1
|
Bharadwaj N, Sharma R, Subramanian M, Ragini G, Nagarajan SA, Rahi M. Omics Approaches in Understanding Insecticide Resistance in Mosquito Vectors. Int J Mol Sci 2025; 26:1854. [PMID: 40076478 PMCID: PMC11899280 DOI: 10.3390/ijms26051854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 03/14/2025] Open
Abstract
In recent years, the emergence of insecticide resistance has been a major challenge to global public health. Understanding the molecular mechanisms of this phenomenon in mosquito vectors is paramount for the formulation of effective vector control strategies. This review explores the current knowledge of insecticide resistance mechanisms through omics approaches. Genomic, transcriptomic, proteomic, and metabolomics approaches have proven crucial to understand these resilient vectors. Genomic studies have identified multiple genes associated with insecticide resistance, while transcriptomics has revealed dynamic gene expression patterns in response to insecticide exposure and other environmental stimuli. Proteomics and metabolomics offer insights into protein expression and metabolic pathways involved in detoxification and resistance. Integrating omics data holds immense potential to expand our knowledge on the molecular basis of insecticide resistance in mosquitoes via information obtained from different omics platforms to understand regulatory mechanisms and differential expression of genes and protein, and to identify the transcription factors and novel molecules involved in the detoxification of insecticides. Eventually, these data will help construct predictive models, identify novel strategies, and develop targeted interventions to control vector-borne diseases.
Collapse
Affiliation(s)
- Nikhil Bharadwaj
- Division of Vector Biology and Control, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry 605006, India; (M.S.); (G.R.); (S.A.N.); (M.R.)
| | - Rohit Sharma
- Division of Vector Biology and Control, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry 605006, India; (M.S.); (G.R.); (S.A.N.); (M.R.)
| | | | | | | | | |
Collapse
|
2
|
Tatchou-Nebangwa NMT, Mugenzi LMJ, Muhammad A, Nebangwa DN, Kouamo MFM, Tagne CSD, Tekoh TA, Tchouakui M, Ghogomu SM, Ibrahim SS, Wondji CS. Two highly selected mutations in the tandemly duplicated CYP6P4a and CYP6P4b genes drive pyrethroid resistance in Anopheles funestus in West Africa. BMC Biol 2024; 22:286. [PMID: 39696366 DOI: 10.1186/s12915-024-02081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Gaining a comprehensive understanding of the genetic mechanisms underlying insecticide resistance in malaria vectors is crucial for optimising the effectiveness of insecticide-based vector control methods and developing diagnostic tools for resistance management. Considering the heterogeneity of metabolic resistance in major malaria vectors, the implementation of tailored resistance management strategies is essential for successful vector control. Here, we provide evidence demonstrating that two highly selected mutations in CYP6P4a and CYP6P4b are driving pyrethroid insecticide resistance in the major malaria vector Anopheles funestus, in West Africa. RESULTS Continent-wide polymorphism survey revealed escalated signatures of directional selection of both genes between 2014 and 2021. In vitro insecticide metabolism assays with recombinant enzymes from both genes showed that mutant alleles under selection exhibit higher metabolic efficiency than their wild-type counterparts. Using the GAL4-UAS expression system, transgenic Drosophila flies overexpressing mutant alleles exhibited increased resistance to pyrethroids. These findings were consistent with in silico predictions which highlighted changes in enzyme active site architecture that enhance the affinity of mutant alleles for type I and II pyrethroids. Furthermore, we designed two DNA-based assays for the detection of CYP6P4a-M220I and CYP6P4b-D284E mutations, showing their current confinement to West Africa. Genotype/phenotype correlation analyses revealed that these markers are strongly associated with resistance to types I and II pyrethroids and combine to drastically reduce killing effects of pyrethroid bed nets. CONCLUSIONS Overall, this study demonstrated that CYP6P4a and CYP6P4b contribute to pyrethroid resistance in An. funestus and provided two additional insecticide resistance molecular diagnostic tools that would contribute to monitoring and better management of resistance.
Collapse
Affiliation(s)
- Nelly M T Tatchou-Nebangwa
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon.
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Leon M J Mugenzi
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein, CH4332, Switzerland
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK
- Centre for Biotechnology Research, Bayero University, Kano PMB, Kano, 3011, Nigeria
| | - Derrick N Nebangwa
- Randall Center for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Mersimine F M Kouamo
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
| | - Carlos S Djoko Tagne
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
- Department of Biochemistry, Faculty of Science, University of Bamenda, Bamenda, Cameroon
| | - Theofelix A Tekoh
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
| | - Stephen M Ghogomu
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Sulaiman S Ibrahim
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon
- Department of Biochemistry, Bayero University, Kano PMB, Kano, 3011, Nigeria
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaounde, Cameroon.
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
3
|
Mapua SA, Samb B, Nambunga IH, Mkandawile G, Bwanaly H, Kaindoa EW, Odero JO, Masalu JP, Kahamba NF, Hape EE, Govella NJ, Okumu FO, Tripet F. Entomological survey of sibling species in the Anopheles funestus group in Tanzania confirms the role of Anopheles parensis as a secondary malaria vector. Parasit Vectors 2024; 17:261. [PMID: 38886827 PMCID: PMC11181546 DOI: 10.1186/s13071-024-06348-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Malaria transmission in Tanzania is driven by mosquitoes of the Anopheles gambiae complex and Anopheles funestus group. The latter includes An. funestus s.s., an anthropophilic vector, which is now strongly resistant to public health insecticides, and several sibling species, which remain largely understudied despite their potential as secondary vectors. This paper provides the initial results of a cross-country study of the species composition, distribution and malaria transmission potential of members of the Anopheles funestus group in Tanzania. METHODS Mosquitoes were collected inside homes in 12 regions across Tanzania between 2018 and 2022 using Centres for Disease Control and Prevention (CDC) light traps and Prokopack aspirators. Polymerase chain reaction (PCR) assays targeting the noncoding internal transcribed spacer 2 (ITS2) and 18S ribosomal DNA (18S rDNA) were used to identify sibling species in the An. funestus group and presence of Plasmodium infections, respectively. Where DNA fragments failed to amplify during PCR, we sequenced the ITS2 region to identify any polymorphisms. RESULTS The following sibling species of the An. funestus group were found across Tanzania: An. funestus s.s. (50.3%), An. parensis (11.4%), An. rivulorum (1.1%), An. leesoni (0.3%). Sequencing of the ITS2 region in the nonamplified samples showed that polymorphisms at the priming sites of standard species-specific primers obstructed PCR amplification, although the ITS2 sequences closely matched those of An. funestus s.s., barring these polymorphisms. Of the 914 samples tested for Plasmodium infections, 11 An. funestus s.s. (1.2%), and 2 An. parensis (0.2%) individuals were confirmed positive for P. falciparum. The highest malaria transmission intensities [entomological inoculation rate (EIR)] contributed by the Funestus group were in the north-western region [108.3 infectious bites/person/year (ib/p/y)] and the south-eastern region (72.2 ib/p/y). CONCLUSIONS Whereas An. funestus s.s. is the dominant malaria vector in the Funestus group in Tanzania, this survey confirms the occurrence of Plasmodium-infected An. parensis, an observation previously made in at least two other occasions in the country. The findings indicate the need to better understand the ecology and vectorial capacity of this and other secondary malaria vectors in the region to improve malaria control.
