1
|
Oppong J, Avicor SW, Baidoo PK, Addo-Fordjour P, Larbi JA, Akowuah CF, Boateng A, Essien IP, Mensah G. Mosquito Control Strategies and Insecticide Resistance of the Malaria Vector in Urbanized Land Use Types in Suame Municipality, Ghana. J Trop Med 2024; 2024:5843481. [PMID: 39119198 PMCID: PMC11309813 DOI: 10.1155/2024/5843481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/08/2024] [Accepted: 07/13/2024] [Indexed: 08/10/2024] Open
Abstract
Modified landscapes could create breeding habitats for mosquitoes and affect their community structure and susceptibility with implications for their management. Hence, in this study, household mosquito control methods in two urbanized landscapes; industrial and residential human settlements, in Ghana and insecticide susceptibility of the inhabiting Anopheles populations were assessed. Household knowledge and usage pattern of mosquito control methods in the modified landscapes were obtained using a questionnaire. Female adult Anopheles mosquitoes were also subjected to susceptibility tests using mosquito coils (0.08% meperfluthrin, 0.03% dimefluthrin, and 0.3% transfluthrin) and World Health Organization (WHO) insecticide test papers (0.05% deltamethrin, 4% DDT, 0.1% bendiocarb, 0.25% pirimiphos-methyl, and 5% malathion). Although insecticide-treated nets and aerosols were used for mosquito control, mosquito coils were the most common and widely preferred household method. The Anopheles mosquitoes were resistant to all the insecticides (mosquito coils and WHO test papers) except pirimiphos-methyl. Land use type did not affect insecticide resistance, but the insecticide type did. The findings indicate the effect of household insecticide usage practices on local mosquito populations and their implications for effective vector management and disease control in modified landscapes.
Collapse
Affiliation(s)
- Jennifer Oppong
- Department of Theoretical and Applied BiologyFaculty of BiosciencesCollege of ScienceKwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Philip Kweku Baidoo
- Department of Theoretical and Applied BiologyFaculty of BiosciencesCollege of ScienceKwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Patrick Addo-Fordjour
- Department of Theoretical and Applied BiologyFaculty of BiosciencesCollege of ScienceKwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - John Asiedu Larbi
- Department of Theoretical and Applied BiologyFaculty of BiosciencesCollege of ScienceKwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Carlos Frimpong Akowuah
- Department of Theoretical and Applied BiologyFaculty of BiosciencesCollege of ScienceKwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Akosua Boateng
- Department of Theoretical and Applied BiologyFaculty of BiosciencesCollege of ScienceKwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Isaac Prince Essien
- Department of Theoretical and Applied BiologyFaculty of BiosciencesCollege of ScienceKwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gloria Mensah
- Department of Theoretical and Applied BiologyFaculty of BiosciencesCollege of ScienceKwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
2
|
Opoku-Bamfoh O, Kwarteng SA, Owusu FAN, Akpanya R, Mensah KA, Badu M, Gyamfi FY, Sogbo V, Belford EJD, Boakye A, Morrison HM, Obuam PK, Coleman S. Repellent and larvicidal properties of selected indigenous plants in the control of Anopheles mosquitoes. J Vector Borne Dis 2024; 61:90-100. [PMID: 38648410 DOI: 10.4103/0972-9062.392267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/18/2023] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND OBJECTIVES Widespread pyrethroid resistance and plastic-feeding behaviour of most malaria vectors across Africa threaten the efficacy of current insecticide-based vector control interventions like Insecticide-Treated Nets (ITNs) and Indoor Residual Spraying (IRS). This study examined the larvicidal activity ofMorinda citrifolia against Anopheles gambiae larvae and the repellent properties of Morinda citrifolia (Noni), Moringa oleifera (Moringa), and Ocimum basilicum (Basil) as complementary vector control tools against Anopheles gambiae sensu lato (s.l.). METHODS Noni, Basil, and Moringa oil extracts were obtained with the extraction techniques; Soxhlet, steam distillation and maceration respectively, using hexane and ethanol. The effectiveness of the extracts was assessed using the WHO standard larval susceptibility bioassay and guidelines for repellent efficacy. Following bioassays, effective doses (ED) and lethal concentrations (LC) were determined. Gas Chromatography-Mass Spectroscopy analysis was performed to identify the bioactive chemical components of the extracts of Moringa oleifera and Ocimum basilicum. RESULTS Emulsified Morinda citrifolia seed oil had LC50=68.3, LC90=130.9 and LC99.9=222.5, and ED99. 9=308.3%v/v, the ethanolic extract of Moringa oleifera leaves had ED99.9= 1.25g/ml, and essential oil of Ocimum basilicum leaves had ED99.9=0.28g/ml against Anopheles gambiae. INTERPRETATION CONCLUSION The results obtained indicated that seed oil of Morinda citrifolia, essential oil of Ocimum basilicum, and crude extract of Moringa oleifera have repellent activity against An. gambiae s.l. The complete protection time (CPT) of Morinda citrifolia, Moringa oleifera, and Ocimum basilicum was 120 min, 72 min and 84 min at ED99.9 respectively. Morinda citrifolia oil exhibited larvicidal effects against the larvae of An. gambiae s.l. The results provide valuable information for the use of the plants as biocides.
