1
|
Mas A, Hurtado-Morillas C, Martínez-Rodrigo A, Orden JA, de la Fuente R, Domínguez-Bernal G, Carrión J. A Tailored Approach to Leishmaniases Vaccination: Comparative Evaluation of the Efficacy and Cross-Protection Capacity of DNA vs. Peptide-Based Vaccines in a Murine Model. Int J Mol Sci 2023; 24:12334. [PMID: 37569710 PMCID: PMC10418836 DOI: 10.3390/ijms241512334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Zoonotic leishmaniases are a worldwide public health problem for which the development of effective vaccines remains a challenge. A vaccine against leishmaniases must be safe and affordable and should induce cross-protection against the different disease-causing species. In this context, the DNA vaccine pHisAK70 has been demonstrated to induce, in a murine model, a resistant phenotype against L. major, L. infantum, and L. amazonensis. Moreover, a chimeric multiepitope peptide, HisDTC, has been obtained by in silico analysis from the histone proteins encoded in the DNA vaccine and has showed its ability to activate a potent CD4+ and CD8+ T-cell protective immune response in mice against L. infantum infection. In the present study, we evaluated the plasmid DNA vaccine pHisAK70 in comparison with the peptide HisDTC (with and without saponin) against L. major and L. infantum infection. Our preliminary results showed that both formulations were able to induce a potent cellular response leading to a decrease in parasite load against L. infantum. In addition, the DNA candidate was able to induce better lesion control in mice against L. major. These preliminary results indicate that both strategies are potentially effective candidates for leishmaniases control. Furthermore, it is important to carry out such comparative studies to elucidate which vaccine candidates are the most appropriate for further development.
Collapse
Affiliation(s)
- Alicia Mas
- INMIVET Group, Animal Health Department, Veterinary School, Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Clara Hurtado-Morillas
- INMIVET Group, Animal Health Department, Veterinary School, Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Abel Martínez-Rodrigo
- INMIVET Group, Animal Science Department, Veterinary School, Universidad Complutense Madrid, 28040 Madrid, Spain
| | - José A. Orden
- INMIVET Group, Animal Health Department, Veterinary School, Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Ricardo de la Fuente
- INMIVET Group, Animal Health Department, Veterinary School, Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Gustavo Domínguez-Bernal
- INMIVET Group, Animal Health Department, Veterinary School, Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Javier Carrión
- INMIVET Group, Animal Health Department, Veterinary School, Universidad Complutense Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Protective Efficacy in a Hamster Model of a Multivalent Vaccine for Human Visceral Leishmaniasis (MuLeVaClin) Consisting of the KMP11, LEISH-F3+, and LJL143 Antigens in Virosomes, Plus GLA-SE Adjuvant. Microorganisms 2021; 9:microorganisms9112253. [PMID: 34835379 PMCID: PMC8618729 DOI: 10.3390/microorganisms9112253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Visceral leishmaniasis (VL) is the most severe clinical form of leishmaniasis, fatal if untreated. Vaccination is the most cost-effective approach to disease control; however, to date, no vaccines against human VL have been made available. This work examines the efficacy of a novel vaccine consisting of the Leishmania membrane protein KMP11, LEISH-F3+ (a recombinant fusion protein, composed of epitopes of the parasite proteins nucleoside hydrolase, sterol-24-c-methyltransferase, and cysteine protease B), and the sand fly salivary protein LJL143, in two dose ratios. The inclusion of the TLR4 agonist GLA-SE as an adjuvant, and the use of virosomes (VS) as a delivery system, are also examined. In a hamster model of VL, the vaccine elicited antigen-specific immune responses prior to infection with Leishmania infantum. Of note, the responses were greater when higher doses of KMP11 and LEISH-F3+ proteins were administered along with the GLA-SE adjuvant and/or when delivered within VS. Remarkably, hamsters immunized with the complete combination (i.e., all antigens in VS + GLA-SE) showed significantly lower parasite burdens in the spleen compared to those in control animals. This protection was underpinned by a more intense, specific humoral response against the KMP11, LEISH-F3+, and LJL143 antigens in vaccinated animals, but a significantly less intense antibody response to the pool of soluble Leishmania antigens (SLA). Overall, these results indicate that this innovative vaccine formulation confers protection against L. infantum infection, supporting the advancement of the vaccine formulation into process development and manufacturing and the conduction of toxicity studies towards future phase I human clinical trials.
