1
|
Kumari Y, Gunathilaka N, Amarasinghe D. A comprehensive review of biological and genetic control approaches for leishmaniasis vector sand flies; emphasis towards promoting tools for integrated vector management. PLoS Negl Trop Dis 2025; 19:e0012795. [PMID: 39869587 PMCID: PMC11771870 DOI: 10.1371/journal.pntd.0012795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Leishmaniasis is a health problem in many regions with poor health and poor life resources. According to the World Health Organization (WHO), an estimated 700,000-1 million new cases arise annually. Effective control of sand fly vector populations is crucial for reducing the transmission of this disease. Therefore, this review aims to comprehensively examine and evaluate the current methods for controlling sand fly populations, focusing on biological and gene drive techniques. METHODS AND FINDINGS A detailed, comprehensive literature search was carried out using databases including Google Scholar, PubMed, ScienceDirect, and the National Library of Medicine (NIH). These searches were done using specific keywords related to the field of study. This current review identified several promising methods, including genetically modified sand flies, using transgenic approaches by taking advanced gene editing tools like Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) and genetic modification of symbiotic microorganisms for controlling sand fly populations, which appeared to be proven under laboratory and field settings. CONCLUSION Genetic control approaches have many benefits over chemical control, including long-lasting effects on targets, high specificity, and less environmental impact. Advances in genetic engineering technologies, particularly CRISPR/Cas9, sterile insect techniques, and gene drive insect modification, offer new avenues for precise and efficient sand fly management. Future research should prioritize optimizing rearing and sterilization techniques, conducting controlled field trials, and fostering collaboration across disciplines to realize the potential of genetic control strategies in combating leishmaniasis.
Collapse
Affiliation(s)
- Yasoda Kumari
- Department of Parasitology, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
- Department of Zoology and Environment Management, Faculty of Science, University of Kelaniya, Dalugama, Sri Lanka
| | - Nayana Gunathilaka
- Department of Parasitology, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Deepika Amarasinghe
- Department of Zoology and Environment Management, Faculty of Science, University of Kelaniya, Dalugama, Sri Lanka
| |
Collapse
|
2
|
Mekarnia N, Benallal KE, Sádlová J, Vojtková B, Mauras A, Imbert N, Longhitano M, Harrat Z, Volf P, Loiseau PM, Cojean S. Effect of Phlebotomus papatasi on the fitness, infectivity and antimony-resistance phenotype of antimony-resistant Leishmania major Mon-25. Int J Parasitol Drugs Drug Resist 2024; 25:100554. [PMID: 38941845 PMCID: PMC11261056 DOI: 10.1016/j.ijpddr.2024.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
Leishmania major is responsible for zoonotic cutaneous leishmaniasis. Therapy is mainly based on the use of antimony-based drugs; however, treatment failures and illness relapses were reported. Although studies were developed to understand mechanisms of drug resistance, the interactions of resistant parasites with their reservoir hosts and vectors remain poorly understood. Here we compared the development of two L. major MON-25 trivalent antimony-resistant lines, selected by a stepwise in vitro Sb(III)-drug pressure, to their wild-type parent line in the natural vector Phlebotomus papatasi. The intensity of infection, parasite location and morphological forms were compared by microscopy. Parasite growth curves and IC50 values have been determined before and after the passage in Ph. papatasi. qPCR was used to assess the amplification rates of some antimony-resistance gene markers. In the digestive tract of sand flies, Sb(III)-resistant lines developed similar infection rates as the wild-type lines during the early-stage infections, but significant differences were observed during the late-stage of the infections. Thus, on day 7 p. i., resistant lines showed lower representation of heavy infections with colonization of the stomodeal valve and lower percentage of metacyclic promastigote forms in comparison to wild-type strains. Observed differences between both resistant lines suggest that the level of Sb(III)-resistance negatively correlates with the quality of the development in the vector. Nevertheless, both resistant lines developed mature infections with the presence of infective metacyclic forms in almost half of infected sandflies. The passage of parasites through the sand fly guts does not significantly influence their capacity to multiply in vitro. The IC50 values and molecular analysis of antimony-resistance genes showed that the resistant phenotype of Sb(III)-resistant parasites is maintained after passage through the sand fly. Sb(III)-resistant lines of L. major MON-25 were able to produce mature infections in Ph. papatasi suggesting a possible circulation in the field using this vector.