Collapse
Affiliation(s)
- Obadiah Opoku-Bamfoh
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sandra Abankwa Kwarteng
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Frema A N Owusu
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Raphael Akpanya
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kelvin A Mensah
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Mercy Badu
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Fred Y Gyamfi
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Victoria Sogbo
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ebenezer J D Belford
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Abena Boakye
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Henry Morgan Morrison
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Patrick K Obuam
- School of Public Health, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sylvester Coleman
- Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
3
|
Olivos N, Banta JE, Spencer-Hwang R, Ansong D, Beane Freeman LE, Clegg-Lamptey JN, Wiafe-Addai B, Edusei L, Adjei E, Titiloye N, Dedey F, Aitpillah F, Oppong J, Vanderpuye V, Osei-Bonsu E, Ahearn TU, Biritwum R, Yarney J, Awuah B, Nyarko K, Garcia-Closas M, Abubakar M, Brinton LA, Figueroa JD, Wiafe S. Mosquito control exposures and breast cancer risk: analysis of 1071 cases and 2096 controls from the Ghana Breast Health Study. Breast Cancer Res 2023; 25:150. [PMID: 38082317 PMCID: PMC10714652 DOI: 10.1186/s13058-023-01737-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Epidemiologic data on insecticide exposures and breast cancer risk are inconclusive and mostly from high-income countries. Using data from 1071 invasive pathologically confirmed breast cancer cases and 2096 controls from the Ghana Breast Health Study conducted from 2013 to 2015, we investigated associations with mosquito control products to reduce the spread of mosquito-borne diseases, such as malaria. These mosquito control products were insecticide-treated nets, mosquito coils, repellent room sprays, and skin creams for personal protection against mosquitos. Multivariable and polytomous logistic regression models were used to estimate odds ratios (ORadj) and 95% confidence intervals (CI) with breast cancer risk-adjusted for potential confounders and known risk factors. Among controls, the reported use of mosquito control products were mosquito coils (65%), followed by insecticide-treated nets (56%), repellent room sprays (53%), and repellent skin creams (15%). Compared to a referent group of participants unexposed to mosquito control products, there was no significant association between breast cancer risk and mosquito coils. There was an association in breast cancer risk with reported use of insecticide-treated nets; however, that association was weak and not statistically significant. Participants who reported using repellent sprays were at elevated risks compared to women who did not use any mosquito control products, even after adjustment for all other mosquito control products (OR = 1.42, 95% CI=1.15-1.75). We had limited power to detect an association with repellent skin creams. Although only a few participants reported using repellent room sprays weekly/daily or < month-monthly, no trends were evident with increased frequency of use of repellent sprays, and there was no statistical evidence of heterogeneity by estrogen receptor (ER) status (p-het > 0.25). Our analysis was limited when determining if an association existed with repellent skin creams; therefore, we cannot conclude an association. We found limited evidence of risk associations with widely used mosquito coils and insecticide-treated nets, which are reassuring given their importance for malaria prevention. Our findings regarding specific breast cancer risk associations, specifically those observed between repellent sprays, require further study.
Collapse
Affiliation(s)
- Naomie Olivos
- School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Jim E Banta
- School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | | | | | - Laura E Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | - Mustapha Abubakar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Louise A Brinton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| | - Seth Wiafe
- School of Public Health, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
4
|
Kouamé RM, Lynd A, Kouamé JK, Vavassori L, Abo K, Donnelly MJ, Edi C, Lucas E. Widespread occurrence of copy number variants and fixation of pyrethroid target site resistance in Anopheles gambiae ( s.l.) from southern Côte d'Ivoire. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 3:100117. [PMID: 36970448 PMCID: PMC10031352 DOI: 10.1016/j.crpvbd.2023.100117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
Resistance to pyrethroid and organophosphate insecticides in the malaria vector Anopheles gambiae (s.l.) is conferred by a variety of genetic mutations, including single nucleotide polymorphisms (SNPs) and copy number variants (CNVs). Knowledge of the distribution of these mutations in mosquito populations is a prerequisite for establishing better strategies for their management. In this study, a total of 755 Anopheles gambiae (s.l.) from southern Côte d'Ivoire were exposed to deltamethrin or pirimiphos-methyl insecticides and were screened to assess the distribution of SNPs and CNVs known or believed to confer resistance to one or other of the insecticide classes. Most individuals from the An. gambiae (s.l.) complex were identified by molecular tests as Anopheles coluzzii. Survival to deltamethrin (from 94% to 97%) was higher than to pirimiphos-methyl (from 10% to 49%). In An. gambiae (s.s.), the SNP in the Voltage Gated Sodium Channel (Vgsc) at the 995F locus (Vgsc-995F) was fixed, while other target site mutations were rare or absent (Vgsc-402L: 0%; Vgsc-1570Y: 0%, Acetylcholinesterase Acel-280S: 14%). In An. coluzzii, Vgsc-995F was the target site SNP found at highest frequency (65%) followed by other target site mutations (Vgsc-402L: 36%; Vgsc-1570Y: 0.33%; Acel-280S: 45%). The Vgsc-995S SNP was not present. The presence of the Ace1-280S SNP was found to be significantly linked to the presence of the Ace1-CNV, Ace1_AgDup. Significant association was found between the presence of the Ace1_AgDup and pirimiphos-methyl resistance in An. gambiae (s.s.) but not in An. coluzzii. The deletion Ace1_Del97 was found in one specimen of An. gambiae (s.s.). Four CNVs in the Cyp6aa/Cyp6p gene cluster, which contains genes of known importance for resistance, were detected in An. coluzzii, the most frequent being Dup 7 (42%) and Dup 14 (26%). While none of these individual CNV alleles were significantly associated with resistance, copy number in the Cyp6aa gene region in general was associated with increased resistance to deltamethrin. Elevated expression of Cyp6p3 was nearly associated with deltamethrin resistance, although there was no association of resistance with copy number. Use of alternative insecticides and control methods to arrest resistance spread in An. coluzzii populations is merited.
