1
|
Saili K, de Jager C, Sangoro OP, Nkya TE, Masaninga F, Mwenya M, Sinyolo A, Hamainza B, Chanda E, Fillinger U, Mutero CM. Anopheles rufipes implicated in malaria transmission both indoors and outdoors alongside Anopheles funestus and Anopheles arabiensis in rural south-east Zambia. Malar J 2023; 22:95. [PMID: 36927373 PMCID: PMC10018844 DOI: 10.1186/s12936-023-04489-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/12/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The primary malaria vector-control interventions, indoor residual spraying and long-lasting insecticidal nets, are effective against indoor biting and resting mosquito species. Consequently, outdoor biting and resting malaria vectors might elude the primary interventions and sustain malaria transmission. Varied vector biting and resting behaviour calls for robust entomological surveillance. This study investigated the bionomics of malaria vectors in rural south-east Zambia, focusing on species composition, their resting and host-seeking behaviour and sporozoite infection rates. METHODS The study was conducted in Nyimba District, Zambia. Randomly selected households served as sentinel houses for monthly collection of mosquitoes indoors using CDC-light traps (CDC-LTs) and pyrethrum spray catches (PSC), and outdoors using only CDC-LTs for 12 months. Mosquitoes were identified using morphological taxonomic keys. Specimens belonging to the Anopheles gambiae complex and Anopheles funestus group were further identified using molecular techniques. Plasmodium falciparum sporozoite infection was determined using sandwich enzyme-linked immunosorbent assays. RESULTS From 304 indoor and 257 outdoor light trap-nights and 420 resting collection, 1409 female Anopheles species mosquitoes were collected and identified morphologically; An. funestus (n = 613; 43.5%), An. gambiae sensu lato (s.l.)(n = 293; 20.8%), Anopheles pretoriensis (n = 282; 20.0%), Anopheles maculipalpis (n = 130; 9.2%), Anopheles rufipes (n = 55; 3.9%), Anopheles coustani s.l. (n = 33; 2.3%), and Anopheles squamosus (n = 3, 0.2%). Anopheles funestus sensu stricto (s.s.) (n = 144; 91.1%) and Anopheles arabiensis (n = 77; 77.0%) were the dominant species within the An. funestus group and An. gambiae complex, respectively. Overall, outdoor CDC-LTs captured more Anopheles mosquitoes (mean = 2.25, 95% CI 1.22-3,28) than indoor CDC-LTs (mean = 2.13, 95% CI 1.54-2.73). Fewer resting mosquitoes were collected with PSC (mean = 0.44, 95% CI 0.24-0.63). Sporozoite infectivity rates for An. funestus, An. arabiensis and An. rufipes were 2.5%, 0.57% and 9.1%, respectively. Indoor entomological inoculation rates (EIRs) for An. funestus s.s, An. arabiensis and An. rufipes were estimated at 4.44, 1.15 and 1.20 infectious bites/person/year respectively. Outdoor EIRs for An. funestus s.s. and An. rufipes at 7.19 and 4.31 infectious bites/person/year, respectively. CONCLUSION The findings of this study suggest that An. rufipes may play an important role in malaria transmission alongside An. funestus s.s. and An. arabiensis in the study location.
Collapse
Affiliation(s)
- Kochelani Saili
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya. .,University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.