Collapse
Affiliation(s)
- Nalia Mekarnia
- UR 7510 ESCAPE - USC Anses, School of Pharmacy, Université de Reims Champagne-Ardenne, Pôle Santé, 51100 Reims, France; UMR 8076 BioCIS, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Kamal-Eddine Benallal
- Department of Parasitology, Faculty of Sciences, Charles University, Vinicna 7, Prague, Czech Republic; Laboratory of Arboviruses and Emergent Viruses, Institut Pasteur d'Algérie, 16047, Algiers, Algeria
| | - Jovana Sádlová
- Department of Parasitology, Faculty of Sciences, Charles University, Vinicna 7, Prague, Czech Republic
| | - Barbora Vojtková
- Department of Parasitology, Faculty of Sciences, Charles University, Vinicna 7, Prague, Czech Republic
| | - Aurélie Mauras
- UMR 8076 BioCIS, CNRS, Université Paris-Saclay, 91400, Orsay, France
| | - Nicolas Imbert
- UMR 8076 BioCIS, CNRS, Université Paris-Saclay, 91400, Orsay, France; UMR BIPAR, Laboratory of Animal Health, Anses, INRAe, EnvA, 94700, Maisons-Alfort, France
| | - Maryline Longhitano
- UMR 8076 BioCIS, CNRS, Université Paris-Saclay, 91400, Orsay, France; National Malaria Reference Center, AP-HP, Hôpital Bichat Claude Bernard, 75018, Paris, France
| | - Zoubir Harrat
- Algerian Academy for Science and Technology, Villa Rais Hamidou, Chemin Omar Kachkar, El Madania, Algiers, Algeria
| | - Petr Volf
- Department of Parasitology, Faculty of Sciences, Charles University, Vinicna 7, Prague, Czech Republic
| | | | - Sandrine Cojean
- UMR 8076 BioCIS, CNRS, Université Paris-Saclay, 91400, Orsay, France; UMR BIPAR, Laboratory of Animal Health, Anses, INRAe, EnvA, 94700, Maisons-Alfort, France; National Malaria Reference Center, AP-HP, Hôpital Bichat Claude Bernard, 75018, Paris, France
| |
Collapse
|
3
|
Becvar T, Vojtkova B, Pacakova L, Vomackova Kykalova B, Ticha L, Volf P, Sadlova J. Steppe lemmings and Chinese hamsters as new potential animal models for the study of the Leishmania subgenus Mundinia (Kinetoplastida: Trypanosomatidae). PLoS Negl Trop Dis 2024; 18:e0011897. [PMID: 38739677 PMCID: PMC11090356 DOI: 10.1371/journal.pntd.0011897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Leishmania, the dixenous trypanosomatid parasites, are the causative agents of leishmaniasis currently divided into four subgenera: Leishmania, Viannia, Sauroleishmania, and the recently described Mundinia, consisting of six species distributed sporadically all over the world infecting humans and/or animals. These parasites infect various mammalian species and also cause serious human diseases, but their reservoirs are unknown. Thus, adequate laboratory models are needed to enable proper research of Mundinia parasites. In this complex study, we compared experimental infections of five Mundinia species (L. enriettii, L. macropodum, L. chancei, L. orientalis, and four strains of L. martiniquensis) in three rodent species: BALB/c mouse, Chinese hamster (Cricetulus griseus) and steppe lemming (Lagurus lagurus). Culture-derived parasites were inoculated intradermally into the ear pinnae and progress of infection was monitored for 20 weeks, when the tissues and organs of animals were screened for the presence and quantity of Leishmania. Xenodiagnoses with Phlebotomus duboscqi were performed at weeks 5, 10, 15 and 20 post-infection to test the infectiousness of the animals throughout the experiment. BALB/c mice showed no signs of infection and were not infectious to sand flies, while Chinese hamsters and steppe lemmings proved susceptible to all five species of Mundinia tested, showing a wide spectrum of disease signs ranging from asymptomatic to visceral. Mundinia induced significantly higher infection rates in steppe lemmings compared to Chinese hamsters, and consequently steppe lemmings were more infectious to sand flies: In all groups tested, they were infectious from the 5th to the 20th week post infection. In conclusion, we identified two rodent species, Chinese hamster (Cricetulus griseus) and steppe lemming (Lagurus lagurus), as candidates for laboratory models for Mundinia allowing detailed studies of these enigmatic parasites. Furthermore, the long-term survival of all Mundinia species in steppe lemmings and their infectiousness to vectors support the hypothesis that some rodents have the potential to serve as reservoir hosts for Mundinia.
Collapse
Affiliation(s)
- Tomas Becvar
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Vojtkova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lenka Pacakova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Lucie Ticha
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jovana Sadlova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
4
|
Tom A, Kumar NP, Kumar A, Saini P. Interactions between Leishmania parasite and sandfly: a review. Parasitol Res 2023; 123:6. [PMID: 38052752 DOI: 10.1007/s00436-023-08043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Abstract
Leishmaniasis transmission cycles are maintained and sustained in nature by the complex crosstalk of the Leishmania parasite, sandfly vector, and the mammalian hosts (human, as well as zoonotic reservoirs). Regardless of the vast research on human host-parasite interaction, there persists a substantial knowledge gap on the parasite's development and modulation in the vector component. This review focuses on some of the intriguing aspects of the Leishmania-sandfly interface, beginning with the uptake of the intracellular amastigotes from an infected host to the development of the parasite within the sandfly's alimentary canal, followed by the transmission of infective metacyclic stages to another potential host. Upon ingestion of the parasite, the sandfly hosts an intricate repertoire of immune barriers, either to evade the parasite or to ensure its homeostatic coexistence with the vector gut microbiome. Sandfly salivary polypeptides and Leishmania exosomes are co-egested with the parasite inoculum during the infected vector bite. This has been attributed to the modulation of the parasite infection and subsequent clinical manifestation in the host. While human host-based studies strive to develop effective therapeutics, a greater understanding of the vector-parasite-microbiome and human host interactions could help us to identify the targets and to develop strategies for effectively preventing the transmission of leishmaniasis.
