1
|
Vinayagam S, Sekar K, Rajendran D, Meenakshisundaram K, Panigrahi A, Arumugam DK, Bhowmick IP, Sattu K. The genetic composition of Anopheles mosquitoes and the diverse population of gut-microbiota within the Anopheles subpictus and Anopheles vagus mosquitoes in Tamil Nadu, India. Acta Trop 2024; 260:107439. [PMID: 39477048 DOI: 10.1016/j.actatropica.2024.107439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/11/2024]
Abstract
In recent days, in tropical and subtropical regions, secondary vectors of Anopheles mosquitoes are becoming more important in transmitting diseases to humans as primary vectors. Various molecular techniques have separated closely related Anopheles subpictus and Anopheles vagus mosquitoes based on their diversity with other mosquito species. Despite their widespread distribution, the An. subpictus and An. vagus mosquitoes, which carry Plasmodium in their salivary glands, were not considered primary malaria vectors in India. An. vagus mosquitoes are zoophilic and physically similar to An. subpictus. We intend to identify An. subpictus and An. vagus mosquito's sister species based on their Interspaced Transcribed Region-2 (ITS2). We isolated the midgut gDNA from each mosquito and used ITS2-PCR and Sanger sequencing to characterize the mosquito species. BioEdit software aligned the sequences, and MEGA7 built a phylogenetic tree from them. According to this study, the information gathered from these mosquito samples fits the An. subpictus species A form and the An. vagus Indian form. Furthermore, gut microbiome plays an important role in providing nutrients, immunity, and food processing, whereas mosquitoes' midgut microbiota changes their hosts and spreads illnesses. So, we used the Illumina sequencer to look at the gut microbiome diversity of An. subpictus and An. vagus mosquitoes using 16S rRNA-based metagenomic sequencing. Both mosquito species had an abundant phylum of Pseudomonadota (Proteobacteria), Bacillota, Bacteroidota, and Actinomycetota in their gut microbiomes. Notably, both mosquito species had the genus Serratia in their gut. In the subpictus midgut, the genus of Haematosprillum bacteria was dominant, whereas in the vagus mosquito, the genus of Salmonella was dominant. Notably, current research has observed the Sodalis spp. Bacterial genus for the first time.
Collapse
Affiliation(s)
- Sathishkumar Vinayagam
- Department of Biotechnology, Periyar University Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635 205, India
| | - Kathirvel Sekar
- Department of Biotechnology, Periyar University Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635 205, India
| | - Devianjana Rajendran
- Department of Biotechnology, Periyar University Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635 205, India
| | | | | | - Dhanush Kumar Arumugam
- Department of Biotechnology, Periyar University Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635 205, India
| | - Ipsita Pal Bhowmick
- ICMR-Regional Medical Research Centre North East Region, Dibrugarh, Assam 786010, India
| | - Kamaraj Sattu
- Department of Biotechnology, Periyar University Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu 635 205, India.
| |
Collapse
|
2
|
Irsad, Shahid M, Haq E, Mohamed A, Rizvi PQ, Kolanthasamy E. Entomopathogen-based biopesticides: insights into unraveling their potential in insect pest management. Front Microbiol 2023; 14:1208237. [PMID: 37564286 PMCID: PMC10411202 DOI: 10.3389/fmicb.2023.1208237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/09/2023] [Indexed: 08/12/2023] Open
Abstract
Global food security is a critical challenge to fulfill the demands of an exponentially growing population. To date, growers rely on chemicals; the broad-spectrum application of synthetic molecules leads to environmental contamination, resistance development, residual toxicity, pest resurgence, and a detrimental effect on human health and cattle. Crop production needs to be improved considering environmental and human health concerns to ensure food security. Furthermore, economically important crops are prone to attack by insect pests, causing considerable yield losses. Microbes are an eco-friendly, versatile alternative, and a potential candidate for combatting destructive pests below the economic injury level and improving the plant's health and productivity. Several microbial pathogens, including parasites, predators, parasitoids, pollinators, and many beneficial microorganisms, possess toxic properties against target organisms but do not cause harm to the non-target organisms. Entomopathogens (ENMs) have great potential for pest suppression due to their remarkable properties. Bacteria are host-specific, but fungi have a broader host range and can be significantly affected by both soil-dwelling and terrestrial insect pests. Virulent pathogens cause mortality in target insect pests known as ENMs and can penetrate through natural openings, ingestions, and integuments to cause a possible effect on target insect pests. The objective of using ENMs is to sustain productivity, improve environmental health, reduce pesticides, and conserve natural resources. Moreover, research is ongoing to discover other possible aspects, especially exploring potential ENMs. Therefore, there is a need for identification, isolation, and bioformulation to overcome the existing issues. This study is mainly focused on the status of bio-formulations, pathogenicity, their mode of action, and the potential application of different types of microbial formulations for sustainable pest management.