Collapse
Affiliation(s)
- Ruth M.A. Kouamé
- Institut National Polytechnique Félix Houphouët Boigny, BP 1093, Yamoussoukro, Côte d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire
| | - Amy Lynd
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jackson K.I. Kouamé
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire
- Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire
| | - Laura Vavassori
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Kouabénan Abo
- Institut National Polytechnique Félix Houphouët Boigny, BP 1093, Yamoussoukro, Côte d’Ivoire
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Constant Edi
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire
| | - Eric Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| |
Collapse
|
5
|
Agyekum TP, Arko-Mensah J, Botwe PK, Hogarh JN, Issah I, Dwomoh D, Billah MK, Dadzie SK, Robins TG, Fobil JN. Effects of Elevated Temperatures on the Growth and Development of Adult Anopheles gambiae (s.l.) (Diptera: Culicidae) Mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1413-1420. [PMID: 35452118 PMCID: PMC9278826 DOI: 10.1093/jme/tjac046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Indexed: 06/01/2023]
Abstract
Higher temperatures expected in a future warmer climate could adversely affect the growth and development of mosquitoes. This study investigated the effects of elevated temperatures on longevity, gonotrophic cycle length, biting rate, fecundity, and body size of Anopheles gambiae (s.l.) (Diptera: Culicidae) mosquitoes. Anopheles gambiae (s.l.) eggs obtained from laboratory established colonies were reared under eight temperature regimes (25, 28, 30, 32, 34, 36, 38, and 40°C), and 80 ± 10% RH. All adults were allowed to feed on a 10% sugar solution soaked in cotton wool; however, some mosquitoes were provided blood meal using guinea pig. Longevity was estimated for both blood-fed and non-blood-fed mosquitoes and analyzed using the Kaplan-Meier survival analysis. One-way ANOVA was used to test the effect of temperature on gonotrophic cycle length, biting rate, and fecundity. Adult measurement data were log-transformed and analyzed using ordinary least square regression with robust standard errors. Increasing temperature significantly decreased the longevity of both blood-fed (Log-rank test; X2(4) = 904.15, P < 0.001) and non-blood-fed (Log-rank test; X2(4) = 1163.60, P < 0.001) mosquitoes. In addition, the fecundity of mosquitoes decreased significantly (ANOVA; F(2,57) = 3.46, P = 0.038) with an increase in temperature. Body size (β = 0.14, 95% CI, 0.16, 0.12, P < 0.001) and proboscis length (β = 0.13, 95% CI, 0.17, 0.09, P < 0.001) significantly decreased with increasing temperature from 25 to 34°C. Increased temperatures expected in a future warmer climate could cause some unexpected effects on mosquitoes by directly influencing population dynamics and malaria transmission.
Collapse
Affiliation(s)
- Thomas P Agyekum
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Paul K Botwe
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Jonathan N Hogarh
- Department of Environmental Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ibrahim Issah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Duah Dwomoh
- Department of Biostatistics, School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Maxwell K Billah
- Department of Animal Biology and Conservation Science, University of Ghana, Accra, Ghana
| | - Samuel K Dadzie
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Thomas G Robins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Julius N Fobil
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
6
|
Forson AO, Hinne IA, Dhikrullahi SB, Sraku IK, Mohammed AR, Attah SK, Afrane YA. The resting behavior of malaria vectors in different ecological zones of Ghana and its implications for vector control. Parasit Vectors 2022; 15:246. [PMID: 35804461 PMCID: PMC9270803 DOI: 10.1186/s13071-022-05355-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND In sub-Saharan Africa there is widespread use of long-lasting insecticidal nets and indoor residual spraying to help control the densities of malaria vectors and decrease the incidence of malaria. This study was carried out to investigate the resting behavior, host preference and infection with Plasmodium falciparum of malaria vectors in Ghana in the context of the increasing insecticide resistance of malaria vectors in sub-Saharan Africa. METHODS Indoor and outdoor resting anopheline mosquitoes were sampled during the dry and rainy seasons in five sites in three ecological zones [Sahel savannah (Kpalsogo, Pagaza, Libga); coastal savannah (Anyakpor); and forest (Konongo)]. Polymerase chain reaction-based molecular diagnostics were used to determine speciation, genotypes for knockdown resistance mutations (L1014S and L1014F) and the G119S ace1 mutation, specific host blood meal origins and sporozoite infection in the field-collected mosquitoes. RESULTS Anopheles gambiae sensu lato (s.l.) predominated (89.95%, n = 1718), followed by Anopheles rufipes (8.48%, n = 162) and Anopheles funestus s.l. (1.57%, n = 30). Sibling species of the Anopheles gambiae s.l. revealed Anopheles coluzzii accounted for 63% (95% confidence interval = 57.10-68.91) and 27% (95% confidence interval = 21.66-32.55) was Anopheles gambiae s. s.. The mean resting density of An. gambiae s.l. was higher outdoors (79.63%; 1368/1718) than indoors (20.37%; 350/1718) (Wilcoxon rank sum test, Z = - 4.815, P < 0.0001). The kdr west L1014F and the ace1 mutation frequencies were higher in indoor resting An. coluzzii and An. gambiae in the Sahel savannah sites than in the forest and coastal savannah sites. Overall, the blood meal analyses revealed that a larger proportion of the malaria vectors preferred feeding on humans (70.2%) than on animals (29.8%) in all of the sites. Sporozoites were only detected in indoor resting An. coluzzii from the Sahel savannah (5.0%) and forest (2.5%) zones. CONCLUSIONS This study reports high outdoor resting densities of An. gambiae and An. coluzzii with high kdr west mutation frequencies, and the presence of malaria vectors indoors despite the use of long-lasting insecticidal nets and indoor residual spraying. Continuous monitoring of changes in the resting behavior of mosquitoes and the implementation of complementary malaria control interventions that target outdoor resting Anopheles mosquitoes are necessary in Ghana.
Collapse
Affiliation(s)
- Akua Obeng Forson
- Department of Medical Laboratory Science, School of Biomedical and Allied Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
| | - Isaac A. Hinne
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Shittu B. Dhikrullahi
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Isaac Kwame Sraku
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Abdul Rahim Mohammed
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Simon K. Attah
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Yaw Asare Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| |
Collapse
|
7
|
Yusuf MA, Oshaghi MA, Vatandoost H, Hanafi-Bojd AA, Enayati A, Jalo RI, Aminu AOAA, Daneji IM. Current Status of Insecticide Susceptibility in the Principal Malaria Vector, Anopheles gambiae in Three Northern States of Nigeria. J Arthropod Borne Dis 2022; 15:196-206. [PMID: 35111858 PMCID: PMC8782750 DOI: 10.18502/jad.v15i2.7489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 06/01/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Malaria is a major public health problem in Nigeria with 97% of its population with high morbidity and mortality. Mosquitoes play an important role in the transmission of malaria parasites. This study was conducted to evaluate the current resistance status of Anopheles gambiae to insecticides. Methods: Larvae of An. gambiae was collected from three zones; A, B and C differentiated on the basis of variation in agricultural ecosystems between August and November, 2018 in the northeast and northwestern parts of Nigeria. They were carefully reared to adult stage and insecticidal susceptibility tests were conducted. Results: The mosquitoes tested showed high levels of resistance to all the insecticides used with the exception of malathion. Study zone A, recorded 74% mortality after 24h to deltamethrin compared to 81% from zone B and 82% from zone C, respectively. Mosquitoes from zone B exposed to DDT had the highest level of resistance at 37% compared to 40% and 53% from zones A and C, respectively. Resistant to bendiocarb was also observed, with zone A having the lowest mortality of 44% compared to 48% from zone C and 55% from Zone B, respectively. According to the results of knockdown tests, mosquitoes from Zone A exposed to deltamethrin recorded the lowest knockdown across the study locations while zone B recorded the lowest knockdown for DDT. Conclusion: The results of the study provide an insight into the current status of An. gambiae to four major insecticides in northern Nigeria as guideline for mosquitocontrol.