Collapse
Affiliation(s)
- Anns Tom
- ICMR-Vector Control Research Centre (Field Station), Kottayam, Kerala, India
| | - N Pradeep Kumar
- ICMR-Vector Control Research Centre (Field Station), Kottayam, Kerala, India
| | - Ashwani Kumar
- ICMR- Vector Control Research Centre, Puducherry, India
| | - Prasanta Saini
- ICMR-Vector Control Research Centre (Field Station), Kottayam, Kerala, India.
| |
Collapse
|
5
|
Leishmania allelic selection during experimental sand fly infection correlates with mutational signatures of oxidative DNA damage. Proc Natl Acad Sci U S A 2023; 120:e2220828120. [PMID: 36848551 PMCID: PMC10013807 DOI: 10.1073/pnas.2220828120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Trypanosomatid pathogens are transmitted by blood-feeding insects, causing devastating human infections. These parasites show important phenotypic shifts that often impact parasite pathogenicity, tissue tropism, or drug susceptibility. The evolutionary mechanisms that allow for the selection of such adaptive phenotypes remain only poorly investigated. Here, we use Leishmania donovani as a trypanosomatid model pathogen to assess parasite evolutionary adaptation during experimental sand fly infection. Comparing the genome of the parasites before and after sand fly infection revealed a strong population bottleneck effect as judged by allele frequency analysis. Apart from random genetic drift caused by the bottleneck effect, our analyses revealed haplotype and allelic changes during sand fly infection that seem under natural selection given their convergence between independent biological replicates. Our analyses further uncovered signature mutations of oxidative DNA damage in the parasite genomes after sand fly infection, suggesting that Leishmania suffers from oxidative stress inside the insect digestive tract. Our results propose a model of Leishmania genomic adaptation during sand fly infection, with oxidative DNA damage and DNA repair processes likely driving haplotype and allelic selection. The experimental and computational framework presented here provides a useful blueprint to assess evolutionary adaptation of other eukaryotic pathogens inside their insect vectors, such as Plasmodium spp, Trypanosoma brucei, and Trypanosoma cruzi.
Collapse
|
6
|
Pacakova L, Harant K, Volf P, Lestinova T. Three types of Leishmania mexicana amastigotes: Proteome comparison by quantitative proteomic analysis. Front Cell Infect Microbiol 2022; 12:1022448. [DOI: 10.3389/fcimb.2022.1022448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
Leishmania is the unicellular parasite transmitted by phlebotomine sand fly bite. It exists in two different forms; extracellular promastigotes, occurring in the gut of sand flies, and intracellular, round-shaped amastigotes residing mainly in vertebrate macrophages. As amastigotes originating from infected animals are often present in insufficient quality and quantity, two alternative types of amastigotes were introduced for laboratory experiments: axenic amastigotes and amastigotes from macrophages infected in vitro. Nevertheless, there is very little information about the degree of similarity/difference among these three types of amastigotes on proteomic level, whose comparison is crucial for assessing the suitability of using alternative types of amastigotes in experiments. In this study, L. mexicana amastigotes obtained from lesion of infected BALB/c mice were proteomically compared with alternatively cultivated amastigotes (axenic and macrophage-derived ones). Amastigotes of all three types were isolated, individually treated and analysed by LC-MS/MS proteomic analysis with quantification using TMT10-plex isobaric labeling. Significant differences were observed in the abundance of metabolic enzymes, virulence factors and proteins involved in translation and condensation of DNA. The most pronounced differences were observed between axenic amastigotes and lesion-derived amastigotes, macrophage-derived amastigotes were mostly intermediate between axenic and lesion-derived ones.