| | - Christiaan de Jager
- University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Onyango P Sangoro
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Theresia E Nkya
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya.,Mbeya College of Health and Allied Sciences, University of Dar es Salaam, Mbeya, Tanzania
| | | | | | - Andy Sinyolo
- National Malaria Elimination Centre, Lusaka, Zambia
| | | | - Emmanuel Chanda
- World Health Organization, Regional Office for Africa, Brazzaville, Congo
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Clifford M Mutero
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya.,University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Alafo C, Martí-Soler H, Máquina M, Malheia A, Aswat AS, Koekemoer LL, Colborn J, Lobo NF, Tatarsky A, Williams YA, Marrenjo D, Cuamba N, Rabinovich R, Alonso P, Aide P, Saúte F, Paaijmans KP. To spray or target mosquitoes another way: focused entomological intelligence guides the implementation of indoor residual spraying in southern Mozambique. Malar J 2022; 21:215. [PMID: 35820899 PMCID: PMC9275269 DOI: 10.1186/s12936-022-04233-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND To eliminate malaria in southern Mozambique, the National Malaria Control Programme and its partners are scaling up indoor residual spraying (IRS) activities in two provinces, Gaza and Inhambane. An entomological surveillance planning tool (ESPT) was used to answer the programmatic question of whether IRS would be effective in target geographies, given limited information on local vector bionomics. METHODS Entomological intelligence was collected in six sentinel sites at the end of the rainy season (April-May 2018) and the beginning of the dry season (June-July 2018). The primary objective was to provide an 'entomological snapshot' by collecting question-based, timely and high-quality data within one single week in each location. Host-seeking behaviour (both indoors and outdoors) was monitored by human-baited tent traps. Indoor resting behaviour was quantified by pyrethrum spray catches and window exit traps. RESULTS Five different species or species groups were identified: Anopheles funestus sensu lato (s.l.) (66.0%), Anopheles gambiae s.l. (14.0%), Anopheles pharoensis (1.4%), Anopheles tenebrosus (14.1%) and Anopheles ziemanni (4.5%). Anopheles funestus sensu stricto (s.s.) was the major vector among its sibling species, and 1.9% were positive for Plasmodium falciparum infections. Anopheles arabiensis was the most abundant vector species within the An. gambiae complex, but none tested positive for P. falciparum infections. Some An. tenebrosus were positive for P. falciparum (1.3%). When evaluating behaviours that impact IRS efficacy, i.e. endophily, the known primary vector An. funestus s.s., was found to rest indoors-demonstrating at least part of its population will be impacted by the intervention if insecticides are selected to which this vector is susceptible. However, other vector species, including An. gambiae s.l., An. tenebrosus, An. pharoensis and An. ziemanni, showed exophilic and exophagic behaviours in several of the districts surveilled. CONCLUSION The targeted approach to entomological surveillance was successful in collecting question-based entomological intelligence to inform decision-making about the use of IRS in specific districts. Endophilic An. funestus s.s. was documented as being the most prevalent and primary malaria vector suggesting that IRS can reduce malaria transmission, but the presence of other vector species both indoors and outdoors suggests that alternative vector control interventions that target these gaps in protection may increase the impact of vector control in southern Mozambique.
Collapse
Affiliation(s)
- Celso Alafo
- Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique
| | | | - Mara Máquina
- Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique
| | - Arlindo Malheia
- Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique
| | - Ayesha S Aswat
- WITS Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, & National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lizette L Koekemoer
- WITS Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, & National Institute for Communicable Diseases, Johannesburg, South Africa
| | | | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Allison Tatarsky
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Yasmin A Williams
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Dulcisária Marrenjo
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
| | - Nelson Cuamba
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
- PMI VectorLink Project, Abt Associates Inc, Maputo, Mozambique
| | - Regina Rabinovich
- ISGlobal, Barcelona, Spain
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Pedro Alonso
- Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique
- ISGlobal, Barcelona, Spain
| | - Pedro Aide
- Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique
- Instituto Nacional da Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Francisco Saúte
- Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique
| | - Krijn P Paaijmans
- Centro de Investigação Em Saúde de Manhiça, Fundação Manhiça, Maputo, Mozambique.
- ISGlobal, Barcelona, Spain.
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA.