Collapse
Affiliation(s)
- Mustapha Ahmed Yusuf
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Microbiology and Parasitology, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Environmental Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ali Hanafi-Bojd
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Zoonoses Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadali Enayati
- Department of Medical Entomology, School of Public Health and Health Sciences Research Centre, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rabiu Ibrahim Jalo
- Department of Community Medicine, College of Health Sciences, Bayero University, Kano, Nigeria
| | | | - Isa Muhammad Daneji
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Bayero University, Kano, Nigeria
| |
Collapse
|
8
|
Akuamoah-Boateng Y, Brenyah RC, Kwarteng SA, Obuam P, Owusu-Frimpong I, Agyapong AK, Badu K. Malaria Transmission, Vector Diversity, and Insecticide Resistance at a Peri-Urban Site in the Forest Zone of Ghana. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.739771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IntroductionRecent surge of Anopheles resistance to major classes of World Health Organization (WHO)-approved insecticides globally necessitates the need for information about local malaria vector populations. It is believed that insecticide efficacy loss may lead to operational failure of control interventions and an increase in malaria infection transmission. We investigated the susceptibility levels of malaria vectors to all classes of WHO-approved vector control insecticides and described the dynamics of malaria transmission in a peri-urban setting.MethodsFit 3–5-day-old adults that emerged from Anopheles larvae collected from several different sites in the study area were subjected to the WHO bioassay for detecting insecticide resistance. The knockdown resistance gene (kdr) mutations within the vector populations were detected using PCR. Entomological inoculation rates were determined using the human landing catch technique and Plasmodium falciparum circumsporozoite ELISA.ResultsThe malaria vectors from the study area were resistant to all classes of insecticides tested. Out of the 284 Anopheles complex specimen assayed for the resistance study, 265 (93.30%) were identified as Anopheles gambiae s.s. The kdr gene was detected in 90% of the Anopheles gambiae s.s. assayed. In an area where Anopheles coluzzii resistance to insecticides had never been reported, the kdr gene was detected in 78% of the Anopheles coluzzii sampled. The entomological inoculation rate (EIR) for the dry season was 1.44 ib/m/n, whereas the EIR for the rainy season was 2.69 ib/m/n.ConclusionsThis study provides information on the high parasite inoculation rate and insecticide resistance of malaria vectors in a peri-urban community, which is critical in the development of an insecticide resistance management program for the community.
Collapse
|
9
|
Hinne IA, Attah SK, Mensah BA, Forson AO, Afrane YA. Larval habitat diversity and Anopheles mosquito species distribution in different ecological zones in Ghana. Parasit Vectors 2021; 14:193. [PMID: 33827667 PMCID: PMC8025514 DOI: 10.1186/s13071-021-04701-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
Background Understanding the ecology of larval malaria and lymphatic filariasis mosquitoes in a changing environment is important in developing effective control tools or programmes. This study characterized the breeding habitats of Anopheles mosquitoes in rural communities in different ecological zones in Ghana during the dry and rainy seasons. Methods The spatio-temporal distribution, species composition, and abundance of larval Anopheles mosquitoes in breeding habitats were studied in five locations in three ecological zones of Ghana. These were Anyakpor (coastal savannah area), Duase (forest area), and Libga, Pagaza, and Kpalsogu (Sahel savannah area). Larvae were collected using standard dippers and were raised in the insectary for identification. Results Out of a total of 7984 mosquito larvae collected, 2152 (27.26%) were anophelines and were more abundant in the rainy season (70.82%) than in the dry season (29.18%). The anophelines comprised 2128 (98.88%) An. gambiae s.l., 16 (0.74%) An. rufipes, and 8 (0.37%) An. pharoensis. In the coastal savannah and forest zones, dug-out wells were the most productive habitat during the dry (1.59 larvae/dip and 1.47 larvae/dip) and rainy seasons (11.28 larvae/dip and 2.05 larvae/dip). Swamps and furrows were the most productive habitats in the Sahel savannah zone during the dry (0.25 larvae/dip) and rainy (2.14 larvae/dip) seasons, respectively. Anopheles coluzzii was the most abundant sibling species in all the ecological zones. Anopheles melas and An. arabiensis were encountered only in the coastal savannah and the Sahel savannah areas, respectively. Larval habitat types influenced the presence of larvae as well as larval density (p < 0.001). The land-use type affected the presence of Anopheles larvae (p = 0.001), while vegetation cover influenced larval density (p < 0.05). Conclusion The most productive habitats were dug-out wells in the coastal savannah and forest zones, and furrows from irrigated canals in the Sahel savannah zone. Anopheles coluzzii was the predominant vector species in all the ecological zones. The abundance of Anopheles breeding habitats and larvae were influenced by anthropogenic activities. Encouraging people whose activities create the larval habitats to become involved in larval source management such as habitat manipulation to stop mosquito breeding will be important for malaria and lymphatic filariasis control. Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04701-w.
Collapse
Affiliation(s)
- Isaac A Hinne
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Simon K Attah
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Benedicta A Mensah
- Department of Epidemiology, Noguchi Memorial Institute of Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Akua O Forson
- Department of Medical Laboratory Science, School of Biomedical and Allied Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
| | - Yaw A Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana.