Collapse
|
7
|
Bahrami A, Mohebali M, Reisi Nafchi H, Raoofian R, Kazemirad E, Hajjaran H. Overexpression of Iron Super Oxide Dismutases A/B Genes Are Associated with Antimony Resistance of Leishmania tropica Clinical Isolates. IRANIAN JOURNAL OF PARASITOLOGY 2022; 17:473-482. [PMID: 36694571 PMCID: PMC9825701 DOI: 10.18502/ijpa.v17i4.11273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
Abstract
Background Pentavalent antimonial has been a drug of choice against leishmaniasis, despite the emergence of treatment failure. Identification of resistance markers is urgently needed to design new therapeutic strategies. Iron-Superoxide dismutases (Fe-SODs) are antioxidant enzymes contributing to detoxify reactive oxygen species to prevent a cell from oxidative stress. Since antimonial compounds induce oxidative stress, in this survey, the expression of SOD genes was investigated to identify their expression pattern in clinical resistant isolates. Methods This cross-sectional survey was done in Mashhad City, northeast of Iran during 2014 to 2019. The RNA expression level of mitochondrial (SODA) and glycosomal (SODB) superoxide dismutase was investigated in 25 antimony responsive (n=15) and unresponsive (n=10) anthroponotic cutaneous leishmaniasis (ACL) patients. Total RNA extraction and cDNA synthesis, the qRT-PCR approach was utilized to investigate the relative RNA expression level. Results The transcript level of SODs was over-expressed in the most resistant isolates. Gene expression analysis demonstrated the over-expression of SODA and B by a factor of 3.8 and 4.81, respectively, in resistance isolates vs. sensitive ones. Conclusion Aberrant expression of SODA/B in unresponsive parasites could potentially implicate in detoxifying antimony-induced oxidative stress. Moreover, SODs might be considered as potential predictive markers of the response to antimonials in ACL patients in endemic areas.
Collapse
Affiliation(s)
- Afsane Bahrami
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Reisi Nafchi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenberg, Gothenberg, Sweden
| | - Reza Raoofian
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Elham Kazemirad
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Hajjaran
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Ferreira TR, Sacks DL. Experimental Hybridization in Leishmania: Tools for the Study of Genetic Exchange. Pathogens 2022; 11:pathogens11050580. [PMID: 35631101 PMCID: PMC9144296 DOI: 10.3390/pathogens11050580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
Despite major advances over the last decade in our understanding of Leishmania reproductive strategies, the sexual cycle in Leishmania has defied direct observation and remains poorly investigated due to experimental constraints. Here, we summarize the findings and conclusions drawn from genetic analysis of experimental hybrids generated in sand flies and highlight the recent advances in generating hybrids in vitro. The ability to hybridize between culture forms of different species and strains of Leishmania should invite more intensive investigation of the mechanisms underlying genetic exchange and provide a rich source of recombinant parasites for future genetic analyses.
Collapse
|
9
|
Cecílio P, Cordeiro-da-Silva A, Oliveira F. Sand flies: Basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Commun Biol 2022; 5:305. [PMID: 35379881 PMCID: PMC8979968 DOI: 10.1038/s42003-022-03240-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
Blood-sucking arthropods transmit a variety of human pathogens acting as disseminators of the so-called vector-borne diseases. Leishmaniasis is a spectrum of diseases caused by different Leishmania species, transmitted quasi worldwide by sand flies. However, whereas many laboratories focus on the disease(s) and etiological agents, considerably less study the respective vectors. In fact, information on sand flies is neither abundant nor easy to find; aspects including basic biology, ecology, and sand-fly-Leishmania interactions are usually reported separately. Here, we compile elemental information on sand flies, in the context of leishmaniasis. We discuss the biology, distribution, and life cycle, the blood-feeding process, and the Leishmania-sand fly interactions that govern parasite transmission. Additionally, we highlight some outstanding questions that need to be answered for the complete understanding of parasite–vector–host interactions in leishmaniasis. In this review, numerous aspects of sand flies as vectors of Leishmania parasites—from biology to the vector parasite interactions—are discussed.
Collapse
Affiliation(s)
- Pedro Cecílio
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA. .,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,Parasite Disease Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal. .,Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto, Portugal.
| | - Anabela Cordeiro-da-Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Parasite Disease Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto, Portugal
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
10
|
Silveira KRD, Nogueira PM, Soares RP. Effect of hybridization on Lipophosphoglycan expression in Leishmania major. Cell Biol Int 2022; 46:1169-1174. [PMID: 35312138 DOI: 10.1002/cbin.11798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/07/2022]
Abstract
Leishmania major is the causative agent of cutaneous leishmaniasis (CL). It is one of the most studied Leishmania species not only during vector interaction, but also in the vertebrate host. Lipophosphoglycan (LPG) is the Leishmania multifunctional virulence factor during host-parasite interaction, whose polymorphisms are involved in the immunopathology of leishmaniasis. Although natural hybrids occur in nature, hybridization of L. major strains in the laboratory was successfully demonstrated. However, LPG expression in the hybrids remains unknown. LPGs from parental (Friedlin-Fn and Seidman-Sd) and hybrids (FnSd3, FnSd4A, FnSd4B and FnSd6F) were extracted, purified and their repeat units analyzed by immunoblotting and fluorophore-assisted carbohydrate electrophoresis (FACE). Parental strains have distinct profiles in LPG expression, and a mixed profile was observed for all hybrids. Variable levels of NO production by macrophages were detected after LPG exposure (parental and hybrids) and were strain specific. This article is protected by copyright. All rights reserved.