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
3
|
Cross DE, Healey AJE, McKeown NJ, Thomas CJ, Macarie NA, Siaziyu V, Singini D, Liywalii F, Sakala J, Silumesii A, Shaw PW. Temporally consistent predominance and distribution of secondary malaria vectors in the Anopheles community of the upper Zambezi floodplain. Sci Rep 2022; 12:240. [PMID: 34997149 PMCID: PMC8742069 DOI: 10.1038/s41598-021-04314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/10/2021] [Indexed: 11/09/2022] Open
Abstract
Regional optimisation of malaria vector control approaches requires detailed understanding both of the species composition of Anopheles mosquito communities, and how they vary over spatial and temporal scales. Knowledge of vector community dynamics is particularly important in settings where ecohydrological conditions fluctuate seasonally and inter-annually, such as the Barotse floodplain of the upper Zambezi river. DNA barcoding of anopheline larvae sampled in the 2019 wet season revealed the predominance of secondary vector species, with An. coustani comprising > 80% of sampled larvae and distributed ubiquitously across all ecological zones. Extensive larval sampling, plus a smaller survey of adult mosquitoes, identified geographic clusters of primary vectors, but represented only 2% of anopheline larvae. Comparisons with larval surveys in 2017/2018 and a contemporaneous independent 5-year dataset from adult trapping corroborated this paucity of primary vectors across years, and the consistent numerical dominance of An. coustani and other secondary vectors in both dry and wet seasons, despite substantial inter-annual variation in hydrological conditions. This marked temporal consistency of spatial distribution and anopheline community composition presents an opportunity to target predominant secondary vectors outdoors. Larval source management should be considered, alongside prevalent indoor-based approaches, amongst a diversification of vector control approaches to more effectively combat residual malaria transmission.
Collapse
Affiliation(s)
- Dónall Eoin Cross
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| | - Amy J E Healey
- Lincoln Centre for Water and Planetary Health, College of Science, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK
| | - Niall J McKeown
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| | - Christopher James Thomas
- Lincoln Centre for Water and Planetary Health, College of Science, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| | - Nicolae Adrian Macarie
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| | - Vincent Siaziyu
- Limulunga District Health Office, P.O. Box 910022, Mongu, Zambia
| | - Douglas Singini
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Francis Liywalii
- Provincial Health Office, Western Province, P.O. Box 910022, Mongu, Zambia
| | - Jacob Sakala
- Provincial Health Office, Western Province, P.O. Box 910022, Mongu, Zambia
| | | | - Paul W Shaw
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| |
Collapse
|
4
|
Sanou A, Nelli L, Guelbéogo WM, Cissé F, Tapsoba M, Ouédraogo P, Sagnon N, Ranson H, Matthiopoulos J, Ferguson HM. Insecticide resistance and behavioural adaptation as a response to long-lasting insecticidal net deployment in malaria vectors in the Cascades region of Burkina Faso. Sci Rep 2021; 11:17569. [PMID: 34475470 PMCID: PMC8413378 DOI: 10.1038/s41598-021-96759-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
The decline in malaria across Africa has been largely attributed to vector control using long-lasting insecticidal nets (LLINs). However, this intervention has prompted widespread insecticide resistance (IR) and been associated with changes in mosquito behaviour that reduce their contact with LLINs. The relative importance and rate at which IR and behavioural adaptations emerge are poorly understood. We conducted surveillance of mosquito behaviour and IR at 12 sites in Burkina Faso to assess the magnitude and temporal dynamics of insecticide, biting and resting behaviours in vectors in the 2-year period following mass LLIN distribution. Insecticide resistance was present in all vector populations and increased rapidly over the study period. In contrast, no longitudinal shifts in LLIN-avoidance behaviours (earlier or outdoor biting and resting) were detected. There was a moderate but statistically significant shift in vector species composition from Anopheles coluzzii to Anopheles gambiae which coincided with a reduction in the proportion of bites preventable by LLINs; possibly driven by between-species variation in behaviour. These findings indicate that adaptations based on insecticide resistance arise and intensify more rapidly than behavioural shifts within mosquito vectors. However, longitudinal shifts in mosquito vector species composition were evident within 2 years following a mass LLIN distribution. This ecological shift was characterized by a significant increase in the exophagic species (An. gambiae) and coincided with a predicted decline in the degree of protection expected from LLINs. Although human exposure fell through the study period due to reducing vector densities and infection rates, such ecological shifts in vector species along with insecticide resistance were likely to have eroded the efficacy of LLINs. While both adaptations impact malaria control, the rapid increase of the former indicates this strategy develops more quickly in response to selection from LLINS. However, interventions targeting both resistance strategies will be needed.