Collapse
Affiliation(s)
- Irsad
- Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohammad Shahid
- Plant-Microbe Interaction and Rhizosphere Biology, ICAR-NBAIM, Kushmaur, India
| | - Ejazul Haq
- Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | | | - Parvez Qamar Rizvi
- Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Elango Kolanthasamy
- Kumaraguru Institute of Agriculture, Tamil Nadu Agricultural University (TNAU), Coimbatore, India
| |
Collapse
|
3
|
Torres JL, Faulhaber JR. Triple-valve endocarditis due to Lysinibacillus sphaericus infection. IDCases 2023; 33:e01856. [PMID: 37577048 PMCID: PMC10415700 DOI: 10.1016/j.idcr.2023.e01856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
Lysinibacillus sphaericus is an environmental organism often considered a contaminant when isolated from patient specimens due to its rare association with human disease. Here we report a case of triple valve endocarditis caused by L. sphaericus infection. To the authors' knowledge, this is the first documented case of endocarditis caused by this bacterium.
Collapse
Affiliation(s)
- Jordan L. Torres
- Department of Infectious Disease, Virginia Tech Carilion School of Medicine, 213 McClanahan St SW, Roanoke, VA, 24014, USA
| | - Jason R. Faulhaber
- Department of Infectious Disease, Virginia Tech Carilion School of Medicine, 213 McClanahan St SW, Roanoke, VA, 24014, USA
| |
Collapse
|
4
|
Sharma M, Kumar V. Mosquito-larvicidal Binary (BinA/B) proteins for mosquito control programs —advancements, challenges, and possibilities. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100028. [PMID: 36003274 PMCID: PMC9387486 DOI: 10.1016/j.cris.2021.100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022]
Abstract
Binary (BinAB) toxin is primarily responsible for the larvicidal action of the WHO recognized mosquito-larvicidal bacterium Lysinibacillus sphaericus. BinAB is a single receptor-specific toxin, active against larvae of Culex and Anopheles, but not Aedes aegypti. The target receptor in Culex is Cqm1 protein, a GPI-anchored amylomaltase located apically in the lipid-rafts of the larval-midgut epithelium. Interaction of the toxin components with the receptor is critical for the larvicidal activity of the toxin. Evidences support the pore formation model for BinAB toxin internalization and the role of toxin-glycan interactions in the endoplasmic reticulum in mediating larval death. Targeted R&D efforts are required to maintain the sustainability and improve efficacy of the eco-friendly BinAB proteins for efficient mosquito control interventions.