Collapse
|
11
|
Bordbar A, Parvizi P. Species diversity and spatial distribution of CL/VL vectors: assessing bioclimatic effect on expression plasticity of genes possessing vaccine properties isolated from wild-collected sand flies in endemic areas of Iran. BMC Infect Dis 2021; 21:455. [PMID: 34011276 PMCID: PMC8136226 DOI: 10.1186/s12879-021-06129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/29/2021] [Indexed: 11/23/2022] Open
Abstract
Background Leishmaniasis is one of the ten most important neglected tropical diseases worldwide. Understanding the distribution of vectors of visceral and cutaneous leishmaniasis (VL/CL) is one of the significant strategic frameworks to control leishmaniasis. In this study, the extent of the bioclimatic variability was investigated to recognize a rigorous cartographic of the spatial distribution of VL/CL vectors as risk-maps using ArcGIS modeling system. Moreover, the effect of bioclimatic diversity on the fold change expression of genes possessing vaccine traits (SP15 and LeIF) was evaluated in each bioclimatic region using real-time PCR analysis. Methods The Inverse Distance Weighting interpolation method was used to obtain accurate geography map in closely-related distances. Bioclimatic indices were computed and vectors spatial distribution was analyzed in ArcGIS10.3.1 system. Species biodiversity was calculated based on Shannon diversity index using Rv.3.5.3. Expression fold change of SP15 and LeIF genes was evaluated using cDNA synthesis and RT-qPCR analysis. Results Frequency of Phlebotomus papatasi was predominant in plains areas of Mountainous bioclimate covering the CL hot spots. Mediterranean region was recognized as an important bioclimate harboring prevalent patterns of VL vectors. Semi-arid bioclimate was identified as a major contributing factor to up-regulate salivary-SP15 gene expression (P = 0.0050, P < 0.05). Also, Mediterranean bioclimate had considerable effect on up-regulation of Leishmania-LeIF gene in gravid and semi-gravid P. papatasi population (P = 0.0109, P < 0.05). Conclusions The diversity and spatial distribution of CL/VL vectors associated with bioclimatic regionalization obtained in our research provide epidemiological risk maps and establish more effectively control measures against leishmaniasis. Oscillations in gene expression indicate that each gene has its own features, which are profoundly affected by bioclimatic characteristics and physiological status of sand flies. Given the efficacy of species-specific antigens for vaccine production, it is essential to consider bioclimatic factors that have a fundamental role in affecting the regulatory regions of environmentally responsive loci for genes used in vaccine design. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06129-0.
Collapse
Affiliation(s)
- Ali Bordbar
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, 69 Pasteur Ave, Tehran, Iran
| | - Parviz Parvizi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, 69 Pasteur Ave, Tehran, Iran.
| |
Collapse
|
12
|
Rêgo FD, Soares RP. Lutzomyia longipalpis: an update on this sand fly vector. AN ACAD BRAS CIENC 2021; 93:e20200254. [PMID: 33950136 DOI: 10.1590/0001-37652021xxxx] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/17/2020] [Indexed: 12/13/2022] Open
Abstract
Lutzomyia longipalpis is the most important vector of Leishmania infantum, the etiological agent of visceral leishmaniasis (VL) in the New World. It is a permissive vector susceptible to infection with several Leishmania species. One of the advantages that favors the study of this sand fly is the possibility of colonization in the laboratory. For this reason, several researchers around the world use this species as a model for different subjects including biology, insecticides testing, host-parasite interaction, physiology, genetics, proteomics, molecular biology, and saliva among others. In 2003, we published our first review (Soares & Turco 2003) on this vector covering several aspects of Lu. longipalpis. This current review summarizes what has been published between 2003-2020. During this period, modern approaches were incorporated following the development of more advanced and sensitive techniques to assess this sand fly.