Collapse
Affiliation(s)
- Salum Abdallah Mapua
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Morogoro, Tanzania.
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK.
| | - Badara Samb
- Laboratoire d'Écologie Vectorielle et Parasitaire, Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, 5005, Dakar-Fann, BP, Senegal
| | - Ismail Hassan Nambunga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Morogoro, Tanzania
| | - Gustav Mkandawile
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Morogoro, Tanzania
| | - Hamis Bwanaly
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Morogoro, Tanzania
| | - Emmanuel Wilson Kaindoa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Morogoro, Tanzania
| | - Joel Ouma Odero
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Morogoro, Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - John Paliga Masalu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Morogoro, Tanzania
| | - Najat Feruz Kahamba
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Morogoro, Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G61 1QH, UK
| | - Emmanuel Elirehema Hape
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Morogoro, Tanzania
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicodem James Govella
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Morogoro, Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G61 1QH, UK
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania
| | - Fredros Oketch Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Morogoro, Tanzania
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G61 1QH, UK
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania
| | - Frederic Tripet
- Swiss Tropical and Public Health Institute, Kreuzgasse 2, 4123, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Kweka EJ, Lyaruu LJ, Temba V, Msangi S, Ouma JO, Karanja W, Mahande AM, Himeidan YE. Impact of MiraNet® long-lasting insecticidal net against Anopheles arabiensis wild population of Northern Tanzania. Parasitol Res 2023; 122:1245-1253. [PMID: 36949289 DOI: 10.1007/s00436-023-07827-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/20/2023] [Indexed: 03/24/2023]
Abstract
Despite high levels of pyrethroid resistance reported in malaria vectors, long-lasting insecticidal nets (LNs) still play a key role in controlling malaria transmission. This study tested the efficacy of MiraNet®, a pyrethroid-based LN against a wild population of Anopheles arabiensis in northern Tanzania. DuraNet® was used as a positive control in this evaluation. Standard WHO laboratory bioefficacy evaluations of MiraNet and DuraNet that were unwashed or had been washed 20 times indicated optimal knockdown and mortality for both net types against a susceptible strain of Anopheles gambiae s.s. Standard experimental hut evaluations were conducted to evaluate the efficacy of both nets against a wild population of An. arabiensis. The killing effect of MiraNet was 54.5% for unwashed and 50% for 20 times washed while DuraNet achieved 44.4% mortality for unwashed and 47.4% for 20 times washed against wild An. arabiensis. Both DuraNet and MiraNet exhibited significantly higher killing effects (> 44.4%). There was no significant difference in deterrence or induced exophily detected between the treatment arms for either net. Additionally, there were no adverse effects reported among hut sleepers. The results of this study indicate that the pyrethroid net MiraNet can be used effectively against wild populations of An. gambiae s.l. of low to moderate resistant levels from Northern Tanzania.
Collapse
Affiliation(s)
- Eliningaya J Kweka
- Department of Medical Parasitology and Entomology, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania.
- Pesticides Bioefficacy Section, Tanzania Plant Health and Pesticides Authority, P.O. Box 3024, Arusha, Tanzania.
| | - Lucille J Lyaruu
- Pesticides Bioefficacy Section, Tanzania Plant Health and Pesticides Authority, P.O. Box 3024, Arusha, Tanzania
| | - Violet Temba
- Pesticides Bioefficacy Section, Tanzania Plant Health and Pesticides Authority, P.O. Box 3024, Arusha, Tanzania
| | - Shandala Msangi
- Pesticides Bioefficacy Section, Tanzania Plant Health and Pesticides Authority, P.O. Box 3024, Arusha, Tanzania
| | - Johnson O Ouma
- Africa Technical Research Centre, Vector Health International, P.O. Box 15500, Arusha, Tanzania
| | - Wycliffe Karanja
- Africa Technical Research Centre, Vector Health International, P.O. Box 15500, Arusha, Tanzania
| | - Aneth M Mahande
- Mabogini Field Station, Tanzania Plant Health and Pesticides Authority, Moshi, Tanzania
| | - Yousif E Himeidan
- Africa Technical Research Centre, Vector Health International, P.O. Box 15500, Arusha, Tanzania
| |
Collapse
|
5
|
Nzoumbou-Boko R, Velut G, Imboumy-Limoukou RK, Manirakiza A, Lekana-Douki JB. Malaria research in the Central African Republic from 1987 to 2020: an overview. Trop Med Health 2022; 50:70. [PMID: 36131331 PMCID: PMC9490699 DOI: 10.1186/s41182-022-00446-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022] Open
Abstract
Background The national malaria control policy in the Central African Republic (CAR) promotes basic, clinical, and operational research on malaria in collaboration with national and international research institutions. Preparatory work for the elaboration of National Strategic Plans for the implementation of the national malaria control policy includes developing the research component, thus requiring an overview of national malaria research. Here, this survey aims to provide an inventory of malaria research as a baseline for guiding researchers and health authorities in choosing the future avenues of research. Methods Data sources and search strategy were defined to query the online Medline/PubMed database using the “medical subject headings” tool. Eligibility and study inclusion criteria were applied to the selected articles, which were classified based on year, research institute affiliations, and research topic. Results A total of 118 articles were retrieved and 51 articles were ultimately chosen for the bibliometric analysis. The number of publications on malaria has increased over time from 1987 to 2020. These articles were published in 32 different journals, the most represented being the Malaria Journal (13.73%) and the American Journal of Tropical Medicine and Hygiene (11.76%). The leading research topics were drug evaluation (52.94%), expatriate patients (23.54%), malaria in children (17.65%), morbidity (13.7%), and malaria during pregnancy (11.76%). The publications’ authors were mainly affiliated with the Institut Pasteur of Bangui (41%), the French Military Medical Service (15.5%), and the University of Bangui (11.7%). Collaborations were mostly established with France, the UK, and the USA; some collaborations involved Switzerland, Austria, Pakistan, Japan, Sri Lanka, Benin, Cameroun, Ivory Coast, and Madagascar. The main sources of research funding were French agencies (28.6%) and international agencies (18.3%). Most studies included were not representative of the whole country. The CAR has the capacity to carry out research on malaria and to ensure the necessary collaborations. Conclusion Malaria research activities in the CAR seem to reflect the priorities of national policy. One remaining challenge is to develop a more representative approach to better characterize malaria cases across the country. Finally, future research and control measures need to integrate the effect of COVID-19.