The increasing global burden of mosquito-borne diseases require targeted, environmentally friendly, and sustainable approaches for effective vector control without endangering the non-target beneficial insect population. Biological interventions such as biopesticides, Wolbachia-mediated biological controls, or sterile insect techniques are used worldwide. Here we review Binary or BinAB toxin—the mosquito-larvicidal component of WHO-recognized Lysinibacillus sphaericus bacterium employed in mosquito control programs. Binary (BinAB) toxin is primarily responsible for the larvicidal effect of the bacterium. BinAB is a single-receptor-specific toxin and is effective against larvae of Culex and Anopheles, but not against Aedes aegypti. The receptor in Culex, the Cqm1 protein, has been extensively studied. It is a GPI-anchored amylomaltase and is located apically in the lipid rafts of the larval-midgut epithelium. The interaction of the toxin components with the receptor is crucial for the mosquito larvicidal activity of the BinAB toxin. Here we extend support for the pore formation model of BinAB toxin internalization and the role of toxin-glycan interactions in the endoplasmic reticulum in mediating larval death. BinAB is phylogenetically safe for humans, as Cqm1-like protein is not expected in the human proteome. This review aims to initiate targeted R&D efforts, such as applying fusion technologies (chimera of BinA, chemical modification of BinA), for efficient mosquito control interventions. In addition, the review also examines other areas such as bioremediation and cancer therapeutics, in which L. sphaericus is proving useful and showing potential for further development.
Collapse
Affiliation(s)
- Mahima Sharma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
| | - Vinay Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
- Correspondence Author: Professor (Retired) Vinay Kumar, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
| |
Collapse
|
5
|
Segura NA, Muñoz AL, Losada-Barragán M, Torres O, Rodríguez AK, Rangel H, Bello F. Minireview: Epidemiological impact of arboviral diseases in Latin American countries, arbovirus-vector interactions and control strategies. Pathog Dis 2021; 79:6354781. [PMID: 34410378 DOI: 10.1093/femspd/ftab043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Mosquitoes are the most crucial insects in public health due to their vector capacity and competence to transmit pathogens, including arboviruses, bacterias and parasites. Re-emerging and emerging arboviral diseases, such as yellow fever virus (YFV), dengue virus (DENV), zika virus (ZIKV), and chikungunya virus (CHIKV), constitute one of the most critical health public concerns in Latin America. These diseases present a significant incidence within the human settlements increasing morbidity and mortality events. Likewise, among the different genus of mosquito vectors of arboviruses, those of the most significant medical importance corresponds to Aedes and Culex. In Latin America, the mosquito vector species of YFV, DENV, ZIKV, and CHIKV are mainly Aedes aegypti and Ae. Albopictus. Ae. aegypti is recognized as the primary vector in urban environments, whereas Ae. albopictus, recently introduced in the Americas, is more prone to rural settings. This minireview focuses on what is known about the epidemiological impact of mosquito-borne diseases in Latin American countries, with particular emphasis on YFV, DENV, ZIKV and CHIKV, vector mosquitoes, geographic distribution, and vector-arbovirus interactions. Besides, it was analyzed how climate change and social factors have influenced the spread of arboviruses and the control strategies developed against mosquitoes in this continent.
Collapse
Affiliation(s)
- Nidya A Segura
- Faculty of Science, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Ana L Muñoz
- PhD Program of Health Science, Universidad Antonio Nariño (UAN), Bogotá 110231, Colombia
| | | | - Orlando Torres
- Faculty of Veterinary, Universidad Antonio Nariño (UAN), Bogotá 110231, Colombia
| | - Anny K Rodríguez
- Faculty of Science, Universidad Antonio Nariño (UAN), Bogotá 110231, Colombia
| | - Héctor Rangel
- Laboratory of Molecular Virology, Instituto Venezolano de Investigaciones Científicas, Caracas 1204, Venezuela
| | - Felio Bello
- Faculty of Agricultural and Livestock Sciences, Program of Veterinary Medicine, Universidad de La Salle, Bogotá 110141, Colombia
| |
Collapse
|
6
|
Caragata EP, Dong S, Dong Y, Simões ML, Tikhe CV, Dimopoulos G. Prospects and Pitfalls: Next-Generation Tools to Control Mosquito-Transmitted Disease. Annu Rev Microbiol 2021; 74:455-475. [PMID: 32905752 DOI: 10.1146/annurev-micro-011320-025557] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mosquito-transmitted diseases, including malaria and dengue, are a major threat to human health around the globe, affecting millions each year. A diverse array of next-generation tools has been designed to eliminate mosquito populations or to replace them with mosquitoes that are less capable of transmitting key pathogens. Many of these new approaches have been built on recent advances in CRISPR/Cas9-based genome editing. These initiatives have driven the development of pathogen-resistant lines, new genetics-based sexing methods, and new methods of driving desirable genetic traits into mosquito populations. Many other emerging tools involve microorganisms, including two strategies involving Wolbachia that are achieving great success in the field. At the same time, other mosquito-associated bacteria, fungi, and even viruses represent untapped sources of new mosquitocidal or antipathogen compounds. Although there are still hurdles to be overcome, the prospect that such approaches will reduce the impact of these diseases is highly encouraging.