Collapse
|
3
|
Zhang J, He J, Liao X, Xiao Y, Liang C, Zhou Q, Chen H, Zheng Z, Qin H, Chen D, Chen Q, Li J, Chen J. Development of dominant epitope-based vaccines encoding Gp63, Kmp-11 and Amastin against visceral leishmaniasis. Immunobiology 2021; 226:152085. [PMID: 33910113 DOI: 10.1016/j.imbio.2021.152085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/11/2021] [Accepted: 03/10/2021] [Indexed: 02/08/2023]
Abstract
The most dangerous form of leishmaniasis is Visceral leishmaniasis (VL). The elimination of VL depends not only on agent treatments but also on effective vaccines against Leishmania parasites. Epitope-based vaccines composed of alternative short antigenic epitopes have the advantages of MHC epitope easy designing, which has broad application prospects. In a previous study, we analyzed Leishmania Gp63, Kmp-11 and Amastin protein sequence in silico, and found that the amino acid fragments of Gp63 (138-360aa), Kmp-11 (1-91aa) and Amastin (1-72aa) were rich in dominant epitopes. In this study, we used the three amino acid fragments as multi-epitope vaccine candidates to construct DNA and protein vaccines. BALB/c mice were vaccinated with the DNA and protein vaccines by DNA prime-protein boost strategy and challenged with Leishmania promastigotes. To evaluate vaccine immunogenicity and immunoprotection, serum specific antibody titers and cytokines were detected using ELISA, splenic CD3+, CD4+ and CD8+ cells were analyzed by flow cytometry, livers were made into pathological sections to observe pathological changes, and splenic parasitic loads were quantified using qPCR. The results showed that the increased specific IgG titers from vaccinated mice supported the vaccine immunogenicity. The increased cytokines (IFN-γ, IL-12 and TNF-α), splenic CD3+, CD4+ and CD8+ T cells and hepatic granulomas, and the decreased splenic parasitic loads (parasite reduction rates of Gp63, Kmp-11 and Amatin groups were 89%, 86% and 79%, respectively) from immunized mice post-infection were suggested the good immunoprotection of the vaccines. Our study demonstrated that vaccines based on the dominant epitopes of Gp63, Kmp-11 and Amastin with DNA prime-protein boost vaccination strategy showed significant immune effects against Leishmania, especially the Gp63 group showed a nearly 90% parasites reduction rate. This study will provide references for visceral leishmaniasis epitope vaccine design and immune strategy selection.
Collapse
Affiliation(s)
- Jianhui Zhang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xuechun Liao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yuying Xiao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Chang Liang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Qi Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Han Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Hanxiao Qin
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Qiwei Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Mas A, Martínez-Rodrigo A, Orden JA, Viñals LM, Domínguez-Bernal G, Carrión J. A further investigation of the leishmaniosis outbreak in Madrid (Spain): low-infectivity phenotype of the Leishmania infantum BOS1FL1 isolate to establish infection in canine cells. Vet Immunol Immunopathol 2020; 230:110148. [PMID: 33189999 DOI: 10.1016/j.vetimm.2020.110148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Human leishmaniosis caused by Leishmania infantum is a zoonotic disease, with dogs as the main reservoir in Mediterranean Basin countries. The largest European outbreak of human leishmaniosis declared in the southwestern Madrid region (Spain) is characterized by unusual epidemiological and clinical features, such as the emergence of new wild reservoirs (hares and rabbits), whereas the seroprevalence, infection, and severity of canine leishmaniosis have not substantially changed since the first studies conducted in Madrid before the outbreak. Previous studies reported that L. infantum isolates from the Madrid leishmaniosis focus displayed elevated virulence in in vivo models of infection and increased infectivity in murine target cells. With the aim of studying whether changes in the host-parasite interaction and virulence profile have developed, we first assessed the behaviour of one circulating isolate of the outbreak, IPER/ES/2012/BOS1FL1 (BOS1FL1), compared to that of a well-characterized strain from canine leishmaniosis, MCAN/ES/1996/BCN150 (BCN150), in terms of infection capacity (percentage of infected cells, representing infectivity, and number of amastigotes per infected cell, representing the intensity of infection) in canine monocytes and macrophages. BCN150 displayed significantly higher infectivity (76.82 ± 4.40 vs 38.58 ± 2.19; P < 0.0001) and intensity of infection (3.64 ± 0.13 vs 1.83 ± 0.12; P < 0.0001) than BOS1FL1 when interacting with canine cells. Our ROS induction results did not differ significantly between the two isolates or with the responses previously described for other L. infantum isolates. Paradoxically, increased resilience to hydrogen peroxide exposure was observed for BOS1FL1 (% viability 40.62 ± 5.54 vs 26.37 ± 2.93; P = 0.039). Finally, we demonstrated that a decreased intracellular load of BOS1FL1 was associated with increased IFN-γ (261.21 ± 26.29 vs 69.80 ± 9.02; P = 0.0151) and decreased IL-10 production (165.06 ± 23.87 vs 264.41 ± 30.58; P = 0.0002). In this study, we provide the first detailed insight into the differences between the isolate BOS1FL1 from the outbreak in Madrid and the well-characterized strain BCN150 MON-1 obtained from a dog in their response to interacting with canine cells. However, further studies are necessary to shed light on the immune mechanisms resulting in BOS1FL1 exhibiting less virulent behaviour in canine cells than in cells derived from other host species.
Collapse
Affiliation(s)
- Alicia Mas
- INMIVET, Department of Animal Health, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Abel Martínez-Rodrigo
- INMIVET, Department of Animal Health, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jose Antonio Orden
- INMIVET, Department of Animal Health, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Gustavo Domínguez-Bernal
- INMIVET, Department of Animal Health, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Carrión
- INMIVET, Department of Animal Health, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
5
|
Mas A, Martínez-Rodrigo A, Orden JA, Molina R, Jiménez M, Jiménez MÁ, Carrión J, Domínguez-Bernal G. Properties of virulence emergence of Leishmania infantum isolates from Phlebotomus perniciosus collected during the human leishmaniosis outbreak in Madrid, Spain. Hepatic histopathology and immunological parameters as virulence markers in the mouse model. Transbound Emerg Dis 2020; 68:704-714. [PMID: 32668083 DOI: 10.1111/tbed.13733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Recent anthropic activity related to the construction of the Bosquesur Green Park in a large urban setting in Madrid (Spain) has resulted in the largest reported community outbreak of human leishmaniosis in Europe. Previous phylogenetic and molecular-typing studies of parasite isolates have implicated the Leishmania infantum ITS-Lombardi genotype in this outbreak. In an unusual scenario, visceral leishmaniosis (VL) is affecting a significant number of individuals, suggesting that an increase in parasite virulence has occurred. In this work, using an in vivo BALB/c model of VL, we aimed to investigate the properties of emergent virulence of the L. infantum POL2FL7 and BOS1FL1 isolates obtained from Phlebotomus perniciosus collected in the outbreak area and compare them with those of the well-characterized strain BCN150 MON-1 isolated from a dog. The P. perniciosus specimens were collected during an entomological survey conducted in the transmission season of 2012. We observed a range of virulence phenotypes from moderately to highly aggressive after 5 weeks of infection. IV challenge of mice with outbreak isolates from sand flies induced higher splenic and liver parasite burdens, higher serological titres of specific anti-Leishmania antibodies and impaired capacities to control infection, as revealed by the arginine metabolism and low ratios of Th1/Th2 cytokine profiles analysed, compared with the corresponding measures evaluated in mice infected with the BCN150 strain. The BOS1FL1 isolate showed the highest degree of virulence among the isolates, superior to that of POL2FL7, as evidenced by the analysed biomarkers and the histopathological severity of liver lesions. These results provide insight into how L. infantum isolates from sand flies collected in the outbreak area have been able to affect not only immunosuppressed patients but also middle-aged people with normal immunocompetence in the largest human VL outbreak in Europe.