Collapse
Affiliation(s)
- Romaric Nzoumbou-Boko
- Laboratoire de Parasitologie, Institut Pasteur de Bangui, PO Box 923, Bangui, Central African Republic.
| | - Guillaume Velut
- French Military Health Service, French Armed Forces Centre for Epidemiology and Public Health (CESPA), Marseille, France
| | - Romeo-Karl Imboumy-Limoukou
- Unité Évolution, Épidémiologie Et Résistances Parasitaires (UNEEREP), Centre International de Recherche Médicale de Franceville (CIRMF), BP769, Franceville, Gabon
| | - Alexandre Manirakiza
- Service d'épidémiologie, Institut Pasteur de Bangui, PO Box 923, Bangui, Central African Republic
| | - Jean-Bernard Lekana-Douki
- Unité Évolution, Épidémiologie Et Résistances Parasitaires (UNEEREP), Centre International de Recherche Médicale de Franceville (CIRMF), BP769, Franceville, Gabon.,Département de Parasitologie-Mycologie Médecine Tropicale, Faculté de Médecine, Université des Sciences de la Santé, Libreville, B.P. 4009, Franceville, Gabon
| |
Collapse
|
6
|
Diurnal biting of malaria mosquitoes in the Central African Republic indicates residual transmission may be "out of control". Proc Natl Acad Sci U S A 2022; 119:e2104282119. [PMID: 35576470 PMCID: PMC9173762 DOI: 10.1073/pnas.2104282119] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transmission of malarial parasites occurs via the bites of Anopheles mosquitoes, whose blood-feeding behavior modulates the risk of infection. In many malaria endemic regions, eradication strategies rely on reducing transmission by targeting nocturnal blood-feeding Anopheles with insecticidal nets. However, a proportion of mosquitoes may naturally feed when humans are not protected by nets, setting a ceiling to the efficacy of massive net-based interventions. In Bangui, Central African Republic, 20 to 30% of daily exposure to indoor bites occurs during daytime, and this fraction may correspond to mosquitoes escaping exposure to current vector control measures. Knowledge about the daily rhythmicity of mosquito biting is therefore crucial to adjust vector control tactics to protect people at places where they spend daytime. Malaria control interventions target nocturnal feeding of the Anopheles vectors indoors to reduce parasite transmission. Mass deployment of insecticidal bed nets and indoor residual spraying with insecticides, however, may induce mosquitoes to blood-feed at places and at times when humans are not protected. These changes can set a ceiling to the efficacy of these control interventions, resulting in residual malaria transmission. Despite its relevance for disease transmission, the daily rhythmicity of Anopheles biting behavior is poorly documented, most investigations focusing on crepuscular hours and nighttime. By performing mosquito collections 48-h around the clock, both indoors and outdoors, and by modeling biting events using circular statistics, we evaluated the full daily rhythmicity of biting in urban Bangui, Central African Republic. While the bulk of biting by Anopheles gambiae, Anopheles coluzzii, Anopheles funestus, and Anopheles pharoensis occurred from sunset to sunrise outdoors, unexpectedly ∼20 to 30% of indoor biting occurred during daytime. As biting events did not fully conform to any family of circular distributions, we fitted mixtures of von Mises distributions and found that observations were consistent with three compartments, corresponding indoors to populations of early-night, late-night, and daytime-biting events. It is not known whether these populations of biting events correspond to spatiotemporal heterogeneities or also to distinct mosquito genotypes/phenotypes belonging consistently to each compartment. Prevalence of Plasmodium falciparum in nighttime- and daytime-biting mosquitoes was the same. As >50% of biting occurs in Bangui when people are unprotected, malaria control interventions outside the domiciliary environment should be envisaged.
Collapse
|
7
|
Akhir MAM, Wajidi MFF, Lavoué S, Azzam G, Jaafar IS, Awang Besar NAU, Ishak IH. Knockdown resistance (kdr) gene of Aedes aegypti in Malaysia with the discovery of a novel regional specific point mutation A1007G. Parasit Vectors 2022; 15:122. [PMID: 35387654 PMCID: PMC8988349 DOI: 10.1186/s13071-022-05192-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Improved understanding of the molecular basis of insecticide resistance may yield new opportunities for control of relevant disease vectors. In this current study, we investigated the quantification responses for the phenotypic and genotypic resistance of Aedes aegypti populations from different states in Malaysia. METHODS We tested the insecticide susceptibility status of adult Ae. aegypti from populations of three states, Penang, Selangor and Kelantan (Peninsular Malaysia), against 0.25% permethrin and 0.25% pirimiphos-methyl using the World Health Organisation (WHO) adult bioassay method. Permethrin-resistant and -susceptible samples were then genotyped for domains II and III in the voltage-gated sodium channel (vgsc) gene using allele-specific polymerase chain reaction (AS-PCR) for the presence of any diagnostic single-nucleotide mutations. To validate AS-PCR results and to identify any possible additional point mutations, these two domains were sequenced. RESULTS The bioassays revealed that populations of Ae. aegypti from these three states were highly resistant towards 0.25% permethrin and 0.25% pirimiphos-methyl. Genotyping results showed that three knockdown (kdr) mutations (S989P, V1016G and F1534C) were associated with pyrethroid resistance within these populations. The presence of a novel mutation, the A1007G mutation, was also detected. CONCLUSIONS This study revealed the high resistance level of Malaysian populations of Ae. aegypti to currently used insecticides. The resistance could be due to the widespread presence of four kdr mutations in the field and this could potentially impact the vector control programmes in Malaysia and alternative solutions should be sought.
Collapse
Affiliation(s)
- Mas Azlin M Akhir
- Insecticide Resistance Research Group (IRRG), School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Mustafa F F Wajidi
- School of Distance Education, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.,Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Sébastien Lavoué
- Insecticide Resistance Research Group (IRRG), School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Ghows Azzam
- Insecticide Resistance Research Group (IRRG), School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Izhan Shahrin Jaafar
- Kota Bharu Public Health Laboratory, Kelantan State Health Department, 16010, Kota Bharu, Kelantan, Malaysia
| | - Noor Aslinda Ummi Awang Besar
- Vector-Borne Disease Control Programme, Penang State Health Department, Anson Road, 10400, George Town, Penang, Malaysia
| | - Intan H Ishak
- Insecticide Resistance Research Group (IRRG), School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia. .,Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
8
|
Nolden M, Brockmann A, Ebbinghaus-Kintscher U, Brueggen KU, Horstmann S, Paine MJI, Nauen R. Towards understanding transfluthrin efficacy in a pyrethroid-resistant strain of the malaria vector Anopheles funestus with special reference to cytochrome P450-mediated detoxification. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 1:100041. [PMID: 35284893 PMCID: PMC8906121 DOI: 10.1016/j.crpvbd.2021.100041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/23/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
Malaria vector control interventions rely heavily on the application of insecticides against anopheline mosquitoes, in particular the fast-acting pyrethroids that target insect voltage-gated sodium channels (VGSC). Frequent applications of pyrethroids have resulted in resistance development in the major malaria vectors including Anopheles funestus, where resistance is primarily metabolic and driven by the overexpression of microsomal cytochrome P450 monooxygenases (P450s). Here we examined the pattern of cross-resistance of the pyrethroid-resistant An. funestus strain FUMOZ-R towards transfluthrin and multi-halogenated benzyl derivatives, permethrin, cypermethrin and deltamethrin in comparison to the susceptible reference strain FANG. Transfluthrin and two multi-fluorinated derivatives exhibited micromolar potency - comparable to permethrin - to functionally expressed dipteran VGSC in a cell-based cation influx assay. The activity of transfluthrin and its derivatives on VGSC was strongly correlated with their contact efficacy against strain FUMOZ-R, although no such correlation was obtained for the other pyrethroids due to their rapid detoxification by the resistant strain. The low resistance levels for transfluthrin and derivatives in strain FUMOZ-R were only weakly synergized by known P450 inhibitors such as piperonyl butoxide (PBO), triflumizole and 1-aminobenzotriazole (1-ABT). In contrast, deltamethrin toxicity in FUMOZ-R was synergized > 100-fold by all three P450 inhibitors. The biochemical profiling of a range of fluorescent resorufin and coumarin compounds against FANG and FUMOZ-R microsomes identified 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC) as a highly sensitive probe substrate for P450 activity. BOMFC was used to develop a fluorescence-based high-throughput screening assay to measure the P450 inhibitory action of potential synergists. Azole fungicides prochloraz and triflumizole were identified as extremely potent nanomolar inhibitors of microsomal P450s, strongly synergizing deltamethrin toxicity in An. funestus. Overall, the present study contributed to the understanding of transfluthrin efficacy at the molecular and organismal level and identified azole compounds with potential to synergize pyrethroid efficacy in malaria vectors.
