1
|
Wang J, Chai Y, Yang J, Ye Y, Luo J, Yin H, Guan G. Dissecting the role of transcription factor AP2-M in Babesia asexual replication. FASEB J 2024; 38:e70119. [PMID: 39441647 DOI: 10.1096/fj.202400127rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Babesia spp. are obligate intracellular parasites that invade host cells to complete their asexual development and transmission. Here, we identified a transcription factor AP2-M (BXIN_0799) in Babesia sp. Xinjiang (Bxj), a member of the Apicomplexan AP2 family, which regulates gene expression related to red blood cell (RBC) invasion and cell cycle progression. Our genome-wide analysis of (Cut-Tag) data shows that AP2-M specifically recognized DNA motifs in the promoters of target genes. AP2-M target genes included other AP2 gene family members and epigenetic markers, which could modulate gene expression involved in RBC invasion, merozoite morphology, and cell cycle phases, as indicated by RNA sequencing, proteomics, and single-cell RNA sequencing (scRNA-seq) data from an ap2-m gene disrupted strain (AP2-M (-)). We conclude that AP2-M appeared to contribute to the process of red blood cell invasion, maintain merozoite morphology, and cell cycle progression through GS and MS phases.
Collapse
Affiliation(s)
- Jinming Wang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Yijun Chai
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Jifei Yang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Yuxin Ye
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Jianxun Luo
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Hong Yin
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guiquan Guan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Cubillos EFG, Snebergerova P, Borsodi S, Reichensdorferova D, Levytska V, Asada M, Sojka D, Jalovecka M. Establishment of a stable transfection and gene targeting system in Babesia divergens. Front Cell Infect Microbiol 2023; 13:1278041. [PMID: 38156314 PMCID: PMC10753763 DOI: 10.3389/fcimb.2023.1278041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Babesia divergens is an emerging tick-borne pathogen considered as the principal causative agent of bovine babesiosis in Europe with a notable zoonotic risk to human health. Despite its increasing impact, considerable gaps persist in our understanding of the molecular interactions between this parasite and its hosts. In this study, we address the current limitation of functional genomic tools in B. divergens and introduce a stable transfection system specific to this parasite. We define the parameters for a drug selection system hdhfr-WR99210 and evaluate different transfection protocols for highly efficient generation of transgenic parasites expressing GFP. We proved that plasmid delivery into bovine erythrocytes prior to their infection is the most optimal transfection approach for B. divergens, providing novel evidence of Babesia parasites' ability to spontaneously uptake external DNA from erythrocytes cytoplasm. Furthermore, we validated the bidirectional and symmetrical activity of ef-tgtp promoter, enabling simultaneous expression of external genes. Lastly, we generated a B. divergens knockout line by targeting a 6-cys-e gene locus. The observed dispensability of this gene in intraerythrocytic parasite development makes it a suitable recipient locus for further transgenic application. The platform for genetic manipulations presented herein serves as the initial step towards developing advanced functional genomic tools enabling the discovery of B. divergens molecules involved in host-vector-pathogen interactions.
Collapse
Affiliation(s)
- Eliana F. G. Cubillos
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czechia
| | - Pavla Snebergerova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Sarka Borsodi
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czechia
| | | | - Viktoriya Levytska
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Masahito Asada
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Obihiro, Japan
| | - Daniel Sojka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Marie Jalovecka
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czechia
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| |
Collapse
|
3
|
Developing Anti-Babesia bovis Blood Stage Vaccines: A New Perspective Regarding Synthetic Vaccines. Int J Mol Sci 2023; 24:ijms24065219. [PMID: 36982294 PMCID: PMC10049154 DOI: 10.3390/ijms24065219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 03/12/2023] Open
Abstract
Bovine babesiosis is caused by the Apicomplexa parasites from the genus Babesia. It is one of the most important tick-borne veterinary diseases worldwide; Babesia bovis being the species associated with the most severe clinical signs of the disease and causing the greatest economic losses. Many limitations related to chemoprophylaxis and the acaricides control of transmitting vectors have led to the adoption of live attenuated vaccine immunisation against B. bovis as an alternative control strategy. However, whilst this strategy has been effective, several drawbacks related to its production have prompted research into alternative methodologies for producing vaccines. Classical approaches for developing anti-B. bovis vaccines are thus discussed in this review and are compared to a recent functional approach to highlight the latter’s advantages when designing an effective synthetic vaccine targeting this parasite.
