1
|
Song P, Cai YC, Chen MX, Chen SH, Chen JX. Enhanced phosphatidylserine exposure and erythropoiesis in Babesia microti-infected mice. Front Microbiol 2023; 13:1083467. [PMID: 36687590 PMCID: PMC9846230 DOI: 10.3389/fmicb.2022.1083467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/08/2022] [Indexed: 12/02/2023] Open
Abstract
INTRODUCTION Babesia microti (B. microti) is the dominant species responsible for human babesiosis, which is associated with severe hemolytic anemia and splenomegaly because it infects mammalian erythrocytes. The actual prevalence of B. microti is thought to have been substantially underestimated. METHODS In this study, Bagg's albino/c (BALB/c) mice were intraperitoneally injected with B. microti-infected erythrocytes, and parasitemia was subsequently measured by calculating the proportion of infected erythrocytes. The ultrastructure of infected erythrocytes was observed using scanning and transmission electron microscopes. Quantifying phosphatidylserine (PS) exposure, oxidative stress, intracellular Ca2+, and erythropoiesis of erythrocytes were done using flow cytometry. The physiological indicators were analyzed using a Mindray BC-5000 Vet automatic hematology analyzer. RESULTS Of note, 40.7 ± 5.9% of erythrocytes changed their structure and shrunk in the B. microti-infected group. The percentage of annexin V-positive erythrocytes and the levels of reactive oxygen species (ROS) in the erythrocytes were higher in the B. microti-infected group than in the control group at 10 dpi. Significant splenomegaly and severe anemia were also observed following B. microti infection. The parasitemia level in the B. microti-infected splenectomized group was higher than that of the B. microti-infected sham group. The population of early erythroblasts increased, and the late erythroblasts decreased in both the bone marrow and spleen tissues of the B. microti-infected group at 10 dpi. DISCUSSION PS exposure and elevated ROS activities were hallmarks of eryptosis in the B. microti-infected group. This study revealed for the first time that B. microti could also induce eryptosis. At the higher parasitemia phase, the occurrence of severe anemia and significant changes in the abundance of erythroblasts in B. microti-infected mice group were established. The spleen plays a critical protective role in controlling B. microti infection and preventing anemia. B. microti infection could cause a massive loss of late erythroblasts and induce erythropoiesis.
Collapse
Affiliation(s)
- Peng Song
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| | - Yu-Chun Cai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Mu-Xin Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| | - Shao-Hong Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| |
Collapse
|
2
|
Piao X, Ma Y, Liu S, Hou N, Chen Q. A Novel Thioredoxin-Like Protein of Babesia microti Involved in Parasite Pathogenicity. Front Cell Infect Microbiol 2022; 12:826818. [PMID: 35252036 PMCID: PMC8892138 DOI: 10.3389/fcimb.2022.826818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Babesiosis poses a serious threat to immunocompromised individuals and the major etiological species of Babesia for human babesiosis is Babesia microti. Merozoites are a critical stage in the life cycle of Babesia microti. Several merozoite proteins have been demonstrated to play important roles in this process; however, most of the merozoite proteins of B. microti remain unknown. In the present study, we identified a novel merozoite protein of B. microti with similar structure to the thioredoxin (Trx)-like domain of the Trx family, which was named as B. microti Trx-like protein (BmTLP). Western blot assays demonstrated that this protein was expressed by B. microti during the erythrocytic infection process, and its expression peaked on day 7 post-infection in vivo. Immunofluorescence assay further showed that this protein is mainly expressed in B. microti merozoites. BmTLP hold both heparin- and erythrocyte-binding properties, which are critical functions of invasion-related proteins. Immunization with recombinant BmTLP imparted significant protection against B. microti infection in mice. Taken together, these results suggest that the novel merozoite protein, BmTLP, is an important pathogenic molecule of B. microti and may be a possible target for the design of babesiosis control strategy.