Transfluthrin and derivatives lack cross-resistance in resistant Anopheles funestus. Pyrethroid resistance in An. funestus is strongly synergized by azole fungicides. BOMFC is a highly active fluorescent probe substrate for microsomal cytochrome P450 monooxygenases in An. funestus. Azole fungicides are nanomolar inhibitors of microsomal cytochrome P450 monooxygenases in An. funestus.
Collapse
Affiliation(s)
- Melanie Nolden
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany.,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Andreas Brockmann
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, D-53113, Bonn, Germany
| | | | - Kai-Uwe Brueggen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany
| | - Sebastian Horstmann
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany
| | - Mark J I Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany
| |
Collapse
|
9
|
Doumbe-Belisse P, Kopya E, Ngadjeu CS, Sonhafouo-Chiana N, Talipouo A, Djamouko-Djonkam L, Awono-Ambene HP, Wondji CS, Njiokou F, Antonio-Nkondjio C. Urban malaria in sub-Saharan Africa: dynamic of the vectorial system and the entomological inoculation rate. Malar J 2021; 20:364. [PMID: 34493280 PMCID: PMC8424958 DOI: 10.1186/s12936-021-03891-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Sub-Saharan Africa is registering one of the highest urban population growth across the world. It is estimated that over 75% of the population in this region will be living in urban settings by 2050. However, it is not known how this rapid urbanization will affect vector populations and disease transmission. The present study summarizes findings from studies conducted in urban settings between the 1970s and 2020 to assess the effects of urbanization on the entomological inoculation rate pattern and anopheline species distribution. Different online databases such as PubMed, ResearchGate, Google Scholar, Google were screened. A total of 90 publications were selected out of 1527. Besides, over 200 additional publications were consulted to collate information on anopheline breeding habitats and species distribution in urban settings. The study confirms high malaria transmission in rural compared to urban settings. The study also suggests that there had been an increase in malaria transmission in most cities after 2003, which could also be associated with an increase in sampling, resources and reporting. Species of the Anopheles gambiae complex were the predominant vectors in most urban settings. Anopheline larvae were reported to have adapted to different aquatic habitats. The study provides updated information on the distribution of the vector population and the dynamic of malaria transmission in urban settings. The study also highlights the need for implementing integrated control strategies in urban settings.
Collapse
Affiliation(s)
- P Doumbe-Belisse
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun.,Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - E Kopya
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun.,Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - C S Ngadjeu
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun.,Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - N Sonhafouo-Chiana
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun.,Faculty of Health Sciences, University of Buea, Cameroon, P.O. Box 63, Buea, Cameroon
| | - A Talipouo
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun.,Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - L Djamouko-Djonkam
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun.,Faculty of Sciences, University of Dschang Cameroon, P.O. Box 67, Dschang, Cameroon
| | - H P Awono-Ambene
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun
| | - C S Wondji
- Vector Group Liverpool School of Tropical Medicine Pembroke Place, Liverpool, L3 5QA, UK
| | - F Njiokou
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - C Antonio-Nkondjio
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288, Yaoundé, Cameroun. .,Vector Group Liverpool School of Tropical Medicine Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
10
|
Diouf EH, Niang EHA, Samb B, Diagne CT, Diouf M, Konaté A, Dia I, Faye O, Konaté L. Multiple insecticide resistance target sites in adult field strains of An. gambiae (s.l.) from southeastern Senegal. Parasit Vectors 2020; 13:567. [PMID: 33176872 PMCID: PMC7661151 DOI: 10.1186/s13071-020-04437-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/30/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND High coverage of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the cornerstones of vector control strategy in Senegal where insecticide resistance by the target vectors species is a great of concern. This study explores insecticide susceptibility profile and target-site mutations mechanisms within the Anopheles gambiae complex in southeastern Senegal. METHODS Larvae of Anopheles spp. were collected in two sites from southeastern Senegal Kedougou and Wassadou/Badi in October and November 2014, and reared until adult emergence. Wild F0 adult mosquitoes were morphologically identified to species. Susceptibility of 3-5-day-old An. gambiae (s.l.) samples to 11 insecticides belonging to the four insecticide classes was assessed using the WHO insecticide susceptibility bioassays. Tested samples were identified using molecular techniques and insecticide resistance target-site mutations (kdr, ace-1 and rdl) were determined. RESULTS A total of 3742 An. gambiae (s.l.) were exposed to insecticides (2439 from Kedougou and 1303 from Wassadou-Badi). Tests with pyrethroid insecticides and DDT showed high level of resistance in both Kedougou and Wassadou/Badi. Resistance to pirimiphos-methyl and malathion was not detected while resistance to bendoicarb and fenitrothion was confirmed in Kedougou. Of the 745 specimens of An. gambiae (s.l.) genotyped, An. gambiae (s.s.) (71.6%) was the predominant species, followed by An. arabiensis (21.7%), An. coluzzii (6.3%) and hybrids (An. gambiae (s.s.)/An. coluzzii; 0.4%). All target site mutations investigated (Vgsc-1014F, Vgsc-1014S, Ace-1 and Rdl) were found at different frequencies in the species of the Anopheles gambiae complex. Vgsc-1014F mutation was more frequent in An. gambiae (s.s.) and An. coluzzii than An. arabiensis. Vgsc-1014S was present in An. gambiae (s.l.) populations in Wassadou but not in Kedougou. Ace-1 and rdl mutations were more frequent in An. gambiae (s.s.) in comparison to An. arabiensis and An. coluzzii. CONCLUSIONS Resistance to all the four insecticide classes tested was detected in southeastern Senegal as well as all target site mutations investigated were found. Data will be used by the national Malaria Control Programme.
Collapse
Affiliation(s)
- El hadji Diouf
- Laboratoire d’Écologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - El hadji Amadou Niang
- Laboratoire d’Écologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Badara Samb
- Laboratoire d’Écologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | | | - Mbaye Diouf
- Laboratoire d’Écologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Abdoulaye Konaté
- Laboratoire d’Écologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | | | - Ousmane Faye
- Laboratoire d’Écologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Lassana Konaté
- Laboratoire d’Écologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| |
Collapse
|
11
|
Yavaşoglu Sİ, Yaylagül EÖ, Akıner MM, Ülger C, Çağlar SS, Şimşek FM. Current insecticide resistance status in Anopheles sacharovi and Anopheles superpictus populations in former malaria endemic areas of Turkey. Acta Trop 2019; 193:148-157. [PMID: 30742803 DOI: 10.1016/j.actatropica.2019.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 11/17/2022]
Abstract
Anopheles sacharovi and Anopheles superpictus have a significant public health importance since they are primer and seconder malaria vectors of Turkey, respectively. As a result of intensive insecticide usage in historically malaria endemic regions of Turkey for long years, insecticide resistance problem has occurred inevitably. In this study, we aimed to investigate the involvement of the detoxification enzymes in insecticide resistance in Turkish An. sacharovi and An. superpictus populations in the Mediterranean and South-eastern Anatolia region where have a malaria history in the past. Bioassay results indicated that both An. sacharovi and An. superpictus populations are resistant to DDT, resistant or possible resistant to organophosphates and carbamates and finally mostly susceptible to pyrethroids. Although bioassays results indicated high DDT resistance in all mosquito populations, biochemical assays did not show significantly high GST levels in all strains. Almost all An. sacharovi and An. superpictus populations had an increased α and β esterase activity levels while nearly half of the overall populations had an increased p-NPA esterase than the control group. Elevated levels of MFO frequency have been shown in the majority of the populations. Consequently, our results reveal that biochemical resistance mechanisms may play an important role in insecticide resistance in Turkish An. sacharovi and An. superpictus populations. These results give useful cues to monitor the insecticide resistance before it spreads throughout an entire population, enabling early intervention.