Collapse
Affiliation(s)
- Alicia Mas
- INMIVET, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Abel Martínez-Rodrigo
- INMIVET, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - José Antonio Orden
- INMIVET, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Ricardo Molina
- Laboratorio de Entomología Médica, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Maribel Jiménez
- Laboratorio de Entomología Médica, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain
| | - María Ángeles Jiménez
- Servicio de Anatomía Patológica, Facultad de Veterinaria, Hospital Clínico Veterinario, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Carrión
- INMIVET, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Gustavo Domínguez-Bernal
- INMIVET, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Martínez-Rodrigo A, Mas A, Álvarez-Campos D, Orden JA, Domínguez-Bernal G, Carrión J. Epitope Selection for Fighting Visceral Leishmaniosis: Not All Peptides Function the Same Way. Vaccines (Basel) 2020; 8:E352. [PMID: 32630347 PMCID: PMC7564088 DOI: 10.3390/vaccines8030352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022] Open
Abstract
Visceral leishmaniosis (VL) caused by Leishmania infantum is a disease with an increasing prevalence worldwide. Treatments are expensive, toxic, and ineffective. Therefore, vaccination seems to be a promising approach to control VL. Peptide-based vaccination is a useful method due to its stability, absence of local side effects, and ease of scaling up. In this context, bioinformatics seems to facilitate the use of peptides, as this analysis can predict high binding affinity epitopes to MHC class I and II molecules of different species. We have recently reported the use of HisAK70 DNA immunization in mice to induce a resistant phenotype against L. major, L. infantum, and L. amazonensis infections. In the present study, we used bioinformatics tools to select promising multiepitope peptides (HisDTC and AK) from the polyprotein encoded in the HisAK70 DNA to evaluate their immunogenicity in the murine model of VL by L. infantum. Our results revealed that both multiepitope peptides were able to induce the control of VL in mice. Furthermore, HisDTC was able to induce a better cell-mediated immune response in terms of reduced parasite burden, protective cytokine profile, leishmanicidal enzyme modulation, and specific IgG2a isotype production in immunized mice, before and after infectious challenge. Overall, this study indicates that the HisDTC chimera may be considered a satisfactory tool to control VL because it is able to activate a potent CD4+ and CD8+ T-cell protective immune responses.
Collapse
Affiliation(s)
| | | | | | | | - Gustavo Domínguez-Bernal
- INMIVET, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense Madrid, 28040 Madrid, Spain; (A.M.-R.); (A.M.); (D.Á.-C.); (J.A.O.); (J.C.)
| | | |
Collapse
|
7
|
Zhang J, He J, Li J, Zhou Q, Chen H, Zheng Z, Chen Q, Chen D, Chen J. The immunogenicity and protective immunity of multi-epitopes DNA prime-protein boost vaccines encoding Amastin-Kmp-11, Kmp11-Gp63 and Amastin-Gp63 against visceral leishmaniasis. PLoS One 2020; 15:e0230381. [PMID: 32176727 PMCID: PMC7075555 DOI: 10.1371/journal.pone.0230381] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/28/2020] [Indexed: 11/27/2022] Open
Abstract
Visceral leishmaniasis (VL) is the most fatal form of leishmaniasis if left untreated and 50,000 to 90,000 new cases of VL occur worldwide each year. Although various vaccines had been studied in animal models, none of them was eligible to prevent human from infections. In this study, according to the silico analysis of Leishmania Amastin, Kmp-11 and Gp63 protein, dominant epitope sequences of these proteins were selected and linked to construct dominant multi-epitopes DNA and protein vaccines (Amastin-Kmp-11, Amastin-Gp63 and Kmp-11-Gp63) against VL. BALB/c mice were immunized with a DNA prime-protein boost immunization strategy and challenged with a new Leishmania parasite strain isolated from a VL patient. After immunization, the results including specific antibody titers, IL-4 and TNF-α levels, and CD4 and CD8 T cell proportion suggested the potent immunogenicity of the three vaccines. After infection, the results of spleen parasite burdens in the three vaccine groups were significantly lower than those of control groups, and the parasite reduction rates of Amastin-Kmp-11, Amastin-Gp63 and Kmp-11-Gp63 groups were 89.38%, 91.01% and 88.42%, respectively. Spleen smear observation and liver histopathological changes showed that all vaccine groups could produce significant immunoprotection against VL and Amastin-Gp63 vaccine was the best. In conclusion, our work demonstrated that the three dominant multi-epitopes Amastin-Kmp-11, Amastin-Gp63 and Kmp-11-Gp63 DNA prime-protein boost vaccines might be new vaccine candidates for VL, and the Amastin-Gp63 vaccine have best efficacy.