| |
Collapse
|
10
|
Ahmed-Yusuf M, Vatandoost H, Oshaghi MA, Hanafi-Bojd AA, Enayati AA, Jalo RI. First Report of Target Site Insensitivity in Pyrethroid Resistant Anopheles gambiae from Southern Guinea Savanna, Northern-Nigeria. J Arthropod Borne Dis 2021; 14:228-238. [PMID: 33644236 PMCID: PMC7903364 DOI: 10.18502/jad.v14i3.4556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 07/11/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Malaria is a major public health problem and life threatening parasitic vector-borne disease. For the first time, we established and report the molecular mechanism responsible for Anopheles gambiae s.l. resistance to pyrethroids and DDT from Yamaltu Deba, Southern Guinea Savanna, Northern-Nigeria. Methods: The susceptibility profile of An. gambiae s.l. to four insecticides (DDT 4%, bendiocarb 0.1%, malathion 5% and deltamethrin 0.05%) using 2–3 days old females from larvae collected from study area between August and November, 2018 was first established. Genomic DNA was then extracted from 318 mosquitoes using Livak DNA extraction protocol for specie identification and kdr genotyping. The mosquitoes were identified to species level and then 96 genotyped for L1014F and L1014S kdr target site mutations. Results: The mosquitoes were all resistant to DDT, bendiocarb and deltamethrin but fully susceptible to malathion. An. coluzzii was found to be the dominant sibling species (97.8%) followed by An. arabiensis (1.9%) and An. gambiae s.s (0.3%). The frequency of the L1014F kdr mutation was relatively higher (83.3%) than the L1014S (39%) in the three species studied. The L1014F showed a genotypic frequency of 75% resistance (RR), 17% heterozygous (RS) and 8% susceptible (SS) with an allelic frequency of 87% RR and 13% SS while the L1014S showed a genotypic frequency of RR (16%), RS (38%) and SS (46%) with an allelic frequency of 40% RR and 60% SS, respectively. Conclusion: This study reveals that both kdr mutations present simultaneously in Northern-Nigeria, however contribution of L1014F which is common in West Africa was more than twice of L1014S mutation found in East Africa.
Collapse
Affiliation(s)
- Mustapha Ahmed-Yusuf
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Microbiology and Parasitology, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ali Hanafi-Bojd
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ali Enayati
- Department of Medical Entomology, School of Public Health and Health Sciences Research Centre, Mazandaran University of Medical Sciences, Sari, Iran
| | | |
Collapse
|
11
|
Yusuf MA, Vatandoost H, Oshaghi MA, Hanafi-Bojd AA, Manu AY, Enayati A, Ado A, Abdullahi AS, Jalo RI, Firdausi A. Biochemical Mechanism of Insecticide Resistance in Malaria Vector, Anopheles gambiae s.l in Nigeria. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:101-110. [PMID: 34178768 PMCID: PMC8213627 DOI: 10.18502/ijph.v50i1.5076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Malaria is a parasitic vector-borne disease endemic in the tropical and subtropical countries of the world. The aim of this study was to investigate the current activities of the detoxification enzymes in resistant and susceptible Anopheles gambiae s.l. in northern Nigeria. Methods Anopheles larvae were collected from northeast and northwestern Nigeria between Aug and Nov 2018. Biochemical analyses was carried out on the mosquitoes exposed to various insecticides (deltamethrin, DDT, bendiocarb, malathion) to measure and compare the enzymatic activities of the major detoxification enzymes (P450, GSTs, Esterase). Results High levels of resistance was observed; DDT 37%-53% (95%, CI: 29-61), bendiocarb 44%-55% (CI: 39-60) and deltamethrin 74%-82% (CI: 70-86). However, these mosquitoes were found to be susceptible to malathion 99%-100% (CI: 98-100). The P450 and GSTs enzymes were found to be elevated in the resistant mosquitoes exposed to deltamethrin (1.0240±0.1902); (1.3088±1.2478), DDT (1.7703±1.4528); (1.7462±0.9418) and bendiocarb (1.1814±0.0918); (1.4479±1.0083) compared to the Kisumu strain (0.764±0.4226); (0.6508±0.6542), (0.3875±0.3482); (0.4072±0.4916) and (0.6672±0.3949); (0.7126±0.7259) at P<0.05. Similarly, the resistant mosquitoes expressed increased activity to esterase (0.7606±1.1477), (0.3269±1.1957) and (2.8203±0.6488) compared to their susceptible counterpart (0.6841±0.7597), (0.7032±0.5380) and (0.6398±0.4159) at P<0.05. The enzyme ratio was found to be: P450 (1.341, 4.568 and 1.77); GSTs (2.011, 4.288 and 2.031); Esterases (1.111, 0.469 and 4.408). One way Anova and single sample t-test were also conducted to determine the effect of the enzymes on the resistant and susceptible strains. Conclusion High level of insecticide resistance was observed with significant elevation of detoxification enzymes activities in the resistant mosquitoes.
Collapse
Affiliation(s)
- Mustapha Ahmed Yusuf
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Microbiology and Parasitology, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Hassan Vatandoost
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ali Hanafi-Bojd
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdulsalam Yayo Manu
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Bayero University, Kano, Nigeria.,Center for Infectious Diseases Research, Bayero University, Kano, Nigeria
| | - Ahmadali Enayati
- Department of Medical Entomology, School of Public Health and Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abduljalal Ado
- Department of Science, Kano State Polytechnic, Kano, Nigeria
| | - Alhassan Sharrif Abdullahi
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Rabiu Ibrahim Jalo
- Department of Community Medicine, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Abubakar Firdausi
- Department of Family Medicine, College of Health Sciences, Bayero University, Kano, Nigeria
| |
Collapse
|
12
|
Hamid-Adiamoh M, Amambua-Ngwa A, Nwakanma D, D'Alessandro U, Awandare GA, Afrane YA. Insecticide resistance in indoor and outdoor-resting Anopheles gambiae in Northern Ghana. Malar J 2020; 19:314. [PMID: 32867769 PMCID: PMC7460795 DOI: 10.1186/s12936-020-03388-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/25/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Selection pressure from continued exposure to insecticides drives development of insecticide resistance and changes in resting behaviour of malaria vectors. There is need to understand how resistance drives changes in resting behaviour within vector species. The association between insecticide resistance and resting behaviour of Anopheles gambiae sensu lato (s.l.) in Northern Ghana was examined. METHODS F1 progenies from adult mosquitoes collected indoors and outdoors were exposed to DDT, deltamethrin, malathion and bendiocarb using WHO insecticide susceptibility tests. Insecticide resistance markers including voltage-gated sodium channel (Vgsc)-1014F, Vgsc-1014S, Vgsc-1575Y, glutathione-S-transferase epsilon 2 (GSTe2)-114T and acetylcholinesterase (Ace1)-119S, as well as blood meal sources were investigated using PCR methods. Activities of metabolic enzymes, acetylcholine esterase (AChE), non-specific β-esterases, glutathione-S-transferase (GST) and monooxygenases were measured from unexposed F1 progenies using microplate assays. RESULTS Susceptibility of Anopheles coluzzii to deltamethrin 24 h post-exposure was significantly higher in indoor (mortality = 5%) than outdoor (mortality = 2.5%) populations (P = 0.02). Mosquitoes were fully susceptible to malathion (mortality: indoor = 98%, outdoor = 100%). Susceptibility to DDT was significantly higher in outdoor (mortality = 9%) than indoor (mortality = 0%) mosquitoes (P = 0.006). Mosquitoes were also found with suspected resistance to bendiocarb but mortality was not statistically different (mortality: indoor = 90%, outdoor = 95%. P = 0.30). Frequencies of all resistance alleles were higher in F1 outdoor (0.11-0.85) than indoor (0.04-0.65) mosquito populations, while Vgsc-1014F in F0 An. gambiae sensu stricto (s.s) was significantly associated with outdoor-resting behaviour (P = 0.01). Activities of non-specific β-esterase enzymes were significantly higher in outdoor than indoor mosquitoes (Mean enzyme activity: Outdoor = : 1.70/mg protein; Indoor = 1.35/mg protein. P < 0.0001). AChE activity was also more elevated in outdoor (0.62/mg protein) than indoor (0.57/mg protein) mosquitoes but this was not significant (P = 0.08). Human blood index (HBI) was predominantly detected in indoor (18%) than outdoor mosquito populations (3%). CONCLUSIONS The overall results did not establish that there was a significant preference of resistant malaria vectors to solely rest indoors or outdoors, but varied depending on the resistant alleles present. Phenotypic resistance was higher in indoor than outdoor-resting mosquitoes, but genotypic and metabolic resistance levels were higher in outdoor than the indoor populations. Continued monitoring of changes in resting behaviour within An. gambiae s.l. populations is recommended.