Collapse
Affiliation(s)
- Antoine Sanou
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK.
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda Yonré, PO Box 2208, Ouagadougou, Burkina Faso.
| | - Luca Nelli
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - W Moussa Guelbéogo
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda Yonré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Fatoumata Cissé
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda Yonré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Madou Tapsoba
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda Yonré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Pierre Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda Yonré, PO Box 2208, Ouagadougou, Burkina Faso
| | - N'falé Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, Av. Kunda Yonré, PO Box 2208, Ouagadougou, Burkina Faso
| | - Hilary Ranson
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jason Matthiopoulos
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
5
|
Connolly JB, Mumford JD, Fuchs S, Turner G, Beech C, North AR, Burt A. Systematic identification of plausible pathways to potential harm via problem formulation for investigational releases of a population suppression gene drive to control the human malaria vector Anopheles gambiae in West Africa. Malar J 2021; 20:170. [PMID: 33781254 PMCID: PMC8006393 DOI: 10.1186/s12936-021-03674-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Population suppression gene drive has been proposed as a strategy for malaria vector control. A CRISPR-Cas9-based transgene homing at the doublesex locus (dsxFCRISPRh) has recently been shown to increase rapidly in frequency in, and suppress, caged laboratory populations of the malaria mosquito vector Anopheles gambiae. Here, problem formulation, an initial step in environmental risk assessment (ERA), was performed for simulated field releases of the dsxFCRISPRh transgene in West Africa. METHODS Building on consultative workshops in Africa that previously identified relevant environmental and health protection goals for ERA of gene drive in malaria vector control, 8 potentially harmful effects from these simulated releases were identified. These were stratified into 46 plausible pathways describing the causal chain of events that would be required for potential harms to occur. Risk hypotheses to interrogate critical steps in each pathway, and an analysis plan involving experiments, modelling and literature review to test each of those risk hypotheses, were developed. RESULTS Most potential harms involved increased human (n = 13) or animal (n = 13) disease transmission, emphasizing the importance to subsequent stages of ERA of data on vectorial capacity comparing transgenics to non-transgenics. Although some of the pathways (n = 14) were based on known anatomical alterations in dsxFCRISPRh homozygotes, many could also be applicable to field releases of a range of other transgenic strains of mosquito (n = 18). In addition to population suppression of target organisms being an accepted outcome for existing vector control programmes, these investigations also revealed that the efficacy of population suppression caused by the dsxFCRISPRh transgene should itself directly affect most pathways (n = 35). CONCLUSIONS Modelling will play an essential role in subsequent stages of ERA by clarifying the dynamics of this relationship between population suppression and reduction in exposure to specific potential harms. This analysis represents a comprehensive identification of plausible pathways to potential harm using problem formulation for a specific gene drive transgene and organism, and a transparent communication tool that could inform future regulatory studies, guide subsequent stages of ERA, and stimulate further, broader engagement on the use of population suppression gene drive to control malaria vectors in West Africa.
Collapse
Affiliation(s)
- John B Connolly
- Department of Life Sciences, Imperial College London, London, UK.