Collapse
Affiliation(s)
- Jianhui Zhang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Qi Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Han Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Qiwei Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Martínez-Rodrigo A, S. Dias D, Ribeiro PAF, Roatt BM, Mas A, Carrión J, Coelho EAF, Domínguez-Bernal G. Immunization with the HisAK70 DNA Vaccine Induces Resistance against Leishmania Amazonensis Infection in BALB/c Mice. Vaccines (Basel) 2019; 7:vaccines7040183. [PMID: 31739549 PMCID: PMC6963319 DOI: 10.3390/vaccines7040183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/04/2022] Open
Abstract
Leishmania amazonensis is the aetiological agent of a broad spectrum of leishmaniosis in South America. It can cause not only numerous cases of cutaneous leishmaniosis but also diffuse cutaneous leishmaniosis. Considering the diversity of parasite species causing different forms of the disease that coexist in the same region, it is desirable to develop a vaccine capable of eliciting cross-protection. We have previously described the use of HisAK70 DNA vaccine for immunization of mice to assess the induction of a resistant phenotype against Leishmania major and infantum infections. In this study, we extended its application in the murine model of infection by using L. amazonensis promastigotes. Our data revealed that 14 weeks post-infection, HisAK70-vaccinated mice showed key biomarkers of protection, such as higher iNOS/arginase activity, IFN-γ/IL-10, IFN-γ/IL-4, and GM-CSF/IL-10 ratios, in addition to an IgG2a-type response when compared to the control group. These findings correlated with the presentation of lower footpad swelling and parasite burdens in the immunized compared to the control mice. Overall, this study suggests that immunization with HisAK70 may be considered a suitable tool to combat leishmaniosis as it is able to induce a potent cellular immune response, which allows to control the infection caused by L. amazonensis.
Collapse
Affiliation(s)
- Abel Martínez-Rodrigo
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense Madrid, INMIVET, 28040 Madrid, Spain; (A.M.-R.); (A.M.); (J.C.)
| | - Daniel S. Dias
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil; (D.S.D.); (P.A.F.R.); (E.A.F.C.)
| | - Patrícia A. F. Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil; (D.S.D.); (P.A.F.R.); (E.A.F.C.)
| | - Bruno M. Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Minas Gerais, Brazil;
| | - Alicia Mas
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense Madrid, INMIVET, 28040 Madrid, Spain; (A.M.-R.); (A.M.); (J.C.)
| | - Javier Carrión
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense Madrid, INMIVET, 28040 Madrid, Spain; (A.M.-R.); (A.M.); (J.C.)
| | - Eduardo A. F. Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil; (D.S.D.); (P.A.F.R.); (E.A.F.C.)
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Gustavo Domínguez-Bernal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense Madrid, INMIVET, 28040 Madrid, Spain; (A.M.-R.); (A.M.); (J.C.)
- Correspondence: ; Tel.: +34-913943712
| |
Collapse
|
9
|
Soler Besumbes E, Fornaguera C, Monge M, García-Celma MJ, Carrión J, Solans C, Dols-Perez A. PLGA cationic nanoparticles, obtained from nano-emulsion templating, as potential DNA vaccines. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Strength and medium-term impact of HisAK70 immunization in dogs: Vaccine safety and biomarkers of effectiveness for ex vivo Leishmania infantum infection. Comp Immunol Microbiol Infect Dis 2019; 65:137-143. [PMID: 31300103 DOI: 10.1016/j.cimid.2019.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/06/2019] [Indexed: 12/22/2022]
Abstract
HisAK70 candidates have successfully been tested in cutaneous (CL) and visceral leishmaniosis (VL) mouse models. Here, we analyse different biomarkers in dog trials after a heterologous immunization strategy with a HisAK70 candidate (plasmid DNA plus adoptive transfer of peripheral blood-derived dendritic cells (DCs) pulsed with the same pathoantigen and CpG ODN as an adjuvant) to explore the antileishmanial activity in an ex vivo canine co-culture system in the presence of Leishmania infantum parasites. In the canine model, the heterologous HisAK70 vaccine could decrease the infection index in the DC-T cell co-culture system by up to 54% after 30 days and reach almost 67% after 100 days post-immunization, respectively, compared to those obtained in the control group of dogs. The observed security and potential to fight ex vivo L. infantum infection highlight a HisAK70 heterologous immunization strategy as a promising alternative to evaluate its effectiveness against canine VL.