Collapse
Affiliation(s)
- Majidah Hamid-Adiamoh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell and Molecular, University of Ghana, Legon, Ghana
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Alfred Amambua-Ngwa
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell and Molecular, University of Ghana, Legon, Ghana
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Davis Nwakanma
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Umberto D'Alessandro
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell and Molecular, University of Ghana, Legon, Ghana
| | - Yaw A Afrane
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell and Molecular, University of Ghana, Legon, Ghana.
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
13
|
Nararak J, Sathantriphop S, Kongmee M, Mahiou-Leddet V, Ollivier E, Manguin S, Chareonviriyaphap T. Excito-repellent activity of β-caryophyllene oxide against Aedes aegypti and Anopheles minimus. Acta Trop 2019; 197:105030. [PMID: 31121148 DOI: 10.1016/j.actatropica.2019.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/26/2019] [Accepted: 05/17/2019] [Indexed: 02/02/2023]
Abstract
Contact irritant and non-contact repellent activities of β-caryophyllene oxide were evaluated against laboratory strains of female Aedes aegypti (USDA strain), a major arbovirus vector and Anopheles minimus (KU strain), a major malaria parasite vector, compared with the synthetic repellent DEET, using an excito-repellency test system. β-caryophyllene oxide and DEET were tested at concentrations of 0.1, 0.25, 0.5 and 1.0% (v/v). Anopheles minimus was found to be more sensitive to β-caryophyllene oxide than that of Ae. aegypti and exhibited high avoidance response rates (86-96% escape) at 0.5% and 1.0% concentrations in contact and non-contact trials compared with Ae. aegypti (22-59% escape). However, at the same concentrations, DEET displayed lower irritancy and repellency capacities against these two mosquito species (range 0-54% escape) compared to β-caryophyllene oxide. The analysis of escape responses showed significant differences between mosquito species at all concentrations (P < 0.05) except for 0.1%. For both species, there were significant differences in irritant and repellent responses between β-caryophyllene oxide and DEET at higher concentrations (0.5 and 1.0%).
Collapse
|
14
|
Amoudji AD, Ahadji-Dabla KM, Hien AS, Apétogbo YG, Yaméogo B, Soma DD, Bamogo R, Atcha-Oubou RT, Dabiré RK, Ketoh GK. Insecticide resistance profiles of Anopheles gambiae s.l. in Togo and genetic mechanisms involved, during 3-year survey: is there any need for resistance management? Malar J 2019; 18:177. [PMID: 31118032 PMCID: PMC6530008 DOI: 10.1186/s12936-019-2813-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/15/2019] [Indexed: 11/11/2022] Open
Abstract
Background Malaria, one of the world’s greatest public health challenges, is an endemic disease with stable transmission in Togo. Combating malaria requires an effective vector control. This study provides temporal data on insecticide resistance status in the major malaria vector Anopheles gambiae sensu lato (s.l.) from Togo. Methods Two to 5 days old females of An. gambiae s.l., originating from three localities (Baguida, Kovié, Kolokopé) were subjected to insecticide-impregnated papers during 3 years (2012, 2013, 2016) as follows: organochlorides (4% DDT), pyrethroids (0.05% deltamethrin, 0.75% permethrin, 0.05% lambdacyhalothrin), carbamates (0.4% bendiocarb and 0.1% propoxur), and organophosphates (5% malathion, 0.4% chlorpyrifos methyl, 1% fenitrothion) following the WHO standard protocol. Dead and surviving mosquitoes were stored separately in Eppendorf tubes containing silica gel for DNA extraction, species identification, and kdr and ace-1 genotyping. Results Knockdown times (KDT50 and KDT95) were high in An. gambiae s.l. The lowest KDTs were recorded at Baguida in 2013 for deltamethrin (KDT50 = 24.7, CI [22.4–27.12] and KDT95 = 90.78, CI [76.35–113.49]). No KDTs were recorded for DDT and in some instances for permethrin. In general, An. gambiae s.l. was resistant to most of the four classes of insecticides during the survey periods regardless of locality and year, except to chlorpyrifos methyl. In some instances, mosquitoes were fully susceptible to fenitrothion (Kolokopé: 100% and Kovié: 98.05%, CI [95.82–100.26]) and malathion (100% at both Kolokopé and Kovié) in 2013, and malathion only (Kolokopé; 100%) in 2016. Anopheles coluzzii, An. gambiae and Anopheles arabiensis were the three sibling species identified at the three localities with some hybrids at Baguida (2013), and Kovié (2012 and 2016), respectively. Anopheles gambiae was relatively dominant (61.6%). The kdr 1014F allele frequency was > 0.9 in most of the cases, except at Kolokopé (f (1014F) = 0.63, CI [0.55–0.71]) in 2013. The kdr 1014S allele frequency was below 0.02. The highest ace-1 frequencies were identified in An. gambiae at Baguida (2012: 0.52, CI [0.34–0.69] and 2013: 0.66, CI [0.46–0.86]). Conclusion The resistance status is worrying in Togo and should be considered in future malaria vector resistance management programmes by decision-makers. Electronic supplementary material The online version of this article (10.1186/s12936-019-2813-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adjovi D Amoudji
- Department of Zoology and Animal Biology, Faculty of Sciences, University of Lomé, 01 B.P. 1515, Lomé 01, Togo.