Collapse
Affiliation(s)
- Felipe D Rêgo
- Fundação Oswaldo Cruz (FIOCRUZ/MG), Instituto René Rachou, Avenida Augusto de Lima, 1715, Barro Preto, 30180-104 Belo Horizonte, MG, Brazil
| | - Rodrigo Pedro Soares
- Fundação Oswaldo Cruz (FIOCRUZ/MG), Instituto René Rachou, Avenida Augusto de Lima, 1715, Barro Preto, 30180-104 Belo Horizonte, MG, Brazil
| |
Collapse
|
13
|
RÊGO FELIPED, SOARES RODRIGOPEDRO. Lutzomyia longipalpis: an update on this sand fly vector. AN ACAD BRAS CIENC 2021. [DOI: 10.1590/0001-3765202120200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
14
|
Binding of Leishmania infantum Lipophosphoglycan to the Midgut Is Not Sufficient To Define Vector Competence in Lutzomyia longipalpis Sand Flies. mSphere 2020; 5:5/5/e00594-20. [PMID: 32907950 PMCID: PMC7485685 DOI: 10.1128/msphere.00594-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well established that the presence of LPG is sufficient to define the vector competence of restrictive sand fly vectors with respect to Leishmania parasites. However, the permissiveness of other sand flies with respect to multiple Leishmania species suggests that other factors might define vector competence for these vectors. In this study, we investigated the underpinnings of Leishmania infantum survival and development in its natural vector, Lutzomyia longipalpis. We found that LPG-mediated midgut binding persists in late-stage parasites. This observation is of relevance for the understanding of vector-parasite molecular interactions and suggests that only a subset of infective metacyclic-stage parasites (metacyclics) lose their ability to attach to the midgut, with implications for parasite transmission dynamics. However, our data also demonstrate that LPG is not a determining factor in Leishmania infantum retention in the midgut of Lutzomyia longipalpis, a permissive vector. Rather, LPG appears to be more important in protecting some parasite strains from the toxic environment generated during blood meal digestion in the insect gut. Thus, the relevance of LPG in parasite development in permissive vectors appears to be a complex issue and should be investigated on a strain-specific basis. The major surface lipophosphoglycan (LPG) of Leishmania parasites is critical to vector competence in restrictive sand fly vectors in mediating Leishmania attachment to the midgut epithelium, considered essential to parasite survival and development. However, the relevance of LPG for sand flies that harbor multiple species of Leishmania remains elusive. We tested binding of Leishmania infantum wild-type (WT), LPG-defective (Δlpg1 mutants), and add-back (Δlpg1 + LPG1) lines to sand fly midguts in vitro and their survival in Lutzomyia longipalpis sand flies in vivo. Le. infantum WT parasites attached to the Lu. longipalpis midgut in vitro, with late-stage parasites binding to midguts in significantly higher numbers than were seen with early-stage promastigotes. Δlpg1 mutants did not bind to Lu. longipalpis midguts, and this was rescued in the Δlpg1 + LPG1 lines, indicating that midgut binding is mediated by LPG. When Lu. longipalpis sand flies were infected with the Le. infantum WT or Le. infantum Δlpg1 or Le. infantum Δlpg1 + LPG1 line of the BH46 or BA262 strains, the BH46 Δlpg1 mutant, but not the BA262 Δlpg1 mutant, survived and grew to numbers similar to those seen with the WT and Δlpg1 + LPG1 lines. Exposure of BH46 and BA262 Δlpg1 mutants to blood-engorged midgut extracts led to mortality of the BA262 Δlpg1 but not the BH46 Δlpg1 parasites. These findings suggest that Le. infantum LPG protects parasites on a strain-specific basis early in infection, likely against toxic components of blood digestion, but that it is not necessary to prevent Le. infantum evacuation along with the feces in the permissive vector Lu. longipalpis. IMPORTANCE It is well established that the presence of LPG is sufficient to define the vector competence of restrictive sand fly vectors with respect to Leishmania parasites. However, the permissiveness of other sand flies with respect to multiple Leishmania species suggests that other factors might define vector competence for these vectors. In this study, we investigated the underpinnings of Leishmania infantum survival and development in its natural vector, Lutzomyia longipalpis. We found that LPG-mediated midgut binding persists in late-stage parasites. This observation is of relevance for the understanding of vector-parasite molecular interactions and suggests that only a subset of infective metacyclic-stage parasites (metacyclics) lose their ability to attach to the midgut, with implications for parasite transmission dynamics. However, our data also demonstrate that LPG is not a determining factor in Leishmania infantum retention in the midgut of Lutzomyia longipalpis, a permissive vector. Rather, LPG appears to be more important in protecting some parasite strains from the toxic environment generated during blood meal digestion in the insect gut. Thus, the relevance of LPG in parasite development in permissive vectors appears to be a complex issue and should be investigated on a strain-specific basis.