Collapse
Affiliation(s)
- E P Caragata
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - S Dong
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - Y Dong
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - M L Simões
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - C V Tikhe
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - G Dimopoulos
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| |
Collapse
|
7
|
Ávila-López MB, García-Maldonado JQ, Estrada-Medina H, Hernández-Mena DI, Cerqueda-García D, Vidal-Martínez VM. First record of entomopathogenic nematodes from Yucatán State, México and their infectivity capacity against Aedes aegypti. PeerJ 2021; 9:e11633. [PMID: 34249499 PMCID: PMC8256808 DOI: 10.7717/peerj.11633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/27/2021] [Indexed: 11/20/2022] Open
Abstract
Background Biological control using entomopathogenic nematodes (EPN) has demonstrated good potential to contribute to the integral control of mosquito larvae, which as adults are vectors of diseases such as Dengue fever, Zika and Chikungunya. However, until now there are no records of the presence of EPN or their killing capacity in Yucatán state, southern México. The objectives of the current study were: (1) to report the entomopathogenic nematodes present in Yucatán soils and (2) to determine the killing capacity of the most frequent and abundant EPN against Aedes aegypti mosquito larvae and the microbial community developed by Ae. Aegypti exposed to this EPN. Methods The nematodes were collected by the insect trap technique using the great wax moth Galleria mellonella. Internal transcribed spacer (ITS), 28S gene of ribosomal DNA and phylogenetic analyses were performed to identify the EPN. For the bioassay, four concentrations of the most frequent and abundant EPN were tested: 1,260:1 infective juveniles (IJs) per mosquito larvae, 2,520 IJs:1, 3,780 IJs:1 and 5,040 IJs:1. High-throughput sequencing of the 16S rRNA gene was used to identify bacterial amplicon sequences in the mosquito larvae infected with EPN. Results Six isolates of Heterorhabditis were recovered from 144 soil samples. Heterorhabditis indica (four isolates) was the most frequent and abundant EPN, followed by Heterorhabditis n. sp. (two isolates). Both nematodes are reported for the first time for Yucatán state, Mexico. The concentration of 2,520 IJs:1 produced 80% of mosquito larvae mortality in 48 h. Representative members of Photorhabdus genus were numerically dominant (74%) in mosquito larvae infected by H. indica. It is most likely that these bacteria produce secondary toxic metabolites that enhance the mortality of these mosquito larvae.