| | - John D Mumford
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Silke Fuchs
- Department of Life Sciences, Imperial College London, London, UK
| | - Geoff Turner
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Ace R North
- Department of Zoology, University of Oxford, Oxford, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
6
|
Buxton M, Nyamukondiwa C, Dalu T, Cuthbert RN, Wasserman RJ. Implications of increasing temperature stress for predatory biocontrol of vector mosquitoes. Parasit Vectors 2020; 13:604. [PMID: 33261665 PMCID: PMC7706185 DOI: 10.1186/s13071-020-04479-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Predators play a critical role in regulating larval mosquito prey populations in aquatic habitats. Understanding predator-prey responses to climate change-induced environmental perturbations may foster optimal efficacy in vector reduction. However, organisms may differentially respond to heterogeneous thermal environments, potentially destabilizing predator-prey trophic systems. METHODS Here, we explored the critical thermal limits of activity (CTLs; critical thermal-maxima [CTmax] and minima [CTmin]) of key predator-prey species. We concurrently examined CTL asynchrony of two notonectid predators (Anisops sardea and Enithares chinai) and one copepod predator (Lovenula falcifera) as well as larvae of three vector mosquito species, Aedes aegypti, Anopheles quadriannulatus and Culex pipiens, across instar stages (early, 1st; intermediate, 2nd/3rd; late, 4th). RESULTS Overall, predators and prey differed significantly in CTmax and CTmin. Predators generally had lower CTLs than mosquito prey, dependent on prey instar stage and species, with first instars having the lowest CTmax (lowest warm tolerance), but also the lowest CTmin (highest cold tolerance). For predators, L. falcifera exhibited the narrowest CTLs overall, with E. chinai having the widest and A. sardea intermediate CTLs, respectively. Among prey species, the global invader Ae. aegypti consistently exhibited the highest CTmax, whilst differences among CTmin were inconsistent among prey species according to instar stage. CONCLUSION These results point to significant predator-prey mismatches under environmental change, potentially adversely affecting natural mosquito biocontrol given projected shifts in temperature fluctuations in the study region. The overall narrower thermal breadth of native predators relative to larval mosquito prey may reduce natural biotic resistance to pests and harmful mosquito species, with implications for population success and potentially vector capacity under global change.
Collapse
Affiliation(s)
- Mmabaledi Buxton
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana.
| | - Tatenda Dalu
- Department of Ecology and Resource Management, University of Venda, Thohoyandou, 0950, South Africa
| | - Ross N Cuthbert
- GEOMAR, Helmholtz-Zentrum für Ozeanforschung Kiel, 24105, Kiel, Germany
| | - Ryan J Wasserman
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
- Department of Zoology and Entomology, Rhodes University, Makhanda, 6140, South Africa
| |
Collapse
|
7
|
Kweka EJ, Mazigo HD, Lyaruu LJ, Mausa EA, Venter N, Mahande AM, Coetzee M. Anopheline Mosquito Species Composition, Kdr Mutation Frequency, and Parasite Infectivity Status in Northern Tanzania. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:933-938. [PMID: 31923308 DOI: 10.1093/jme/tjz245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Indexed: 06/10/2023]
Abstract
The scaling-up of malaria control interventions in northern Tanzania has resulted in a decline in malaria prevalence and vector species composition. Despite this achievement, residual malaria transmission remains a concern in the area. The main aim of this study was to investigate malaria vector species composition, parasite infectivity rates, and the presence of insecticide knockdown resistance (kdr) mutations in three sites that have experienced a significant decline in malaria in northern Tanzania. Adult mosquitoes were sampled using light traps in houses and hand-aspirators in cowsheds, whereas the standard dipping method was used for sampling mosquito larvae. Adult mosquitoes identified as Anopheles gambiae s.l. and An. funestus s.l. and larval stages III and IV of An. gambiae s.l. were stored in absolute ethanol for further laboratory molecular identification. The identified species in the An. gambiae complex were An. gambiae s.s., An. merus, An. quadriannulatus, and An. arabiensis, whereas the An. funestus group comprised An. funestus s.s., An. rivulorum, and An. leesoni. For An. gambiae s.s. analyzed from Zeneth, 47.6% were kdr-East homozygous susceptible, 35.7% kdr-East heterozygous resistant, 9.6% kdr-East homozygous resistant, and 7.1% undefined, whereas specimens from Kwakibuyu were 45.5% kdr-East homozygous susceptible, 32.7% kdr-East heterozygous resistant, 16.3% kdr-East homozygous resistant, and 5.5% undefined. There were no kdr-West alleles identified from any specimen. The overall malaria parasite infectivity rate was 0.75%. No infections were found in Moshi. The findings indicate that populations of the major malaria vector mosquitoes are still present in the study area, with An. funestus taking a lead in malaria transmission.