Collapse
|
15
|
Studies of host preferences of wild-caught Phlebotomus orientalis and Ph. papatasi vectors of leishmaniasis in Sudan. PLoS One 2020; 15:e0236253. [PMID: 32692759 PMCID: PMC7373290 DOI: 10.1371/journal.pone.0236253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/30/2020] [Indexed: 01/24/2023] Open
Abstract
Introduction Understanding the feeding behavior and host choice of sand flies provides valuable information on vector-host relationships and elucidates the epidemiological patterns of leishmaniasis transmission. Blood meal analysis studies are essential for estimating the efficiency of pathogen transmission, assessing the relative human disease risk, and assist in identifying the other potential hosts of leishmaniasis. In Sudan and most of East Africa, there are large remaining gaps in knowledge regarding the feeding habits of phlebotomine vectors. The study aimed to identify the blood meal sources and, therefore, the host preferences of the principal vectors Phlebotomus orientalis and Ph. papatasi in leishmaniasis endemic areas of eastern and central Sudan. Materials and methods Sand flies were collected from two endemic villages in eastern and central Sudan using CDC light traps and sticky traps. The phlebotomine sand flies were morphologically and then molecularly identified. The source of blood meal of the engorged females was determined using a multiplex PCR methodology and specific primers of cytochrome b gene of mitochondrial DNA for human, goat, cow, and dog. The detection of the Leishmania parasite was done using PCR. Results The total number of collected female phlebotomine sand flies was 180. Morphological identification revealed the abundance of Ph. orientalis 103 (57.2%), Ph. papatasi 42 (23.3%), Ph. bergeroti 31 (17.2%), Ph. rodhaini 2 (1.1%) and Ph. duboscqi 2 (1.1%) in the study sites. Out of the 180 collected, 31 (17%) were blood-fed flies. Three species were blood-fed and molecularly identified: Ph. papatasi (N = 7, 22.6%), Ph. bergeroti (N = 9, 26%), and Ph. orientalis (N = 15, 48.4%). Blood meal analysis revealed human DNA in two Ph. orientalis (6.4%), hence, the anthropophilic index was 13.3%. Conclusions Multiplex PCR protocol described here allowed the identification of blood meal sources of many vertebrate species simultaneously. The results indicate that wild-caught Ph. orientalis are anthropophilic in the study areas. Further studies on larger blood-fed sample size are required to validate the potential applications of this technique in designing, monitoring and evaluating control programs, particularly in investigating the potential non-human hosts of leishmaniasis.
Collapse
|
16
|
Silva Fernandes TL, Pereira-Filho AA, Nepomuneno DB, de Freitas Milagres T, Ferreira Malta LG, D'Ávila Pessoa GC, Koerich LB, Pereira MH, Araujo RN, Gontijo NDF, Viana Sant'Anna MR. Galactosamine reduces sandfly gut protease activity through TOR downregulation and increases Lutzomyia susceptibility to Leishmania. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103393. [PMID: 32360958 DOI: 10.1016/j.ibmb.2020.103393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
In sandflies, males and females feed on carbohydrates but females must get a blood meal for egg maturation. Using artificial blood meals, this study aimed to understand how galactosamine interferes with sandfly digestive physiology. We also used galactosamine to manipulate the digestive physiology of Lutzomyia longipalpis to investigate its influence on sandfly digestion and Leishmania development within their insect vectors. Galactosamine was capable to reduce Lu. longipalpis trypsinolytic activity in a dose-dependent manner. This effect was specific to galactosamine as other similar sugars were not able to affect sandfly trypsin production. An excess of amino acids supplemented with the blood meal and 15 mM galactosamine was able to abrogate the reduction of the trypsinolytic activity caused by galactosamine, suggesting this phenomenon may be related to an impairment of amino acid detection by sandfly enterocytes. The TOR inhibitor rapamycin reduces trypsin activity in the L. longipalpis midgut. Galactosamine reduces the phosphorylation of the TOR pathway repressor 4EBP, downregulating TOR activity in the gut of L. longipalpis. Galactosamine reduces sandfly oviposition, causes an impact on sandfly longevity and specifically reduces sandfly gut proteases whereas increasing α-glycosidase activity. The administration of 15 and 30 mM galactosamine increased the number of promastigote forms of Le. mexicana and Le. infantum in galactosamine-treated L. longipalpis. Our results showed that galactosamine influences amino acid sensing, reduces sandfly gut protease activity through TOR downregulation, and benefits Leishmania growth within the Lu. longipalpis gut.