Collapse
Affiliation(s)
- Mariana B Ávila-López
- Aquatic Pathology Laboratory. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Mérida, Carretera Antigua a Progreso,, Mérida, Yucatán, México
| | - José Q García-Maldonado
- Aquatic Pathology Laboratory. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Mérida, Carretera Antigua a Progreso,, Mérida, Yucatán, México
| | - Héctor Estrada-Medina
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Manejo y Conservación de Recursos Naturales Tropicales, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - David I Hernández-Mena
- Aquatic Pathology Laboratory. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Mérida, Carretera Antigua a Progreso,, Mérida, Yucatán, México
| | - Daniel Cerqueda-García
- Aquatic Pathology Laboratory. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Mérida, Carretera Antigua a Progreso,, Mérida, Yucatán, México
| | - Víctor M Vidal-Martínez
- Aquatic Pathology Laboratory. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Mérida, Carretera Antigua a Progreso,, Mérida, Yucatán, México
| |
Collapse
|
8
|
Lysinibacillus sphaericus III(3)7 and Plasmid Vector pMK4: New Challenges in Cloning Platforms. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The acquisition and especially the maintenance of a plasmid usually brings a fitness cost that reduces the reproductive rate of the bacterial host; for strains like Lysinibacillus sphaericus III(3)7, which possesses important environmental properties, this alteration along with morphological changes and reduced sporulation rates may exert a negative effect on metabolic studies using plasmids as cloning platforms. The aim of this study is to approach the metabolic behavior of pMK4-bearing cells of L. sphaericus III(3)7 through the use of bioinformatic and in vitro analyses. An incompatibility model between the pMK4 vector and a predicted megaplasmid, pBsph, inside III(3)7 cells was constructed based on an incA region. Additionally, in vitro long-term plasmid stability was not found in plasmid-bearing cells. Alignments between replicons, mobile genetic elements and RNA-RNA interactions were assessed, pairwise alignment visualization, graphic models and morphological changes were evaluated by SEM. Metabolite analysis was done through HPLC coupled to a Q-TOF 6545, and electrospray ionization was used, finally, Aedes aegypti and Culex quinquefasciatus larvae were used for larvicidal activity assessment. Results found, a decreased growth rate, spore formation reduction and morphological changes, which supported the idea of metabolic cost exerted by pMK4. An incompatibility between pMK4 and pBsph appears to take place inside L. sphaericus III(3)7 cells, however, further in vitro studies are needed to confirm it.
Collapse
|
9
|
Dániel-Gómez M, Dussán J. Assessment of the Synergic Effect between Lysinibacillus sphaericus S-Layer Protein and Glyphosate in the Lethality of the Invasive Arboviral Vector Aedes albopictus. INSECTS 2020; 11:E793. [PMID: 33198299 PMCID: PMC7697419 DOI: 10.3390/insects11110793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
Glyphosate and glyphosate-based herbicides are among the most used chemicals in plant pest control. Both glyphosate and its main by-product Aminomethylphosphonic Acid (AMPA) are highly environmentally persistent and, through several processes (including surface runoff and bioaccumulation), affect species beyond their intended targets, especially in aquatic ecosystems. Aedes albopictus is a novel invasive arboviral vector in Colombia and has spread to much of the national territory in recent years. Strains of the bacterium Lysinibacillus sphaericus have shown the ability to degrade glyphosate into environmentally inert compounds, in addition to having great larvicidal efficiency in different mosquito species through the production of several proteins, including the surface layer (S-Layer) protein. The S-Layer is a bacterial structure consisting of glycoprotein monomers, and its functions are thought to include bacterial interactions, protection from the outside medium and biological control. The study assessed the entomopathogenic activity of L. sphaericus S-Layer protein on Ae. albopictus larvae, and the effects that glyphosate and its by-products have in this process. To that end, bioassays were performed to compare the larval mortality between different treatments with and without S-Layer, glyphosate, and glyphosate derivates. Comparisons were made through Analysis of variance (ANOVA) and Tukey's Honestly Significant Difference (HSD) analyses. Significant differences were found in larval mortality in the treatments, and larval mortality was greater when the S-Layer protein was present, though glyphosate field-doses (1.69 g/L) alone had a notable toxicity as well. An apparent synergic effect on the mortality of larval Ae. albopictus when exposed to mixtures containing 1500 ppm of the S-Layer protein, glyphosate, and/or glyphosate derivates was found. Further studies are needed for the in-depth understanding of this mechanism and its consequences on aquatic ecosystems.