Collapse
Affiliation(s)
- Eliningaya J Kweka
- Division of Livestock and Human Diseases Vector Control, Tropical Pesticides Research Institute, Arusha, Tanzania
- Department of Medical Parasitology and Entomology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Humphrey D Mazigo
- Department of Medical Parasitology and Entomology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Lucile J Lyaruu
- Division of Livestock and Human Diseases Vector Control, Tropical Pesticides Research Institute, Arusha, Tanzania
| | - Emmanuel A Mausa
- National Plant Genetic Resource Centre, Tropical Pesticides Research Institute, Arusha, Tanzania
| | - Nelius Venter
- Wits Research Institute for Malaria and Wits/MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging, Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Aneth M Mahande
- Mabogini Field Station, Tropical Pesticides Research Institute, Moshi, Tanzania
| | - Maureen Coetzee
- Wits Research Institute for Malaria and Wits/MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging, Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
8
|
Samuel M, Brooke BD, Oliver SV. Effects of inorganic fertilizer on larval development, adult longevity and insecticide susceptibility in the malaria vector Anopheles arabiensis (Diptera: Culicidae). PEST MANAGEMENT SCIENCE 2020; 76:1560-1568. [PMID: 31713993 DOI: 10.1002/ps.5676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/28/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Exposure to inorganic fertilizer is common for the major malaria vector Anopheles arabiensis, which is closely associated with agricultural activities. The aim of this study was to understand if insecticide susceptible and resistant individuals respond to fertilizer exposure in the same manner. Two laboratory strains, SENN, an insecticide susceptible strain, and SENN-DDT, an insecticide resistant strain selected strain selected from SENN, were used in this study. Both strains were exposed to one of three concentrations of a combination nitrogen-phosphorus-potassium (NPK) inorganic fertilizer, as well as nitrogenous (urea), phosphorus (superphosphate) and kaelic (potassium chloride, KCl) elemental fertilizer. The time to pupation was monitored, adult longevity was assessed and the insecticide tolerance of adults was determined. The effect of elemental fertilizers on ovipositioning site choice was also assessed. RESULTS For both strains, urea increased the number of eggs laid, while superphosphate resulted in a significant decrease in egg laying. Larval NPK exposure decreased the time to pupation in the SENN strain but not in SENN-DDT. Urea exposure increased the time to pupation in both strains, while KCl decreased the time to pupation in both strains. Larval NPK exposure only affected adult male longevity at high concentrations. Larval exposure to NPK and KCl resulted in increased insecticide tolerance in both strains, with variable efficacy from strain to strain. CONCLUSION Exposure to inorganic fertilizers has a greater effect on insecticide susceptible An. arabiensis as compared to resistant strains, where the primary advantage is increased insecticide tolerance. These data also demonstrate that larval fertilizer exposure can affect fecundity and fertility, and alter the life histories of adult An. arabiensis. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Michael Samuel
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Basil D Brooke
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shüné V Oliver
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Opiyo MA, Paaijmans KP. 'We spray and walk away': wall modifications decrease the impact of indoor residual spray campaigns through reductions in post-spray coverage. Malar J 2020; 19:30. [PMID: 31952538 PMCID: PMC6969461 DOI: 10.1186/s12936-020-3102-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/07/2020] [Indexed: 11/10/2022] Open
Abstract
Malaria prevalence has significantly reduced since 2000, largely due to the scale-up of vector control interventions, mainly indoor residual spraying (IRS) and long-lasting insecticide-treated nets (LLINs). Given their success, these tools remain the frontline interventions in the fight against malaria. Their effectiveness relies on three key ingredients: the intervention, the mosquito vector and the end-user. Regarding the intervention, factors such as the insecticide active ingredient(s) used and the durability and/or bio-efficacy of the tool over time are critical. For the vectors, these factors include biting and resting behaviours and the susceptibility to insecticides. Finally, the end-users need to accept and properly use the intervention. Whilst human attitude and behaviour towards LLINs are well-documented both during and after distribution, only initial coverage is monitored for IRS and in a few geographic settings the residual efficacy of the used product. Here, the historical evidence on end-users modifying their wall surfaces post-spraying is presented, a behaviour that has the potential to reduce actual IRS coverage, effectiveness and impact, as fewer people are truly protected. Therefore, clear guidelines on how to monitor IRS acceptability and/or coverage, both before, during and after spraying, are urgently needed as part of the Monitoring and Evaluation of malaria programmes.