Collapse
Affiliation(s)
- Tatiana Lima Silva Fernandes
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Adalberto Alves Pereira-Filho
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Denise Barguil Nepomuneno
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Tarcísio de Freitas Milagres
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Luccas Gabriel Ferreira Malta
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Grasielle Caldas D'Ávila Pessoa
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo Barbosa Koerich
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Marcos Horácio Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Nascimento Araujo
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Nelder de Figueiredo Gontijo
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Mauricio Roberto Viana Sant'Anna
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
17
|
Di-Blasi T, Telleria EL, Marques C, Couto RDM, da Silva-Neves M, Jancarova M, Volf P, Tempone AJ, Traub-Csekö YM. Lutzomyia longipalpis TGF-β Has a Role in Leishmania infantum chagasi Survival in the Vector. Front Cell Infect Microbiol 2019; 9:71. [PMID: 30972305 PMCID: PMC6445956 DOI: 10.3389/fcimb.2019.00071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/04/2019] [Indexed: 01/10/2023] Open
Abstract
Despite the increasing number of studies concerning insect immunity, Lutzomyia longipalpis immune responses in the presence of Leishmania infantum chagasi infection has not been widely investigated. The few available studies analyzed the role of the Toll and IMD pathways involved in response against Leishmania and microbial infections. Nevertheless, effector molecules responsible for controlling sand fly infections have not been identified. In the present study we investigated the role a signal transduction pathway, the Transforming Growth Factor-beta (TGF-β) pathway, on the interrelation between L. longipalpis and L. i. chagasi. We identified an L. longipalpis homolog belonging to the multifunctional cytokine TGF-β gene family (LlTGF-β), which is closely related to the activin/inhibin subfamily and potentially involved in responses to infections. We investigated this gene expression through the insect development and in adult flies infected with L. i. chagasi. Our results showed that LlTGF-β was expressed in all L. longipalpis developmental stages and was upregulated at the third day post L. i. chagasi infection, when protein levels were also higher as compared to uninfected insects. At this point blood digestion is finished and parasites are in close contact with the insect gut. In addition, we investigated the role of LlTGF-β on L. longipalpis infection by L. i. chagasi using either gene silencing by RNAi or pathway inactivation by addition of the TGF-β receptor inhibitor SB431542. The blockage of the LlTGF-β pathway increased significantly antimicrobial peptides expression and nitric oxide levels in the insect gut, as expected. Both methods led to a decreased L. i. chagasi infection. Our results show that inactivation of the L. longipalpis TGF-β signal transduction pathway reduce L. i. chagasi survival, therefore suggesting that under natural conditions the parasite benefits from the insect LlTGF-β pathway, as already seen in Plamodium infection of mosquitoes.
Collapse
Affiliation(s)
- Tatiana Di-Blasi
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Erich Loza Telleria
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil.,Parasitology Department, Faculty of Science, Charles University, Prague, Czechia
| | - Christiane Marques
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rodrigo de Macedo Couto
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Monique da Silva-Neves
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Magdalena Jancarova
- Parasitology Department, Faculty of Science, Charles University, Prague, Czechia
| | - Petr Volf
- Parasitology Department, Faculty of Science, Charles University, Prague, Czechia
| | - Antonio Jorge Tempone
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Yara Maria Traub-Csekö
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Abstract
In this review, we explore the state-of-the-art of sand fly relationships with microbiota, viruses and Leishmania, with particular emphasis on the vector immune responses. Insect-borne diseases are a major public health problem in the world. Phlebotomine sand flies are proven vectors of several aetiological agents including viruses, bacteria and the trypanosomatid Leishmania, which are responsible for diseases such as viral encephalitis, bartonellosis and leishmaniasis, respectively. All metazoans in nature coexist intimately with a community of commensal microorganisms known as microbiota. The microbiota has a fundamental role in the induction, maturation and function of the host immune system, which can modulate host protection from pathogens and infectious diseases. We briefly review viruses of public health importance present in sand flies and revisit studies done on bacterial and fungal gut contents of these vectors. We bring this information into the context of sand fly development and immune responses. We highlight the immunity mechanisms that the insect utilizes to survive the potential threats involved in these interactions and discuss the recently discovered complex interactions among microbiota, sand fly, Leishmania and virus. Additionally, some of the alternative control strategies that could benefit from the current knowledge are considered.
Collapse
|
19
|
The vector competence of Phlebotomus perniciosus for Leishmania infantum zymodemes of Tunisia. Parasitol Res 2018; 117:2499-2506. [PMID: 29804194 DOI: 10.1007/s00436-018-5939-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/17/2018] [Indexed: 02/04/2023]
Abstract
Experimental infections of Phlebotomus (L.) perniciosus from a colony established in Madrid (Spain) carried out with the Leishmania (L.) infantum zymodemes MON-1, MON-24, and MON-80 isolated in Tunisia are reported here. Laboratory-reared female sand flies were experimentally fed via membrane feeding device on a suspension of L. infantum promastigotes in defibrinated rabbit blood (107/ml). Engorged females were dissected at progressive time points postfeeding to observe the intravectorial cycle of different L. infantum zymodemes. Development in the sand fly midgut of L. infantum parasites to the infective metacyclic promastigotes and monitoring the forward progression of parasites to finally reach the stomodeal valve (SV) of the sand fly were assessed. All tested L. infantum zymodemes developed properly in P. perniciosus. Experimental feeding with suspensions of promastigotes of all zymodemes led to very heavy late-stage infections. MON-24 and MON-80 zymodemes colonized the (SV) of P. perniciosus earlier than zymodeme MON-1, 2 and 4 days, respectively. Metacyclic promastigotes were observed in all experimental infections. The study shows for the first time that colonized P. perniciosus is able to acquire, retain, and develop in its midgut the zymodemes MON-24 and MON-80 isolated in Tunisia and highlights the putative role of this sand fly species in the transmission of such zymodemes to mammalian hosts in this country. The ability of experimentally infected sand fly species to transmit by bite such zymodemes needs to be assessed.
Collapse
|