Collapse
Affiliation(s)
| | - Jenny Dussán
- Microbiological Research Center (CIMIC), Department of Biological Sciences, Universidad de Los Andes, Bogotá 111711, Colombia;
| |
Collapse
|
10
|
Riaz MA, Adang MJ, Hua G, Rezende TMT, Rezende AM, Shen GM. Identification of Lysinibacillus sphaericus Binary toxin binding proteins in a malarial mosquito cell line by proteomics: A novel approach towards improving mosquito control. J Proteomics 2020; 227:103918. [PMID: 32712372 DOI: 10.1016/j.jprot.2020.103918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022]
Abstract
Bacterial insecticidal proteins, such as the Bin toxin from Lysinibacillus sphaericus, could be used more extensively to control insecticide resistant mosquitoes. This study was aimed at identification of mosquito cell proteins binding Bin toxin. Results showed that purified toxin was toxic to Anopheles gambiae larvae and Ag55 cultured cells. Clathrin heavy chain (an endocytosis protein) and glycolytic enzymes such as pyruvate kinase, enolase and dihydrolipoamide dehydrogenase were identified as binders of Bin toxin. The viability of Ag55 cells in the presence of endocytosis inhibitor, pitstop2, was significantly decreased upon Bin treatment, while the inhibitor chlorpromazine did not affect Bin toxicity. Bin toxin treatment decreased ATP production and mitochondrial respiration in Ag55 cells, whereas non-mitochondrial oxygen consumption significantly increased after Bin toxin treatment. These findings are steps towards understanding how Bin toxin kills mosquitoes. SIGNIFICANCE: Mosquitoes are vectors of pathogens causing human diseases such as dengue fever, yellow fever, zika virus and malaria. An insecticidal toxin from Lysinibacillus sphaericus called Binary, or Bin, toxin could be used more extensively to control insecticide resistant mosquitoes. Bin toxin enter cells in susceptible mosquitoes and induces apoptosis or autophagy. In the current research, we used the malaria mosquito Anopheles gambiae Ag55 cell line as a model. A proteomic-based approach identified proteins that interact with Bin toxin. Interacting proteins include clathrin heavy chain (endocytosis protein) and glycolysis enzymes such as pyruvate kinase, enolase and dihydrolipoamide dehydrogenase. In Ag55 cell toxicity assays, an endocytosis inhibitor, pitstop2, increased Bin toxicity. Real time assays with a Seahorse™ flux analyzer showed that Bin significantly affects mitochondrial respiration, a result consistent with cell death via apoptosis or autophagy. These research findings add insights into how an unusual binary protein exploits cellular machinery to kill mosquitoes.
Collapse
Affiliation(s)
- Muhammad Asam Riaz
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan; Department of Entomology, University of Georgia, Athens, GA 30602-2603, United States
| | - Michael J Adang
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, United States; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-2603, United States.
| | - Gang Hua
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, United States
| | - Tatiana Maria Teodoro Rezende
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, United States; Instituto Aggeu Magalhaes-FIOCRUZ, Recife, PE 50740-465, Brazil
| | - Antonio Mauro Rezende
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, United States; Instituto Aggeu Magalhaes-FIOCRUZ, Recife, PE 50740-465, Brazil
| | - Guang-Mao Shen
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, United States; College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Bernal L, Dussán J. Synergistic effect of Lysinibacillus sphaericus and glyphosate on temephos-resistant larvae of Aedes aegypti. Parasit Vectors 2020; 13:68. [PMID: 32051012 PMCID: PMC7017551 DOI: 10.1186/s13071-020-3928-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/03/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Glyphosate-based herbicides are one of the most commonly used compounds to control perennial weeds around the world. This compound is very persistent in the environment and tends to filter into aquatic ecosystems, affecting non-target species such as mosquito larvae. Aedes aegypti mosquitoes are vectors of multiple arboviruses such as dengue and Zika. Glyphosate can be degraded into non-harmful environmental compounds by Lysinibacillus sphaericus, a spore forming bacterium which can also kill Ae. aegypti larvae. In this study, we assessed the effect of glyphosate concentrations, typically used in Colombia, on the entomopathogenic activity of L. sphaericus against Ae. aegypti larvae. METHODS Bioassays and toxicity curves were performed to compare the larval mortality between different treatments with and without bacteria and glyphosate (Roundup 747®). Larvae were exposed to both bacteria and glyphosate by adding the compound on chloride-free water. Comparisons were made using both probit regression and ANOVA analysis. RESULTS ANOVA showed a significant difference in larval mortality when adding glyphosate and L. sphaericus at the same time. Thus, a positive synergic effect on larval mortality was found when L. sphaericus and glyphosate were mixed. According to probit analysis, median lethal dose (LD50) for bacterial mixture was of 106.23 UFC/ml and for glyphosate was 2.34 g/l. CONCLUSIONS A positive synergic effect on the mortality of larval Ae. aegypti when exposed to L. sphaericus mixture and glyphosate was found. Molecular studies focusing on the toxin production of L. sphaericus are required to understand more about this synergistic effect.