Collapse
Affiliation(s)
- Mercy A Opiyo
- ISGlobal, Hospital Clinic, University of Barcelona, Barcelona, Spain. .,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
| | - Krijn P Paaijmans
- ISGlobal, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, USA.,The Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
10
|
Musiime AK, Smith DL, Kilama M, Rek J, Arinaitwe E, Nankabirwa JI, Kamya MR, Conrad MD, Dorsey G, Akol AM, Staedke SG, Lindsay SW, Egonyu JP. Impact of vector control interventions on malaria transmission intensity, outdoor vector biting rates and Anopheles mosquito species composition in Tororo, Uganda. Malar J 2019; 18:445. [PMID: 31881898 PMCID: PMC6935116 DOI: 10.1186/s12936-019-3076-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long-lasting insecticidal nets (LLINs) and indoor residual spraying of insecticide (IRS) are widely recommended for the prevention of malaria in endemic regions. Data from human landing catches provide information on the impact of vector control on vector populations. Here, malaria transmission indoors and outdoors, before and after mass deployment of LLINs and IRS in Uganda was compared. METHODS The study took place in Tororo district, a historically high transmission area where universal LLIN distribution was conducted in November 2013 and May 2017 and 6 rounds of IRS implemented from December 2014 to July 2018. Human landing catches were performed in 8 houses monthly from October 2011 to September 2012 (pre-intervention period) and every 4 weeks from November 2017 to October 2018 (post-intervention period). Mosquitoes were collected outdoors from 18:00 to 22:00 h and indoors from 18:00 to 06:00 h. Female Anopheles were tested for the presence of Plasmodium falciparum sporozoites and species identification performed using gross dissection and polymerase chain reaction (PCR). RESULTS The interventions were associated with a decline in human biting rate from 19.6 to 2.3 female Anopheles mosquitoes per house per night (p < 0.001) and annual entomological inoculation rate from 129 to 0 infective bites per person per year (p < 0.001). The proportion of mosquitoes collected outdoors increased from 11.6 to 49.4% (p < 0.001). Prior to the interventions the predominant species was Anopheles gambiae sensu stricto (s.s.), which comprised an estimated 76.7% of mosquitoes. Following the interventions, the predominant species was Anopheles arabiensis, which comprised 99.5% of mosquitoes, with almost complete elimination of An. gambiae s.s. (0.5%). CONCLUSIONS Mass distribution of LLINs and 6 rounds of IRS dramatically decreased vector density and sporozoite rate resulting in a marked reduction in malaria transmission intensity in a historically high transmission site in Uganda. These changes were accompanied by a shift in vector species from An. gambiae s.s. to An. arabiensis and a relative increase in outdoor biting.
Collapse
Affiliation(s)
- Alex K Musiime
- Infectious Diseases Research Collaboration, Kampala, Uganda. .,Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda.