Collapse
Affiliation(s)
- Xianyu Piao
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Ma
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuai Liu
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Nan Hou
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Nan Hou, ; Qijun Chen,
| | - Qijun Chen
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
- *Correspondence: Nan Hou, ; Qijun Chen,
| |
Collapse
|
3
|
Song P, Cai YC, Chen MX, Chen SH, Chen JX. Enhanced phosphatidylserine exposure and erythropoiesis in Babesia microti-infected mice. Front Microbiol 2022; 13:1083467. [PMID: 36687590 PMCID: PMC9846230 DOI: 10.3389/fmicb.2023.1083467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Babesia microti (B. microti) is the dominant species responsible for human babesiosis, which is associated with severe hemolytic anemia and splenomegaly because it infects mammalian erythrocytes. The actual prevalence of B. microti is thought to have been substantially underestimated. Methods In this study, Bagg's albino/c (BALB/c) mice were intraperitoneally injected with B. microti-infected erythrocytes, and parasitemia was subsequently measured by calculating the proportion of infected erythrocytes. The ultrastructure of infected erythrocytes was observed using scanning and transmission electron microscopes. Quantifying phosphatidylserine (PS) exposure, oxidative stress, intracellular Ca2+, and erythropoiesis of erythrocytes were done using flow cytometry. The physiological indicators were analyzed using a Mindray BC-5000 Vet automatic hematology analyzer. Results Of note, 40.7 ± 5.9% of erythrocytes changed their structure and shrunk in the B. microti-infected group. The percentage of annexin V-positive erythrocytes and the levels of reactive oxygen species (ROS) in the erythrocytes were higher in the B. microti-infected group than in the control group at 10 dpi. Significant splenomegaly and severe anemia were also observed following B. microti infection. The parasitemia level in the B. microti-infected splenectomized group was higher than that of the B. microti-infected sham group. The population of early erythroblasts increased, and the late erythroblasts decreased in both the bone marrow and spleen tissues of the B. microti-infected group at 10 dpi. Discussion PS exposure and elevated ROS activities were hallmarks of eryptosis in the B. microti-infected group. This study revealed for the first time that B. microti could also induce eryptosis. At the higher parasitemia phase, the occurrence of severe anemia and significant changes in the abundance of erythroblasts in B. microti-infected mice group were established. The spleen plays a critical protective role in controlling B. microti infection and preventing anemia. B. microti infection could cause a massive loss of late erythroblasts and induce erythropoiesis.
Collapse
Affiliation(s)
- Peng Song
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| | - Yu-Chun Cai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Mu-Xin Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| | - Shao-Hong Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China.,NHC Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China.,WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China.,Hainan Tropical Diseases Research Center (Chinese Center for Tropical Diseases Research, Hainan), Haikou, Hainan, China
| |
Collapse
|
4
|
Zhang H, Wang Z, Huang J, Cao J, Zhou Y, Zhou J. A Novel Thioredoxin-Dependent Peroxiredoxin (TPx-Q) Plays an Important Role in Defense Against Oxidative Stress and Is a Possible Drug Target in Babesia microti. Front Vet Sci 2020; 7:76. [PMID: 32133382 PMCID: PMC7040034 DOI: 10.3389/fvets.2020.00076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/29/2020] [Indexed: 01/03/2023] Open
Abstract
Thioredoxin peroxidases (TPxs) are ubiquitous cysteine-based peroxidases that reduce peroxides as part of antioxidant defenses and redox signaling and are essential for Babesia microti protection against adverse environment agents like reactive oxygen species (ROS) and reactive nitrogen species (RNS). To better systematically understand TPxs, we identified a novel 2-Cys peroxiredoxin-Q (BmTPx-Q) of B. microti. The full-length BmTPx-Q gene is 653 bp that consists of an intact open reading frame of 594 bp that encodes a 197-amino acid protein. The predicted protein has a molecular weight of 22.3 kDa and an isoelectric point of 9.18. Moreover, BmTPx-Q showed low identity at the amino acid level to other peroxiredoxins (Prxs) among the currently known subfamilies. The recombinant BmTPx-Q protein (rBmTPx-Q) was expressed in Escherichia coli and purified with beads. The native protein BmTPx-Q was detected using mouse anti-BmTPx-Q polyclonal serum with western blotting and indirect immunofluorescence assay (IFA). In addition, enzyme activity was observed using nicotinamide adenine dinucleotide phosphate (NADPH) as substrate and triggered the NADPH-dependent reduction of the Trx/TrxR system. It was also discovered that BmTPx-Q mainly exists as a monomer whether under its native or functional states. In addition, when incubated with Chloroquine diphosphate salt for 24 h in vitro, the expression of BmTPx-Q showed a marked downward trend with the increase of drug concentration. These results suggest that B. microti uses BmTPx-Q to reduce and detoxify hydrogen peroxides to survive and proliferate inside the host. Furthermore, BmTPx-Q showed the lowest identity with host enzymes and could be a potential drug target for the development of novel strategies to control B. microti infection.
Collapse
Affiliation(s)
- Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhonghua Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jingwei Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
5
|
Comparative transcriptome analysis of different stages of Plasmodium falciparum to explore vaccine and drug candidates. Genomics 2019; 112:796-804. [PMID: 31128264 DOI: 10.1016/j.ygeno.2019.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/30/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022]
Abstract
Malaria is a life-threatening disease causes huge burden on human health. Every year >200 million cases of malaria are reported globally. Researchers have carried out research on transcriptome of different stages of Plasmodium species to understand complex pathology of pathogens and to discover therapeutics. Researchers are targeting different stages of Plasmodium falciparum separately. Hence, to target all stages of Plasmodium simultaneously comparative transcriptome analysis of different stages was carried out and 44 commonly expressed proteins from different stages of Plasmodium were identified. These proteins were analyzed for their drug target and vaccine potential in different analysis. Conservation of these proteins in human infecting Plasmodium species was also studied. Current approach is also justified because few of these proteins were found to be known vaccine and drug target candidates in different infectious diseases. These proteins can be taken as drug targets and/or vaccine candidates in further experimentation against malaria.
Collapse
|