Collapse
Affiliation(s)
- Laura Bernal
- Microbiological Research Center (CIMIC), Department of Biological Sciences, Universidad de Los Andes, Carrera 1 No. 18 A-12, Bogotá, 111711 Colombia
| | - Jenny Dussán
- Microbiological Research Center (CIMIC), Department of Biological Sciences, Universidad de Los Andes, Carrera 1 No. 18 A-12, Bogotá, 111711 Colombia
| |
Collapse
|
12
|
Harish ER, ManiChellappan, MakeshKumar T, Mathew D, Ranjith MT, Girija D. Next-generation sequencing reveals endosymbiont variability in cassava whitefly, Bemisia tabaci, across the agro-ecological zones of Kerala, India. Genome 2019; 62:571-584. [PMID: 31283888 DOI: 10.1139/gen-2018-0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Silverleaf whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is one of the most notorious invasive insect pests, infesting more than 900 species of plants and spreading more than 200 viral diseases. This polyphagous agricultural pest harbours diverse bacterial communities in its gut, which perform multiple functions in whiteflies, including nutrient provisioning, amino acid biosynthesis, and virus transmission. The present exploratory study compares the bacterial communities associated with silverleaf whitefly infesting cassava, also known as cassava whitefly, collected from two different zones (zone P: plains; zone H: high ranges), from Kerala, India, using next-generation sequencing of 16S rDNA. The data sets for these two regions consisted of 1 321 906 and 690 661 high-quality paired-end sequences with mean length of 150 bp. Highly diverse bacterial communities were present in the sample, containing approximately 3513 operational taxonomic units (OTUs). Sequence analysis showed a marked difference in the relative abundance of bacteria in the populations. A total of 16 bacterial phyla, 27 classes, 56 orders, 91 families, 236 genera, and 409 species were identified from the P population, against 16, 31, 60, 88, 225, and 355, respectively, in the H population. Arsenophonus sp. (Enterobacteriaceae), which is important for virus transmission by whiteflies, was relatively abundant in the P population, whereas in the H population Bacillus sp. was the most dominant group. The association of whitefly biotypes and secondary symbionts suggests a possible contribution of these bacteria to host characteristics such as virus transmission, host range, insecticide resistance, and speciation.
Collapse
Affiliation(s)
- E R Harish
- ICAR-Central Tuber Crops Research Institute, Sreekaryam, Thiruvananthapuram - 695 017, India
| | - ManiChellappan
- Department of Agricultural Entomology, College of Horticulture, Kerala Agricultural University, Thrissur - 680 656, India
| | - T MakeshKumar
- ICAR-Central Tuber Crops Research Institute, Sreekaryam, Thiruvananthapuram - 695 017, India
| | - Deepu Mathew
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur - 680 656, India
| | - M T Ranjith
- Department of Agricultural Entomology, College of Horticulture, Kerala Agricultural University, Thrissur - 680 656, India
| | - D Girija
- Department of Agricultural Microbiology, College of Horticulture, Kerala Agricultural University, Thrissur - 680 656, India
| |
Collapse
|
13
|
Contribution of Lysinibacillus sphaericus hemolysin and chitin-binding protein in entomopathogenic activity against insecticide resistant Aedes aegypti. World J Microbiol Biotechnol 2017; 33:181. [DOI: 10.1007/s11274-017-2348-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
|