Collapse
Affiliation(s)
- Sare İlknur Yavaşoglu
- Faculty of Science and Arts, Department of Biology, Adnan Menderes University, 09010, Aydın, Turkey.
| | - Esra Örenlili Yaylagül
- Faculty of Science and Arts, Department of Biology, Adnan Menderes University, 09010, Aydın, Turkey.
| | - Muhammet Mustafa Akıner
- Faculty of Science and Arts, Department of Biology, Recep Tayyip Erdoğan University, 53100, Rize, Turkey.
| | - Celal Ülger
- Faculty of Science and Arts, Department of Biology, Adnan Menderes University, 09010, Aydın, Turkey.
| | - Selim Sualp Çağlar
- Faculty of Science, Department of Biology, Hacettepe University, 06800, Ankara, Turkey.
| | - Fatih Mehmet Şimşek
- Faculty of Science and Arts, Department of Biology, Adnan Menderes University, 09010, Aydın, Turkey.
| |
Collapse
|
12
|
Awan DA, Ahmad F, Saleem MA, Shakoori AR. Synergistic effect of piperonyl butoxide and emamectin benzoate on enzymatic activities in resistant populations of red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:14200-14213. [PMID: 30864036 DOI: 10.1007/s11356-019-04812-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Resistance to grain protectants in Tribolium castaneum (Herbst) is a serious threat to international grain trade. Frequent and overdose application of chemical insecticides is becoming a serious health hazard and cause environmental pollution. Resistance management approaches by using various synergists along with novel compounds has become more imperative to increase efficacy of environmentally safe insecticides. We have evaluated piperonyl butoxide (PBO) and emamectin benzoate mixtures for management of resistant field populations of T. castaneum. The collected strains had demonstrated 50 to 200% resistance already developed against emamectin benzoate as compared with deltamethrin susceptible reference strain. The inclusion of PBO along with emamectin significantly reduced this resistance by at least 28% and the LC50 were lowered from 5.12 to 1.9 μg/ml with the highest synergism ration of 2.7 in resistant strain. Enzymatic assays clearly demonstrated that the specific activities of catalase and acetylcholinesterases were significantly decreased at an average of 80% and 60%, respectively, when PBO was included as a synergist at 1:2 ratio with emamectin benzoate. The results highlight the mechanism that renders the field population resistant to emamectin benzoate and suggests the synergistic role of piperonyl butoxide as a potent additive in grain protectants for resistance management.
Collapse
Affiliation(s)
- Daud Ahmad Awan
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan
| | - Faheem Ahmad
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Tarlai Kalan, Islamabad, 45550, Pakistan.
| | - Mushtaq A Saleem
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
- Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Abdul Rauf Shakoori
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan
| |
Collapse
|
13
|
Enhanced mortality in deltamethrin-resistant Aedes aegypti in Thailand using a piperonyl butoxide synergist. Acta Trop 2019; 189:76-83. [PMID: 30287252 DOI: 10.1016/j.actatropica.2018.09.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 11/20/2022]
Abstract
Aedes aegypti is the primary vector of dengue viruses in Thailand. Control of this mosquito continues to rely heavily on use of insecticides in various forms and applications. The synergistic effect of piperonyl butoxide (PBO), combined with deltamethrin against eight populations of Ae. aegypti collected from different regions in Thailand is presented. The standard WHO adult contact bioassays found all populations with low to moderate levels of resistance to deltamethrin alone (using a 0.05% discriminating concentration), with final mortalities ranging from 15.6 to 70%, while a laboratory strain was fully susceptible (100% mortality). Pre-exposure of female mosquitoes to 4% PBO for 1 h, followed immediately by exposure to deltamethrin for 1 h, significantly increased mortality in seven populations (64.8-98.1%) with the exception of mosquitoes derived from Lampang Province. The knockdown time (KDT) synergist ratios between deltamethrin only and PBO + deltamethrin ranged from 1.7 to 2.8 for KDT50 and 1.9 to 4.0 for KDT95. Between deltamethrin alone and mosquitoes exposed to PBO + deltamethrin, all resistant populations produced significant differences (P < 0.05) in final 24-h mortality, except marginally for Lampang (P = 0.053). The synergistic effects of PBO with deltamethrin-resistant Ae. aegypti suggest a combination of this synergist with deltamethrin or other pyrethroid compounds can significantly enhance the effectiveness of these insecticides against pyrethroid-resistant Ae. aegypti found commonly in Thailand.
Collapse
|
14
|
Evidence of Insecticide Resistance to Pyrethroids and Bendiocarb in Anopheles funestus from Tsararano, Marovoay District, Madagascar. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5806179. [PMID: 30402485 PMCID: PMC6196927 DOI: 10.1155/2018/5806179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/17/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022]
Abstract
Introduction In Madagascar, malaria control relies on the countrywide use of long lasting insecticide treated bed nets (LLINs) and on indoor residual spraying (IRS) in the central highland area as well as a small area on the eastern coast. We tested insecticide resistance mechanisms of Anopheles funestus from Tsararano, a malaria endemic village in the coastal health district of Marovoay. Methods Insecticide susceptibility bioassays were done in July 2017 on first-generation Anopheles funestus (F1) to assess (i) the susceptibility to permethrin (0.05%), deltamethrin (0.05%), DDT (4%), malathion (5%), fenitrothion (1%), and bendiocarb (0.1%); (ii) the effect of preexposure to the piperonyl butoxide (PBO) synergist; and (iii) the enzymatic activities of cytochrome P450, esterases, and glutathione S-transferases (GST). Results Our results demonstrated that An. funestus was phenotypically resistant to pyrethroids and bendiocarb, with a mortality rate (MR) of 33.6% (95%CI: 24.5-43.7%) and 86% (95%CI: 77.6-92.1%), respectively. In contrast, An. funestus were 100% susceptible to DDT and organophosphates (malathion and fenitrothion). Preexposure of An. funestus to PBO synergist significantly restored the susceptibility to bendiocarb (MR=100%) and increased the MR in the pyrethroid group, from 96% (95%CI: 90.0-98.9%) to 100% for deltamethrin and permethrin, respectively (χ2 = 43, df = 3, P< 0.0001). Enzymatic activities of cytochrome P450 and α-esterases were significantly elevated among An. funestus compared with the IPM reference strain (Mann-Whitney U= 30, P<0.0001; U = 145.5, P <0.0001, respectively). No significant differences of β-esterases activities compared to the IPM reference strain were observed (Mann-Whitney U = 392.5, P = 0.08). Conclusion In Tsararano, despite the absence of an IRS programme, there is evidence of high levels of insecticide resistance to pyrethroids and bendiocarb in An.