Collapse
|
4
|
Kukina IV, Zelya OP. Extraordinary high level of propagation of Babesia divergens in severe human babesiosis. Parasitology 2022; 149:1160-1163. [PMID: 35591780 PMCID: PMC11010513 DOI: 10.1017/s0031182022000439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/18/2022] [Accepted: 03/23/2022] [Indexed: 11/06/2022]
Abstract
Babesias are obligate apicomplexan parasites that affect the red blood cells (RBCs) of animals. Humans can serve as accidental hosts for them. Asexual reproduction of a parasite occurs in a vertebrate host through asynchronous binary fission, yielding a complex pleomorphic population of intraerythrocytic forms. In natural hosts (Bos taurus), paired pyriforms (‘figure 8’) of Babesia divergens are usual, but tetrads (‘Maltese Cross’) are very rare (only in 0.02% infected erythrocytes); in humans, however, up to 5% of infected erythrocytes show tetrads. The current study shows that B. divergens proliferating in an accidental human host can promote extraordinarily high level of fission. This phenomenon is expressed as the simultaneous division of the parasite into 6 and possibly a greater number of merozoites, forming a ‘daisy head’ (vs the usual 2, less often 4 merozoites). Reproduction is possible without egressing merozoites from the erythrocyte, which results in multi-occupancy of an RBC (≥5 parasites per RBC). An unusually high polyparasitism – up to 14 parasites developed in the affected erythrocytes – was observed. This phenomenon is rare in natural hosts (usually ≤5), but when B. divergens is cultured in vitro it can be 10–12.
Collapse
Affiliation(s)
- Irina V. Kukina
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Olga P. Zelya
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| |
Collapse
|
5
|
Alzan HF, Bastos RG, Laughery JM, Scoles GA, Ueti MW, Johnson WC, Suarez CE. A Culture-Adapted Strain of Babesia bovis Has Reduced Subpopulation Complexity and Is Unable to Complete Its Natural Life Cycle in Ticks. Front Cell Infect Microbiol 2022; 12:827347. [PMID: 35223550 PMCID: PMC8867610 DOI: 10.3389/fcimb.2022.827347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Babesia bovis natural field strains are composed of several geno-phenotypically distinct subpopulations. This feature, together with possible epigenetic modifications, may facilitate adaptation to variable environmental conditions. In this study we compare geno-phenotypical features among long-term (more than 12 years) (LTCP) and short-term cultured B. bovis parasites (STCP) derived from the B. bovis S74-T3Bo strain. LTCPs intraerythrocytic forms are smaller in size than STCPs and have faster in vitro growth rate. In contrast to its parental strain, the LTCP lack expression of the sexual stage specific 6cysA and 6cysB proteins and are unable to develop sexual forms upon in vitro sexual stage induction. Consistently, in contrast to its parental strain, LTCPs have reduced virulence and are not transmissible to cattle by vector competent Rhipicephalus microplus (R. microplus). Similar to previous comparisons among attenuated and virulent B. bovis strains, the LTCP line has decreased genomic diversity compared to the STCP line. Thus, LTCP may contribute to our understanding of adaptive mechanisms used by the parasites in response to environmental changes, protective immunity, virulence, and transmission by ticks. In addition, LTCPs may be considered as candidates for a non-tick transmissible vaccine against bovine babesiosis.