| | - Koffi M Ahadji-Dabla
- Department of Zoology and Animal Biology, Faculty of Sciences, University of Lomé, 01 B.P. 1515, Lomé 01, Togo. .,Biodiversity Institute & Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA.
| | - Aristide Sawdetuo Hien
- Institut de Recherche en Sciences de la Santé/Centre Muraz, 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Yawo Georges Apétogbo
- Department of Zoology and Animal Biology, Faculty of Sciences, University of Lomé, 01 B.P. 1515, Lomé 01, Togo
| | - Bienvenu Yaméogo
- Institut de Recherche en Sciences de la Santé/Centre Muraz, 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Diloma Dieudonné Soma
- Institut de Recherche en Sciences de la Santé/Centre Muraz, 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Rabila Bamogo
- Institut de Recherche en Sciences de la Santé/Centre Muraz, 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | | | - Roch Kounbobr Dabiré
- Institut de Recherche en Sciences de la Santé/Centre Muraz, 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Guillaume Koffivi Ketoh
- Department of Zoology and Animal Biology, Faculty of Sciences, University of Lomé, 01 B.P. 1515, Lomé 01, Togo
| |
Collapse
|
15
|
da Cruz DL, Paiva MHS, Guedes DRD, Alves J, Gómez LF, Ayres CFJ. Detection of alleles associated with resistance to chemical insecticide in the malaria vector Anopheles arabiensis in Santiago, Cabo Verde. Malar J 2019; 18:120. [PMID: 30953531 PMCID: PMC6451206 DOI: 10.1186/s12936-019-2757-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mosquitoes of the Anopheles gambiae complex are the main malaria vectors worldwide. Due to the lack of a vaccine to prevent malaria, the principal way to reduce the impact of this disease relies on the use of chemical insecticides to control its vectors. However, the intensive use of such compounds has led to the emergence of insecticide resistance in several Anopheles populations in Africa. This study aimed to investigate the presence of resistance alleles in an Anopheles arabiensis population from the City of Praia, capital of the Archipelago Cabo Verde, one of the countries on the World Health Organization list of countries that are on a path to eliminate local transmission of malaria. METHODS Larvae from the Anopheles genus were collected using a one-pint dipper in three areas of City of Praia. Larvae were fed and maintained until the emergence of adult mosquitoes, and these were morphologically identified. In addition, molecular identification was performed using IGS markers and all An. arabiensis samples were subjected to PCR to screen for mutations associated to resistance in the Ace-1, Nav and GSTE2 genes. RESULTS From a total of 440 mosquitoes collected, 52.3% were morphologically identified as An. gambiae sensu lato (s.l.) and 46.7% as Anopheles pretoriensis. The molecular identification showed that 100% of the An. gambiae s.l. were An. arabiensis. The mutations G119S in the Ace-1 gene and L119F in the GSTE2 gene were screened but not found in any sample. However, sequencing analysis for GSTE2 revealed the presence of 37 haplotypes, 16 polymorphic sites and a high genetic diversity (π = 2.67). The L1014S mutation in the Nav (voltage-gated sodium channel gene) was detected at a frequency of 7.3%. CONCLUSION This is the first study to investigate the circulation of insecticide resistance alleles in An. arabiensis from Cabo Verde. The circulation of the L1014S allele in the population of An. arabiensis in the city of Praia suggests that pyrethroid resistance may arise, be quickly selected, and may affect the process of malaria elimination in Cabo Verde. Molecular monitoring of resistance should continue in order to guide the development of strategies to be used in vector control in the study region.
Collapse
Affiliation(s)
- Derciliano Lopes da Cruz
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundação Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | - Marcelo Henrique Santos Paiva
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundação Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil.,Universidade Federal de Pernambuco, Centro Acadêmico do Agreste, Rodovia BR-104, km 59 - Nova Caruaru, Caruaru, PE, 55002-970, Brazil
| | - Duschinka Ribeiro Duarte Guedes
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundação Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | - Joana Alves
- Instituto Nacional de Saúde Pública/Ministério da Saúde, Largo do Desastre da Assistência, CP-719, Praia, Cabo Verde
| | - Lara Ferrero Gómez
- Universidade Jean Piaget (UniPiaget), Caixa Postal 775, Praia, Cabo Verde
| | - Constância Flávia Junqueira Ayres
- Departamento de Entomologia, Instituto Aggeu Magalhães/Fundação Oswaldo Cruz (FIOCRUZ-PE), Av. Professor Moraes Rego s/n, Cidade Universitária, Recife, PE, 50670-420, Brazil.
| |
Collapse
|
16
|
Guo J, Xu Y, Yang X, Sun X, Sun Y, Zhou D, Ma L, Shen B, Zhu C. TRE1 and CHS1 contribute to deltamethrin resistance in Culex pipiens pallens. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21538. [PMID: 30784111 DOI: 10.1002/arch.21538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Cuticular resistance, characterized by decreased epidermal penetration, has been reported on highly pyrethroid-resistant mosquitoes. In this study, we examined the role of genes in the chitin biosynthetic pathway in the context of deltamethrin-resistant (DR) Culex pipiens pallens. We found that expression of the trehalase (TRE1) gene and chitin synthase (CHS1) gene was upregulated 1.65- and 1.75-fold with quantitative reverse transcription polymerase chain reaction, respectively, in the DR strain as compared with the deltamethrin-susceptible (DS) strain. Examination of chitin content in DR and DS pupae showed an increased amount of chitin in DR pupae. To further establish the role of TRE1 and CHS1 in deltamethrin resistance, we injected mosquitoes with small interfering RNA (siRNA) for knockdown of TRE1 or CHS1 expression. The mortality rates of DR mosquitoes exposed to insecticides increased 17% and 26% after siTRE1 and siCHS1 injection, respectively. The siRNA treatment against TRE1 resulted in decreased expression of the downstream gene CHS1. Together, our findings support a role of TRE1 and CHS1 in the regulation of pyrethroid resistance.
