body. Widely used in feed, medicine, food, and other fields, the market demand is increasing annually. However, low productivity and high cost largely limit the industrial production of methionine, and many novel production methods still have their own disadvantages. In this paper, the available methods for synthesizing methionine are reviewed and discussed. The latest strategies for improving methionine production are further introduced, including culture medium optimization, mutation technology, expression of key genes in the metabolic pathway, knockout and recombination, as well as the engineering of membrane transporters, the fermentation-enzymatic coupling route, and innovation of CO2 biotransformation.
Collapse
Affiliation(s)
- Yun Wang
- Key Laboratory of System Bioengineering, Ministry of Education, Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Frontier Science Center of the Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jianping Wen
- Key Laboratory of System Bioengineering, Ministry of Education, Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Frontier Science Center of the Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
4
|
Wang L, Guo Y, Shen Y, Yang K, Cai X, Zhang B, Liu Z, Zheng Y. Microbial production of sulfur-containing amino acids using metabolically engineered Escherichia coli. Biotechnol Adv 2024; 73:108353. [PMID: 38593935 DOI: 10.1016/j.biotechadv.2024.108353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
L-Cysteine and L-methionine, as the only two sulfur-containing amino acids among the canonical 20 amino acids, possess distinct characteristics and find wide-ranging industrial applications. The use of different organisms for fermentative production of L-cysteine and L-methionine is gaining increasing attention, with Escherichia coli being extensively studied as the preferred strain. This preference is due to its ability to grow rapidly in cost-effective media, its robustness for industrial processes, the well-characterized metabolism, and the availability of molecular tools for genetic engineering. This review focuses on the genetic and molecular mechanisms involved in the production of these sulfur-containing amino acids in E. coli. Additionally, we systematically summarize the metabolic engineering strategies employed to enhance their production, including the identification of new targets, modulation of metabolic fluxes, modification of transport systems, dynamic regulation strategies, and optimization of fermentation conditions. The strategies and design principles discussed in this review hold the potential to facilitate the development of strain and process engineering for direct fermentation of sulfur-containing amino acids.
Collapse
Affiliation(s)
- Lijuan Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yingying Guo
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yizhou Shen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Kun Yang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| |
Collapse
|
5
|
Lv Y, Chang J, Zhang W, Dong H, Chen S, Wang X, Zhao A, Zhang S, Alam MA, Wang S, Du C, Xu J, Wang W, Xu P. Improving Microbial Cell Factory Performance by Engineering SAM Availability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3846-3871. [PMID: 38372640 DOI: 10.1021/acs.jafc.3c09561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Methylated natural products are widely spread in nature. S-Adenosyl-l-methionine (SAM) is the secondary abundant cofactor and the primary methyl donor, which confer natural products with structural and functional diversification. The increasing demand for SAM-dependent natural products (SdNPs) has motivated the development of microbial cell factories (MCFs) for sustainable and efficient SdNP production. Insufficient and unsustainable SAM availability hinders the improvement of SdNP MCF performance. From the perspective of developing MCF, this review summarized recent understanding of de novo SAM biosynthesis and its regulatory mechanism. SAM is just the methyl mediator but not the original methyl source. Effective and sustainable methyl source supply is critical for efficient SdNP production. We compared and discussed the innate and relatively less explored alternative methyl sources and identified the one involving cheap one-carbon compound as more promising. The SAM biosynthesis is synergistically regulated on multilevels and is tightly connected with ATP and NAD(P)H pools. We also covered the recent advancement of metabolic engineering in improving intracellular SAM availability and SdNP production. Dynamic regulation is a promising strategy to achieve accurate and dynamic fine-tuning of intracellular SAM pool size. Finally, we discussed the design and engineering constraints underlying construction of SAM-responsive genetic circuits and envisioned their future applications in developing SdNP MCFs.
Collapse
Affiliation(s)
- Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Jinmian Chang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Weiping Zhang
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan, Shandong 250101, China
| | - Hanyu Dong
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Song Chen
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Xian Wang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Anqi Zhao
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, China
| | - Shen Zhang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Chaojun Du
- Nanyang Research Institute of Zhengzhou University, Nanyang Institute of Technology, No. 80 Changjiang Road, Nanyang 473004, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
- National Key Laboratory of Biobased Transportation Fuel Technology, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Weigao Wang
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Palo Alto, California 94305, United States
| | - Peng Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China
| |
Collapse
|
6
|
Wang Y, Bai Y, Zeng Q, Jiang Z, Liu Y, Wang X, Liu X, Liu C, Min W. Recent advances in the metabolic engineering and physiological opportunities for microbial synthesis of L-aspartic acid family amino acids: A review. Int J Biol Macromol 2023; 253:126916. [PMID: 37716660 DOI: 10.1016/j.ijbiomac.2023.126916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
L-aspartic acid, L-threonine, L-isoleucine, l-lysine, and L-methionine constitute the l-aspartate amino acids (AFAAs). Except for L-aspartic acid, these are essential amino acids that cannot be synthesized by humans or animals themselves. E. coli and C. glutamicum are the main model organisms for AFAA production. It is necessary to reconstitute microbial cell factories and the physiological state of industrial fermentation cells for in-depth research into strains with higher AFAA production levels and optimal growth states. Considering that the anabolic pathways of the AFAAs and engineering modifications have rarely been reviewed in the latest progress, this work reviews the central metabolic pathways of two strains and strategies for the metabolic engineering of AFAA synthetic pathways. The challenges posed by microbial physiology in AFAA production and possible strategies to address them, as well as future research directions for constructing strains with high AFAA production levels, are discussed in this review article.
Collapse
Affiliation(s)
- Yusheng Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Yunlong Bai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Qi Zeng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Zeyuan Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Yuzhe Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Xiaoting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|