Collapse
Affiliation(s)
- Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Parasitology and Animal Diseases Department, National Research Center, Giza, Egypt
- Tick and Tick-Borne Disease Research Unit, National Research Center, Giza, Egypt
- *Correspondence: Heba F. Alzan, ; Carlos E. Suarez,
| | - Reginaldo G. Bastos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Jacob M. Laughery
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Glen A. Scoles
- Invasive Insect Biocontrol and Behavior Laboratory, Agricultural Research Service, Beltsville, MD, United States
| | - Massaro W. Ueti
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, United States
| | - Wendell C. Johnson
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, United States
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, United States Department of Agricultural - Agricultural Research Service, Pullman, WA, United States
- *Correspondence: Heba F. Alzan, ; Carlos E. Suarez,
| |
Collapse
|
6
|
Yang TS, Reichard MV, Marr HS, Cohn LA, Nafe L, Whitehurst N, Birkenheuer AJ. Direct injection of Amblyomma americanum ticks with Cytauxzoon felis. Ticks Tick Borne Dis 2022; 13:101847. [PMID: 34673404 PMCID: PMC10658644 DOI: 10.1016/j.ttbdis.2021.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/02/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
Cytauxzoon felis is a tick-borne hemoprotozoan parasite that causes life-threatening disease in domestic cats in the United States. Currently, the platforms for C. felis research are limited to natural or experimental infection of domestic cats. This study aims to develop an alternative model by infecting Amblyomma americanum ticks with C. felis via direct injection. Amblyomma americanum adults were injected with C. felis-infected feline erythrocytes through two routes: directly into the digestive tract through the anal pore (IA injection), or percutaneously into the tick hemocoel (IH injection). RNAscope® in situ hybridization (ISH) was used to visualize the parasites within the ticks at different time points after injection. Four months after injection, ticks were divided into 3 infestation groups based on injection methods and inoculum type and fed on 3 naïve cats to assess the ticks' ability to transmit C. felis. Prior to the transmission challenge, selected ticks from each infestation group were tested for C. felis RNA via reverse transcription-PCR (RT-PCR). In both IA- and IH-injected ticks, ISH signals were observed in ticks up to 3 weeks after injection. The number of hybridization signals notably decreased over time, and no signals were detected by 4 months after injection. Prior to the transmission challenge, 37-57% of the sampled ticks were positive for C. felis RNA via RT-PCR. While the majority of injected ticks successfully attached and fed to repletion on all 3 cats during the transmission challenge, none of the cats became infected with C. felis. These results suggest that injected C. felis remained alive in ticks but was unable to progress to infective sporozoites after injection. It is unclear why this infection technique had been successful for other closely related tick-borne hemoprotozoa and not for C. felis. This outcome may be associated with uncharacterized differences in the C. felis life cycle, the lack of the feeding or molting in our model or absence of gametocytes in the inoculum. Nonetheless, our study demonstrated the potential of using ticks as an alternative model to study C. felis. Future improvement of a tick model for C. felis should consider other tick species for the injection model or utilize infection methods that more closely emulate the natural infection process.
Collapse
Affiliation(s)
- Tzushan S Yang
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Mason V Reichard
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Henry S Marr
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Leah A Cohn
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, MO 65211, USA
| | - Laura Nafe
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, MO 65211, USA
| | - Nathan Whitehurst
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Adam J Birkenheuer
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
| |
Collapse
|
7
|
Plasmepsin-like Aspartyl Proteases in Babesia. Pathogens 2021; 10:pathogens10101241. [PMID: 34684190 PMCID: PMC8540915 DOI: 10.3390/pathogens10101241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022] Open
Abstract
Apicomplexan genomes encode multiple pepsin-family aspartyl proteases (APs) that phylogenetically cluster to six independent clades (A to F). Such diversification has been powered by the function-driven evolution of the ancestral apicomplexan AP gene and is associated with the adaptation of various apicomplexan species to different strategies of host infection and transmission through various invertebrate vectors. To estimate the potential roles of Babesia APs, we performed qRT-PCR-based expressional profiling of Babesia microti APs (BmASP2, 3, 5, 6), which revealed the dynamically changing mRNA levels and indicated the specific roles of individual BmASP isoenzymes throughout the life cycle of this parasite. To expand on the current knowledge on piroplasmid APs, we searched the EuPathDB and NCBI GenBank databases to identify and phylogenetically analyse the complete sets of APs encoded by the genomes of selected Babesia and Theileria species. Our results clearly determine the potential roles of identified APs by their phylogenetic relation to their homologues of known function—Plasmodium falciparum plasmepsins (PfPM I–X) and Toxoplasma gondii aspartyl proteases (TgASP1–7). Due to the analogies with plasmodial plasmepsins, piroplasmid APs represent valuable enzymatic targets that are druggable by small molecule inhibitors—candidate molecules for the yet-missing specific therapy for babesiosis.