Collapse
|
15
|
Kamgang B, Tchapga W, Ngoagouni C, Sangbakembi-Ngounou C, Wondji M, Riveron JM, Wondji CS. Exploring insecticide resistance mechanisms in three major malaria vectors from Bangui in Central African Republic. Pathog Glob Health 2018; 112:349-359. [PMID: 30433868 PMCID: PMC6300743 DOI: 10.1080/20477724.2018.1541160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Malaria remains the main cause of mortality and morbidity in the Central African Republic. However, the main malaria vectors remain poorly characterised, preventing the design of suitable control strategies. Here, we characterised the patterns and mechanisms of insecticide resistance in three important vectors from Bangui. Mosquitoes were collected indoors, using electrical aspirators in July 2016 in two neighborhoods at Bangui. WHO bioassays performed, using F2 An. gambiae sensu lato (s.l.), revealed a high level of resistance to type I (permethrin) and II (deltamethrin) pyrethroids and dichlorodiphenyltrichloroethane (< 3% mortality). Molecular analysis revealed the co-occurrence of Anopheles coluzzii (56.8 %) and An. gambiae s.s. (43.2%) within the An. gambiae complex. Anopheles funestus s.s. was the sole species belonging to An. funestus group. Both kdr-w (40% of homozygotes and 60% of heterozygotes/kdr-w/wild type) and kdr-e (37.5% of heterozygotes) mutations were found in An. gambiae. Contrariwise, only the kdr-w (9.5% homozygotes and 85.7% of heterozygotes) was detected in An. coluzzii. Quantitative RT-PCR showed that CYP6M2 and CYP6P3 are not upregulated in An. coluzzii from Bangui. Analysis of the sodium channel gene revealed a reduced diversity in An. coluzzii and An. gambiae s.s. In An. funestus s.s., the pyrethroid/DDT GSTe2 L119F resistance allele was detected at high frequency (54.7%) whereas a very low frequency for Rdl was observed. Polymorphism analysis of GSTe2 and GABA receptor gene in An. funestus revealed the presence of one resistant haplotype for each gene. This study provides baseline information to help guide current and future malaria vector control interventions in CAR.
Collapse
Affiliation(s)
- Basile Kamgang
- a Department of Medical Entomology , Centre for Research in Infectious Diseases (CRID) , Yaoundé , Cameroon
| | - Williams Tchapga
- a Department of Medical Entomology , Centre for Research in Infectious Diseases (CRID) , Yaoundé , Cameroon
| | - Carine Ngoagouni
- b Service d'Entomologie Medicale , Institut Pasteur de Bangui , Bangui , Central African Republic
| | | | - Murielle Wondji
- a Department of Medical Entomology , Centre for Research in Infectious Diseases (CRID) , Yaoundé , Cameroon
- c Vector Biology Department , Liverpool School of Tropical Medicine , Liverpool , UK
| | - Jacob M Riveron
- a Department of Medical Entomology , Centre for Research in Infectious Diseases (CRID) , Yaoundé , Cameroon
- c Vector Biology Department , Liverpool School of Tropical Medicine , Liverpool , UK
| | - Charles S Wondji
- a Department of Medical Entomology , Centre for Research in Infectious Diseases (CRID) , Yaoundé , Cameroon
- c Vector Biology Department , Liverpool School of Tropical Medicine , Liverpool , UK
| |
Collapse
|
16
|
Huijben S, Paaijmans KP. Putting evolution in elimination: Winning our ongoing battle with evolving malaria mosquitoes and parasites. Evol Appl 2018; 11:415-430. [PMID: 29636796 PMCID: PMC5891050 DOI: 10.1111/eva.12530] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022] Open
Abstract
Since 2000, the world has made significant progress in reducing malaria morbidity and mortality, and several countries in Africa, South America and South-East Asia are working hard to eliminate the disease. These elimination efforts continue to rely heavily on antimalarial drugs and insecticide-based interventions, which remain the cornerstones of malaria treatment and prevention. However, resistance has emerged against nearly every antimalarial drug and insecticide that is available. In this review we discuss the evolutionary consequences of the way we currently implement antimalarial interventions, which is leading to resistance and may ultimately lead to control failure, but also how evolutionary principles can be applied to extend the lifespan of current and novel interventions. A greater understanding of the general evolutionary principles that are at the core of emerging resistance is urgently needed if we are to develop improved resistance management strategies with the ultimate goal to achieve a malaria-free world.
Collapse
Affiliation(s)
- Silvie Huijben
- ISGlobalBarcelona Ctr. Int. Health Res. (CRESIB)Hospital Clínic ‐ Universitat de BarcelonaBarcelonaSpain
| | - Krijn P. Paaijmans
- ISGlobalBarcelona Ctr. Int. Health Res. (CRESIB)Hospital Clínic ‐ Universitat de BarcelonaBarcelonaSpain
- Centro de Investigação em Saúde de ManhiçaMaputoMozambique
| |
Collapse
|
17
|
Omondi S, Mukabana WR, Ochomo E, Muchoki M, Kemei B, Mbogo C, Bayoh N. Quantifying the intensity of permethrin insecticide resistance in Anopheles mosquitoes in western Kenya. Parasit Vectors 2017; 10:548. [PMID: 29110724 PMCID: PMC5674850 DOI: 10.1186/s13071-017-2489-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/20/2017] [Indexed: 11/10/2022] Open
Abstract
Background The development and spread of resistance among local vectors to the major classes of insecticides used in Long-Lasting Insecticidal Nets (LLINs) and Indoor Residual Spraying (IRS) poses a major challenge to malaria vector control programs worldwide. The main methods of evaluating insecticide resistance in malaria vectors are the WHO tube bioassay and CDC bottle assays, with their weakness being determination of resistance at a fixed dose for variable populations. The CDC bottle assay using different insecticide dosages has proved applicable in ascertaining the intensity of resistance. Methods We determined the status and intensity of permethrin resistance and investigated the efficacy of commonly used LLINs (PermaNet® 2.0, PermaNet® 3.0 and Olyset®) against 3–5 day-old adult female Anopheles mosquitoes from four sub-counties; Teso, Bondo, Rachuonyo and Nyando in western Kenya. Knockdown was assessed to 4 doses of permethrin; 1× (21.5 μg/ml), 2× (43 μg/ml), 5× (107.5 μg/ml) and 10× (215 μg/ml) using CDC bottle assays. Results Mortality for 0.75% permethrin ranged from 23.5% to 96.1% in the WHO tube assay. Intensity of permethrin resistance was highest in Barkanyango Bondo, with 84% knockdown at the 30 min diagnostic time when exposed to the 10× dose. When exposed to the LLINs, mortality ranged between— 0–39% for Olyset®, 12–88% for PermaNet® 2.0 and 26–89% for PermaNet® 3.0. The efficacy of nets was reduced in Bondo and Teso. Results from this study show that there was confirmed resistance in all the sites; however, intensity assays were able to differentiate Bondo and Teso as the sites with the highest levels of resistance, which coincidentally were the two sub-counties with reduced net efficacy. Conclusions There was a reduced efficacy of nets in areas with high resistance portraying that at certain intensities of resistance, vector control using LLINs may be compromised. It is necessary to incorporate intensity assays in order to determine the extent of threat that resistance poses to malaria control. Electronic supplementary material The online version of this article (10.1186/s13071-017-2489-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seline Omondi
- School of Biological Sciences, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya. .,Kenya Medical Research Institute (KEMRI), P.O Box 1578-40100, Kisumu, Kenya.