Collapse
Affiliation(s)
- Juxin Guo
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
- Department of Microbiology, Shanxi Medical University Jinci College, Taiyuan, China
| | - Yang Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Xiaoshan Yang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Xiaohong Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Abuaku B, Ahorlu C, Psychas P, Ricks P, Oppong S, Mensah S, Sackey W, Koram KA. Impact of indoor residual spraying on malaria parasitaemia in the Bunkpurugu-Yunyoo District in northern Ghana. Parasit Vectors 2018; 11:555. [PMID: 30352613 PMCID: PMC6199755 DOI: 10.1186/s13071-018-3130-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/01/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since 2008 indoor residual spraying (IRS) has become one of the interventions for malaria control in Ghana. Key partners in the scale-up of IRS have been the US President's Malaria Initiative (PMI) and AngloGold Ashanti (AGA). This study was designed to assess the impact of IRS on malaria parasitaemia among children less than 5 years-old in Bunkpurugu-Yunyoo, one of PMI-sponsored districts in northern Ghana, where rates of parasitaemia significantly exceeded the national average. METHODS Two pre-IRS cross-sectional surveys using microscopy were conducted in November 2010 and April 2011 to provide baseline estimates of malaria parasitaemia for the high and low transmission seasons, respectively. IRS for the entire district was conducted in May/June to coincide with the beginning of the rains. Alpha-cypermethrin was used in 2011 and 2012, and changed to pirimiphos-methyl in 2013 and 2014 following declining susceptibility of local vectors to pyrethroids. Post-IRS cross-sectional surveys were conducted between 2011 and 2014 to provide estimates for the end of high (2011-2014) and the end of low (2012-2013) transmission seasons. RESULTS The end of high transmission season prevalence of asexual parasitaemia declined marginally from 52.4% (95% CI: 50.0-54.7%) to 47.7% (95% CI: 45.5-49.9%) following 2 years of IRS with alpha-cypermethrin. Prevalence declined substantially to 20.6% (95% CI: 18.4-22.9%) following one year of IRS with pirimiphos-methyl. CONCLUSIONS The use of a more efficacious insecticide for IRS can reduce malaria parasitaemia among children less than 5 years-old in northern Ghana.
Collapse
Affiliation(s)
- Benjamin Abuaku
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, P. O. Box LG581, Legon, Ghana.
| | - Collins Ahorlu
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, P. O. Box LG581, Legon, Ghana
| | - Paul Psychas
- University of Florida, 410 NE Waldo Rd, Gainesville, FL, 32641, USA
| | - Philip Ricks
- President's Malaria Initiative/Malaria Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Samuel Oppong
- National Malaria Control Programme, Public Health Division, Ghana Health Service, Accra, Ghana
| | - Sedzro Mensah
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, P. O. Box LG581, Legon, Ghana
| | - William Sackey
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, P. O. Box LG581, Legon, Ghana
| | - Kwadwo A Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, P. O. Box LG581, Legon, Ghana
| |
Collapse
|
18
|
King SA, Onayifeke B, Akorli J, Sibomana I, Chabi J, Manful-Gwira T, Dadzie S, Suzuki T, Wilson MD, Boakye DA, de Souza DK. The Role of Detoxification Enzymes in the Adaptation of the Major Malaria Vector Anopheles gambiae (Giles; Diptera: Culicidae) to Polluted Water. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:1674-1683. [PMID: 28968911 DOI: 10.1093/jme/tjx164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Indexed: 06/07/2023]
Abstract
The main malaria vectors in sub-Saharan Africa, the Anopheles gambiae (Giles; Diptera: Culicidae), normally breed in clean water sources. However, evidence suggests an on-going adaptation of Anopheline species to polluted breeding habitats in urban settings. This study aimed at understanding the adaptation to breeding in water bodies with different qualities, in five selected mosquito breeding sites in urban Accra, Ghana. The study sites were also evaluated for the WHO water-quality parameters as a measure of pollution, and insecticide residues. Field mosquitoes were evaluated for five genes; CYP6P3, CYP4H19, CYP4H24, GSTD1-4, and ABCC11-associated with insecticide detoxification-using quantitative RT-PCR, as well as Mono-oxygenase, Alpha Esterase, Glutathione S-transferase, and insensitive acetylcholinesterase (AChE) using biochemical enzyme assays. The lab-reared, insecticide susceptible An. gambiae Kisumu strain was bred in the most polluted water source for 10 generations and evaluated for the same genes and enzymes. The results revealed that the fold expression of the genes was higher in the larvae compared with the adults. The results also suggest that detoxification enzymes could be involved in the adaptation of An. gambiae to polluted breeding sites. Correlation analysis revealed a highly positive significant correlation between calcium levels and all five genes (P < 0.05). Stepwise linear regression to understand which of the variables predicted the expression of the genes revealed that sulphate was responsible for ABCC11 and CYP4H24, alkalinity for GSTD1-4, and calcium for CYP4H19 and CYP6P3. The detailed genetic basis of this adaptation need to be further investigated. A further understanding of this adaptation may provide outlooks for controlling malaria and other disease vectors adapted to polluted breeding water sources.
Collapse
Affiliation(s)
- Sandra A King
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon-Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon-Accra, Ghana
| | - Bibian Onayifeke
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| | - Jewelna Akorli
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon-Accra, Ghana
| | - Isaie Sibomana
- Molecular Bioeffects Branch, Airman Systems Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45433
| | - Joseph Chabi
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| | - Theresa Manful-Gwira
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon-Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon-Accra, Ghana
| | - Samuel Dadzie
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| | - Takashi Suzuki
- Section of Environmental Parasitology, Kobe-Tokiwa University, Japan
| | - Michael D Wilson
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| | - Daniel A Boakye
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| | - Dziedzom K de Souza
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| |
Collapse
|