Collapse
|
8
|
Elsworth B, Duraisingh MT. A framework for signaling throughout the life cycle of Babesia species. Mol Microbiol 2020; 115:882-890. [PMID: 33274587 DOI: 10.1111/mmi.14650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/28/2023]
Abstract
Babesia species are tick-borne intracellular parasites that infect the red blood cells of their mammalian host, leading to severe or fatal disease. Babesia spp. infect a wide range of mammalian species and cause a significant economic burden globally, predominantly through disease in cattle. Several Babesia spp. are increasingly being recognized as zoonotic pathogens of humans. Babesia spp. have complex life cycles involving multiple stages in the tick and the mammalian host. The parasite utilizes complex signaling pathways during replication, egress, and invasion in each of these stages. They must also rapidly respond to their environment when switching between the mammalian and tick stages. This review will focus on the signaling pathways and environmental stimuli that Babesia spp. utilize in the bloodstream and for transmission to the tick, with an emphasis on the role of phosphorylation- and calcium-based signaling during egress and invasion. The expanding availability of in vitro and in vivo culture systems, genomes, transcriptomes, and transgenic systems available for a range of Babesia spp. should encourage further biological and translational studies of these ubiquitous parasites.
Collapse
Affiliation(s)
- Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
9
|
Jalovecka M, Sojka D, Ascencio M, Schnittger L. Babesia Life Cycle - When Phylogeny Meets Biology. Trends Parasitol 2019; 35:356-368. [PMID: 30733093 DOI: 10.1016/j.pt.2019.01.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
Although Babesia represents an important worldwide veterinary threat and an emerging risk to humans, this parasite has been poorly studied as compared to Plasmodium, its malaria-causing relative. In fact, Babesia employs highly specific survival strategies during its intraerythrocytic development and its intricate journey through the tick vector. This review introduces a substantially extended molecular phylogeny of the order Piroplasmida, challenging previous taxonomic classifications. The intriguing developmental proficiencies of Babesia are highlighted and compared with those of other haemoparasitic Apicomplexa. Molecular mechanisms associated with distinctive events in the Babesia life cycle are emphasized as potential targets for the development of Babesia-specific treatments.
Collapse
Affiliation(s)
- Marie Jalovecka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-370 05 Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-370 05 Ceske Budejovice, Czech Republic.
| | - Daniel Sojka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-370 05 Ceske Budejovice, Czech Republic
| | - Mariano Ascencio
- Instituto de Patobiología Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), INTA-Castelar, Los Reseros y Nicolas Repetto s/n, Hurlingham 1686, Argentina; National Council of Scientific and Technological Research (CONICET), Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - Leonhard Schnittger
- Instituto de Patobiología Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), INTA-Castelar, Los Reseros y Nicolas Repetto s/n, Hurlingham 1686, Argentina; National Council of Scientific and Technological Research (CONICET), Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
10
|
Jalovecka M, Hajdusek O, Sojka D, Kopacek P, Malandrin L. The Complexity of Piroplasms Life Cycles. Front Cell Infect Microbiol 2018; 8:248. [PMID: 30083518 PMCID: PMC6065256 DOI: 10.3389/fcimb.2018.00248] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/29/2018] [Indexed: 01/23/2023] Open
Abstract
Although apicomplexan parasites of the group Piroplasmida represent commonly identified global risks to both animals and humans, detailed knowledge of their life cycles is surprisingly limited. Such a discrepancy results from incomplete literature reports, nomenclature disunity and recently, from large numbers of newly described species. This review intends to collate and summarize current knowledge with respect to piroplasm phylogeny. Moreover, it provides a comprehensive view of developmental events of Babesia, Theileria, and Cytauxzoon representative species, focusing on uniform consensus of three consecutive phases: (i) schizogony and merogony, asexual multiplication in blood cells of the vertebrate host; (ii) gamogony, sexual reproduction inside the tick midgut, later followed by invasion of kinetes into the tick internal tissues; and (iii) sporogony, asexual proliferation in tick salivary glands resulting in the formation of sporozoites. However, many fundamental differences in this general consensus occur and this review identifies variables that should be analyzed prior to further development of specific anti-piroplasm strategies, including the attractive targeting of life cycle stages of Babesia or Theileria tick vectors.
Collapse
Affiliation(s)
- Marie Jalovecka
- BIOEPAR, INRA, Oniris, Université Bretagne Loire, Nantes, France.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Ondrej Hajdusek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Daniel Sojka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Petr Kopacek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | | |
Collapse
|