Collapse
|
11
|
Iborra S, Solana JC, Requena JM, Soto M. Vaccine candidates against leishmania under current research. Expert Rev Vaccines 2018; 17:323-334. [PMID: 29589966 DOI: 10.1080/14760584.2018.1459191] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The search for vaccines to prevent human leishmaniasis is an active field of investigation aimed to prevent the devastating effects of this family of diseases on human health. The design and commercialization of several vaccines against canine leishmaniasis is a hopeful advance toward the achievement of a human vaccine. AREAS COVERED This review includes a summary of the most relevant immunological aspects accompanying leishmaniasis in natural hosts as well as a description of the latest advances in the multiple strategies that are being followed to develop leishmanial prophylactic vaccines. We have combined citations of the latest specialized reviews with research articles presenting the most recent results. EXPERT COMMENTARY Achieving safe, effective, durable and low-cost prophylactic vaccines against leishmaniasis is still a major challenge. These vaccines should control not only parasite progression, but also the accompanying pathology, which results from an imbalanced interaction between the infectious agent and the human host immune system. Different strategies for development of vaccines are currently under investigation. They range from the use of live non-pathogenic vectors to the employment of subunit vaccines combined with adjuvants and/or delivery systems inducing cell-mediated immunity.
Collapse
Affiliation(s)
- Salvador Iborra
- a Department of Vascular Biology and Inflammation Centro Nacional de Investigaciones Cardiovasculares (CNIC) , Immunobiology of Inflammation Laboratory , Madrid , Spain.,b School of Medicine , Universidad Complutense de Madrid , Madrid , Spain
| | - José Carlos Solana
- c Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Nicolás Cabrera 1 , Universidad Autónoma de Madrid , Madrid , Spain
| | - José María Requena
- c Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Nicolás Cabrera 1 , Universidad Autónoma de Madrid , Madrid , Spain
| | - Manuel Soto
- c Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Nicolás Cabrera 1 , Universidad Autónoma de Madrid , Madrid , Spain
| |
Collapse
|
12
|
Domínguez-Bernal G, Martínez-Rodrigo A, Mas A, Blanco MM, Orden JA, De La Fuente R, Carrión J. Alternative strategy for visceral leishmaniosis control: HisAK70-Salmonella Choleraesuis-pulsed dendritic cells. Comp Immunol Microbiol Infect Dis 2017; 54:13-19. [DOI: 10.1016/j.cimid.2017.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 11/27/2022]
|
13
|
Bagirova M, Allahverdiyev AM, Abamor ES, Ullah I, Cosar G, Aydogdu M, Senturk H, Ergenoglu B. Overview of dendritic cell-based vaccine development for leishmaniasis. Parasite Immunol 2017; 38:651-662. [PMID: 27591404 DOI: 10.1111/pim.12360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/20/2016] [Indexed: 12/24/2022]
Abstract
Leishmaniasis is one of the most serious vector-borne diseases in the world and is distributed over 98 countries. It is estimated that 350 million people are at risk for leishmaniasis. There are three different generation of vaccines that have been developed to provide immunity and protection against leishmaniasis. However, their use has been limited due to undesired side effects. These vaccines have also failed to provide effective and reliable protection and, as such, currently, there is no safe and effective vaccine for leishmaniasis. Dendritic cells (DCs) are a unique population of cells that come from bone marrow and become specialized to take up, process and present antigens to helper T cells in a mechanism similar to macrophages. By considering these significant features, DCs stimulated with different kinds of Leishmania antigens have been used in recent vaccine studies for leishmaniasis with promising results so far. In this review, we aim to review and combine the latest studies about this issue after defining potential problems in vaccine development for leishmaniasis and considering the importance of DCs in the immunopathogenesis of the disease.