| | - Wolfgang Richard Mukabana
- School of Biological Sciences, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya.,Science for Health, P.O Box 44970-00100, Nairobi, Kenya
| | - Eric Ochomo
- Kenya Medical Research Institute (KEMRI), P.O Box 1578-40100, Kisumu, Kenya
| | - Margaret Muchoki
- Kenya Medical Research Institute (KEMRI), P.O Box 1578-40100, Kisumu, Kenya
| | - Brigid Kemei
- Kenya Medical Research Institute (KEMRI), P.O Box 1578-40100, Kisumu, Kenya
| | - Charles Mbogo
- KEMRI-Centre for Geographic Medicine Research-Coast, P.O Box 230-80108, Kilifi, Kenya.,KEMRI-Wellcome Trust Research Program, P.O Box 43640-00100, Nairobi, Kenya
| | - Nabie Bayoh
- US Centers for Disease Control and Prevention-Kenya, P.O Box 1578-40100, Kisumu, Kenya
| |
Collapse
|
18
|
Rakotoson JD, Fornadel CM, Belemvire A, Norris LC, George K, Caranci A, Lucas B, Dengela D. Insecticide resistance status of three malaria vectors, Anopheles gambiae (s.l.), An. funestus and An. mascarensis, from the south, central and east coasts of Madagascar. Parasit Vectors 2017; 10:396. [PMID: 28835269 PMCID: PMC5569519 DOI: 10.1186/s13071-017-2336-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/16/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insecticide-based vector control, which comprises use of insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS), is the key method to malaria control in Madagascar. However, its effectiveness is threatened as vectors become resistant to insecticides. This study investigated the resistance status of malaria vectors in Madagascar to various insecticides recommended for use in ITNs and/or IRS. METHODS WHO tube and CDC bottle bioassays were performed on populations of Anopheles gambiae (s.l.), An. funestus and An. mascarensis. Adult female An. gambiae (s.l.) mosquitoes reared from field-collected larvae and pupae were tested for their resistance to DDT, permethrin, deltamethrin, alpha-cypermethrin, lambda-cyhalothrin, bendiocarb and pirimiphos-methyl. Resting An. funestus and An. mascarensis female mosquitoes collected from unsprayed surfaces were tested against permethrin, deltamethrin and pirimiphos-methyl. The effect on insecticide resistance of pre-exposure to the synergists piperonyl-butoxide (PBO) and S,S,S-tributyl phosphorotrithioate (DEF) also was assessed. Molecular analyses were done to identify species and determine the presence of knock-down resistance (kdr) and acetylcholinesterase resistance (ace-1 R ) gene mutations. RESULTS Anopheles funestus and An. mascarensis were fully susceptible to permethrin, deltamethrin and pirimiphos-methyl. Anopheles gambiae (s.l.) was fully susceptible to bendiocarb and pirimiphos-methyl. Among the 17 An. gambiae (s.l.) populations tested for deltamethrin, no confirmed resistance was recorded, but suspected resistance was observed in two sites. Anopheles gambiae (s.l.) was resistant to permethrin in four out of 18 sites (mortality 68-89%) and to alpha-cypermethrin (89% mortality) and lambda-cyhalothrin (80% and 85%) in one of 17 sites, using one or both assay methods. Pre-exposure to PBO restored full susceptibility to all pyrethroids tested except in one site where only partial restoration to permethrin was observed. DEF fully suppressed resistance to deltamethrin and alpha-cypermethrin, while it partially restored susceptibility to permethrin in two of the three sites. Molecular analysis data suggest absence of kdr and ace-1 R gene mutations. CONCLUSION This study suggests involvement of detoxifying enzymes in the phenotypic resistance of An. gambiae (s.l.) to pyrethroids. The absence of resistance in An. funestus and An. mascarensis to pirimiphos-methyl and pyrethroids and in An. gambiae (s.l.) to carbamates and organophosphates presents greater opportunity for managing resistance in Madagascar.
Collapse
Affiliation(s)
- Jean-Desire Rakotoson
- President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, Antananarivo, Madagascar
| | - Christen M Fornadel
- U.S. President's Malaria Initiative, United States Agency for International Development, Bureau for Global Health, Office of Infectious Disease, 2100 Crystal Drive, Arlington, VA, 22202, USA
| | - Allison Belemvire
- U.S. President's Malaria Initiative, United States Agency for International Development, Bureau for Global Health, Office of Infectious Disease, 2100 Crystal Drive, Arlington, VA, 22202, USA
| | - Laura C Norris
- U.S. President's Malaria Initiative, United States Agency for International Development, Bureau for Global Health, Office of Infectious Disease, 2100 Crystal Drive, Arlington, VA, 22202, USA
| | - Kristen George
- U.S. President's Malaria Initiative, United States Agency for International Development, Bureau for Global Health, Office of Infectious Disease, 2100 Crystal Drive, Arlington, VA, 22202, USA
| | - Angela Caranci
- U.S. President's Malaria Initiative, United States Agency for International Development, Bureau for Global Health, Office of Infectious Disease, 2100 Crystal Drive, Arlington, VA, 22202, USA
| | - Bradford Lucas
- President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, 4550 Montgomery Ave, Suite 800 North, Bethesda, MD, 20814, USA
| | - Dereje Dengela
- President's Malaria Initiative Africa Indoor Residual Spraying Project, Abt Associates, 4550 Montgomery Ave, Suite 800 North, Bethesda, MD, 20814, USA.
| |
Collapse
|
19
|
Olé Sangba ML, Sidick A, Govoetchan R, Dide-Agossou C, Ossè RA, Akogbeto M, Ndiath MO. Evidence of multiple insecticide resistance mechanisms in Anopheles gambiae populations in Bangui, Central African Republic. Parasit Vectors 2017; 10:23. [PMID: 28086840 PMCID: PMC5237250 DOI: 10.1186/s13071-016-1965-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 12/31/2016] [Indexed: 11/30/2022] Open
Abstract
Background Knowledge of insecticide resistance status in the main malaria vectors is an essential component of effective malaria vector control. This study presents the first evaluation of the status of insecticide resistance in Anopheles gambiae populations from Bangui, the Central African Republic. Methods Anopheles mosquitoes were reared from larvae collected in seven districts of Bangui between September to November 2014. The World Health Organisation’s bioassay susceptibility tests to lambda-cyhalothrin (0.05%), deltamethrin (0.05%), DDT (4%), malathion (5%), fenitrothion (1%) and bendiocarb (0.1%) were performed on adult females. Species and molecular forms as well as the presence of L1014F kdr and Ace-1R mutations were assessed by PCR. Additional tests were conducted to assess metabolic resistance status. Results After 1 h exposure, a significant difference of knockdown effect was observed between districts in all insecticides tested except deltamethrin and malathion. The mortality rate (MR) of pyrethroids group ranging from 27% (CI: 19–37.5) in Petevo to 86% (CI: 77.6–92.1) in Gbanikola; while for DDT, MR ranged from 5% (CI: 1.6–11.3) in Centre-ville to 39% (CI: 29.4–49.3) in Ouango. For the organophosphate group a MR of 100% was observed in all districts except Gbanikola where a MR of 96% (CI: 90–98.9) was recorded. The mortality induced by bendiocarb was very heterogeneous, ranging from 75% (CI: 62.8–82.8) in Yapele to 99% (CI: 84.5–100) in Centre-ville. A high level of kdr-w (L1014F) frequency was observed in all districts ranging from 93 to 100%; however, no kdr-e (L1014S) and Ace-1R mutation were found in all tested mosquitoes. Data of biochemical analysis showed significant overexpression activities of cytochrome P450, GST and esterases in Gbanikola and Yapele (χ2 = 31.85, df = 2, P < 0.001). By contrast, esterases activities using α and β-naphthyl acetate were significantly low in mosquitoes from PK10 and Ouango in comparison to Kisumu strain (χ2 = 17.34, df = 2, P < 0.005). Conclusions Evidence of resistance to DDT and pyrethroids as well as precocious emergence of resistance to carbamates were detected among A. gambiae mosquitoes from Bangui, including target-site mutations and metabolic mechanisms. The co-existence of these resistance mechanisms in A. gambiae may be a serious obstacle for the future success of malaria control programmes in this region. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1965-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marina Lidwine Olé Sangba
- G4 Malaria Group, Institut Pasteur of Bangui, BP 926, Bangui, Central African Republic.,Faculté des Sciences et Techniques, Université d'Abomey Calavi, Cotonou, Benin.,Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, 06 BP 2604, Benin
| | - Aboubakar Sidick
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, 06 BP 2604, Benin
| | - Renaud Govoetchan
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, 06 BP 2604, Benin.,Ecole Nationale des Sciences et Techniques Agricole de Djougou (ENSTA), Université des Sciences Arts et Techniques de Natitingou (USATN), Natitingou, Benin
| | - Christian Dide-Agossou
- University of Colorado Denver Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO, 80045, USA
| | - Razaki A Ossè
- Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, 06 BP 2604, Benin.,Ecole de Gestion et d'Exploitation des Systèmes d'Elevage (EGESE), Université d'Agriculture de Kétou (UAK), Kétou, Benin
| | - Martin Akogbeto
- Faculté des Sciences et Techniques, Université d'Abomey Calavi, Cotonou, Benin.,Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, 06 BP 2604, Benin
| | - Mamadou Ousmane Ndiath
- G4 Malaria Group, Institut Pasteur of Bangui, BP 926, Bangui, Central African Republic. .,G4 Malaria Group, Institut Pasteur of Madagascar BP 1274, Ambatofotsikely Avaradoha 101, Antananarivo, Madagascar.
| |
Collapse
|
20
|
Sweileh WM, Sawalha AF, Al-Jabi SW, Zyoud SH, Shraim NY, Abu-Taha AS. A bibliometric analysis of literature on malaria vector resistance: (1996 - 2015). Global Health 2016; 12:76. [PMID: 27884199 PMCID: PMC5123357 DOI: 10.1186/s12992-016-0214-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/08/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Emergence of insecticide resistance in malaria vectors is a real threat to future goals of elimination and control of malaria. Therefore, the objective of this study was to assess research trend on insecticide resistance of Anopheles mosquito. In specific, number of publications, countries, institutions, and authors' research profile, citation analysis, international collaborations, and impact of journals publishing documents on insecticide resistance will be presented. It was conducted via Scopus search engine which was used to retrieve relevant data. Keywords used were based on literature available on this topic. The duration of study was set from 1996-2015. RESULTS A total of 616 documents, mainly as original research articles (n = 569; 92.37%) were retrieved. The average number of citations per article was 26.36. Poisson log-linear regression analysis indicated that there was a 6.00% increase in the number of publications for each extra article on pyrethroid resistance. A total of 82 different countries and 1922 authors participated in publishing retrieved articles. The United Kingdom (UK) ranked first in number of publications followed by the United States of America (USA) and France. The top ten productive countries included seven African countries. The UK had collaborations mostly with Benin (relative link strength = 46). A total of 1817 institution/ organizations participated in the publication of retrieved articles. The most active institution/ organization was Liverpool School of Tropical Medicine. Retrieved articles were published in 134 different scientific peer reviewed journals. The journal that published most on this topic was Malaria Journal (n = 101; 16.4%). Four of the top active authors were from South Africa and two were from the UK. Three of the top ten cited articles were published in Insect Molecular Biology journal. Six articles were about pyrethroid resistance and at least two were about DDT resistance. CONCLUSION Publications on insecticide resistance in malaria vector has gained momentum in the past decade. International collaborations enhanced the knowledge about the situation of vector resistance in countries with endemic malaria. Molecular biology of insecticide resistance is the key issue in understanding and overcoming this emerging problems.
Collapse
Affiliation(s)
- Waleed M. Sweileh
- Department of Physiology, Pharmacology, Toxicology, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
| | - Ansam F. Sawalha
- Department of Physiology, Pharmacology, Toxicology, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
| | - Samah W. Al-Jabi
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
| | - Sa’ed H. Zyoud
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
| | - Naser Y. Shraim
- Department of Pharmaceutical Chemistry and Technology, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
| | - Adham S. Abu-Taha
- Department of Physiology, Pharmacology, Toxicology, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
| |
Collapse
|
21
|
Zare M, Soleimani-Ahmadi M, Davoodi SH, Sanei-Dehkordi A. Insecticide susceptibility of Anopheles stephensi to DDT and current insecticides in an elimination area in Iran. Parasit Vectors 2016; 9:571. [PMID: 27809871 PMCID: PMC5096305 DOI: 10.1186/s13071-016-1851-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/18/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Iran has recently initiated a malaria elimination program with emphasis on vector control strategies which are heavily reliant on indoor residual spraying and long-lasting insecticidal nets. Insecticide resistance seriously threatens the efficacy of vector control strategies. This study was conducted to determine the insecticide susceptibility of Anopheles stephensi to DDT and current insecticides in Jask county as an active malaria focus in southeastern Iran. METHODS In this study, the anopheline larvae were collected from different aquatic habitats in Jask county and transported to insectarium, fed with sugar and then 3-day-old adults were used for susceptibility tests. WHO insecticide susceptibility tests were performed with DDT (4 %), malathion (5 %), lambda-cyhalothrin (0.05 %), deltamethrin (0.05 %) and permethrin (0.75 %). RESULTS The field strain of An. stephensi was found resistant to DDT and lambda-cyhalothrin. The LT50 values for DDT and lambda-cyhalothrin in this species were 130.25, and 37.71 min, respectively. Moreover, An. stephensi was completely susceptible to malathion and permethrin and tolerant to deltamethrin. CONCLUSION The present study results confirm the resistance of the major malaria vector, An. stephensi, to DDT and lambda-cyhalothrin, and tolerance to deltamethrin, which could gradually increase and spread into other malaria endemic areas. Thus, there is a need for regular monitoring of insecticide resistance in order to select suitable insecticides for vector control interventions towards malaria elimination.
Collapse
Affiliation(s)
- Mehdi Zare
- Department of Occupational Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Moussa Soleimani-Ahmadi
- Social Determinants in Health Promotion Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Medical Entomology and Vector Control, Faculty of Health, Hormozgan University of Medical Sciences, P.O. Box: 79145–3838, Bandar Abbas, Iran
| | - Sayed Hossein Davoodi
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Sanei-Dehkordi
- Social Determinants in Health Promotion Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Department of Medical Entomology and Vector Control, Faculty of Health, Hormozgan University of Medical Sciences, P.O. Box: 79145–3838, Bandar Abbas, Iran
| |
Collapse
|