Collapse
Affiliation(s)
- M Bagirova
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - A M Allahverdiyev
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey.
| | - E S Abamor
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - I Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - G Cosar
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - M Aydogdu
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - H Senturk
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - B Ergenoglu
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| |
Collapse
|
14
|
Not All Antigens Are Created Equally: Progress, Challenges, and Lessons Associated with Developing a Vaccine for Leishmaniasis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00108-17. [PMID: 28515135 DOI: 10.1128/cvi.00108-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
From experimental models and the analyses of patients, it is well documented that antigen-specific T cells are critical for protection against Leishmania infection. Effective vaccines require both targeting to the pathogen and an immune stimulant to induce maturation of appropriate immune responses. While a great number of antigens have been examined as vaccine candidates against various Leishmania species, few have advanced to human or canine clinical trials. With emphasis on antigen expression, in this minireview we discuss some of the vaccine platforms that are currently being explored for the development of Leishmania vaccines. It is clear that the vaccine platform of choice can have a significant impact upon the level of protection induced by particular antigens, and we provide and highlight some examples for which the vaccine system used has impacted the protective efficacy imparted.
Collapse
|
15
|
Pratti JES, Ramos TD, Pereira JC, da Fonseca-Martins AM, Maciel-Oliveira D, Oliveira-Silva G, de Mello MF, Chaves SP, Gomes DCO, Diaz BL, Rossi-Bergmann B, de Matos Guedes HL. Efficacy of intranasal LaAg vaccine against Leishmania amazonensis infection in partially resistant C57Bl/6 mice. Parasit Vectors 2016; 9:534. [PMID: 27716449 PMCID: PMC5052793 DOI: 10.1186/s13071-016-1822-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 09/29/2016] [Indexed: 12/12/2022] Open
Abstract
Background We have previously demonstrated that intranasal vaccination of highly susceptible BALB/c mice with whole Leishmania amazonensis antigens (LaAg) leads to protection against murine cutaneous leishmaniasis. Here, we evaluate the response of partially resistant C57BL/6 mice to vaccination as a more representative experimental model of human cutaneous leishmaniasis. Methods C57BL/6 mice from different animal facilities were infected with L. amazonensis (Josefa strain) to establish the profile of infection. Intranasal vaccination was performed before the infection challenge with two doses of 10 μg of LaAg alone or associated with the adjuvant ADDAVAX® by instillation in the nostrils. The lesion progression was measured with a dial caliper and the parasite load by limited dilution assay in the acute and chronic phases of infection. Cytokines were quantified by ELISA in the homogenates of infected footpads. Results C57BL/6 mice from different animal facilities presented the same L. amazonensis infection profile, displaying a progressive acute phase followed by a controlled chronic phase. Parasites cultured in M199 and Schneider’s media were equally infective. Intranasal vaccination with LaAg led to milder acute and chronic phases of the disease. The mechanism of protection was associated with increased production of IFN-gamma in the infected tissue as measured in the acute phase. Association with the ADDAVAX® adjuvant did not improve the efficacy of intranasal LaAg vaccination. Rather, ADDAVAX® reduced vaccination efficacy. Conclusion This study demonstrates that the efficacy of adjuvant-free intranasal vaccination with LaAg is extendable to the more resistant C57Bl/6 mouse model of infection with L. amazonensis, and is thus not exclusive to the susceptible BALB/c model. These results imply that mucosal immunomodulation by LaAg leads to peripheral protection irrespective of the genetic background of the host. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1822-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juliana Elena Silveira Pratti
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tadeu Diniz Ramos
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Joyce Carvalho Pereira
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Diogo Maciel-Oliveira
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriel Oliveira-Silva
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mirian França de Mello
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Suzana Passos Chaves
- Laboratório Integrado de Imunoparasitologia, Campus Macaé-Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Daniel Claudio Oliveira Gomes
- Laboratório de Imunobiologia, Núcleo de Doenças Infecciosas/Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Bruno Lourenço Diaz
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bartira Rossi-Bergmann
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Herbert Leonel de Matos Guedes
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,Núcleo Multidisciplinar de Pesquisa UFRJ-Xerém em Biologia (NUMPEX-BIO), Polo Avançado de Xerém-Universidade Federal do Rio de Janeiro, Duque de Caxias, Rio de Janeiro, Brazil.
| |
Collapse
|