| | - David L Smith
- Institute for Health Metrics & Evaluation, University of Washington, Seattle, WA, USA
| | - Maxwell Kilama
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Melissa D Conrad
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Anne M Akol
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Sarah G Staedke
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - James P Egonyu
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda.,International Center of Insect Physiology and Ecology, Nairobi, Kenya
| |
Collapse
|
11
|
Kweka EJ, Tungu PK, Mahande AM, Mazigo HD, Sayumwe S, Msangi S, Lyaruu L, Waweru J, Kisinza W, Wangai J. Bio-efficacy and wash resistance of MAGNet long-lasting insecticidal net against wild populations of Anopheles funestus in experimental huts in Muheza, Tanzania. Malar J 2019; 18:335. [PMID: 31570107 PMCID: PMC6771101 DOI: 10.1186/s12936-019-2973-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/24/2019] [Indexed: 11/30/2022] Open
Abstract
Background The decline in malaria cases and vectors is major milestone in fighting against malaria. The efficacy of MAGNet long-lasting insecticidal nets (MAGNet LLIN), an alpha-cypermethrin incorporated long-lasting net, with the target dose ± 25% of 5.8 g active ingredient (AI)/kg (4.35–7.25 g AI/kg) was evaluated in six veranda-trap experimental huts in Muheza, Tanzania against freely flying wild population of Anopheles funestus. Methods MAGNet LLINs were tested against wild, free-flying, host-seeking An. funestus mosquitoes over a period of 6 weeks (total of 36 nights in the huts). MAGNet LLIN efficacy was determined in terms of mosquito mortality, blood-feeding inhibition, deterrence, induced exiting, personal protection, and insecticidal killing over 20 washes according to WHO standardized procedures. Efficacy was compared with reference to a WHOPES recommended approved LLINs (DuraNet) and to a net conventionally treated (CTN) treated with alpha-cypermethrin at WHO-recommended dose and washed to just before cut-off point. The efficacy of MAGNet was evaluated in experimental huts against wild, free-flying, pyrethroid-resistant An. funestus. The WHO-susceptibility method was used to detect resistance in wild Anopheles exposed to 0.75% permethrin. Mosquito mortality, blood-feeding inhibition and personal protection were compared between untreated nets and standard LLINs. Blood-feeding rates were recorded and compared between the 20 times washed; blood-feeding rates between 20 times washed MAGNet LLIN and 20 times washed WHOPES-approved piperonyl butoxide (PBO)/pyrethroid were not statistically different (p > 0.05). Results The results have evidently shown that MAGNet LLIN provides similar blood-feeding inhibition, exophily, mortality, and deterrence to the standard approved LLIN, thus meeting the WHOPES criteria for blood feeding. The significantly high feeding inhibition and personal protection over pyrethroid-resistant An. funestus recorded by both unwashed and 20 times washed MAGNet compared to the unwashed DuraNet, the WHOPES-approved standard pyrethroid-only LLIN provides proof of MAGNet meeting Phase II WHOPES criteria for a LLIN. Conclusion Based on this study, MAGNet has been shown to have a promising impact on protection when 20 times washed against a highly resistant population of An. funestus.
Collapse
Affiliation(s)
- Eliningaya J Kweka
- Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania. .,Mosquito Section, Division of Livestock and Human Health Disease Vector Control, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha, Tanzania.
| | - Patrick K Tungu
- Amani Medical Research Centre, National Institute for Medical Research, P.O.Box 81, Muheza, Tanga, Tanzania
| | - Aneth M Mahande
- Division of Livestock and Human Health Disease Vector Control, Tropical Pesticides Research Institute, Mabogini Field Station, Moshi, Tanzania
| | - Humphrey D Mazigo
- Mosquito Section, Division of Livestock and Human Health Disease Vector Control, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha, Tanzania
| | - Subira Sayumwe
- Mosquito Section, Division of Livestock and Human Health Disease Vector Control, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha, Tanzania
| | - Shandala Msangi
- Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
| | - Lucile Lyaruu
- Mosquito Section, Division of Livestock and Human Health Disease Vector Control, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha, Tanzania
| | - John Waweru
- PestNet Kenya Ltd, P.O. BOX 51533-00200, Nairobi, Kenya
| | - William Kisinza
- Amani Medical Research Centre, National Institute for Medical Research, P.O.Box 81, Muheza, Tanga, Tanzania
| | - James Wangai
- PestNet Kenya Ltd, P.O. BOX 51533-00200, Nairobi, Kenya
| |
Collapse
|
12
|
Mazigo E, Kidima W, Myamba J, Kweka EJ. The impact of Anopheles gambiae egg storage for mass rearing and production success. Malar J 2019; 18:52. [PMID: 30808356 PMCID: PMC6390356 DOI: 10.1186/s12936-019-2691-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/21/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Mass rearing requires a large colony from which male individuals can be harvested for sterilization and release. Attention is needed when monitoring life parameters of the reared population, knowing that any variations within the target population would lead to mismatching between two populations. The aim of this study was to assess the impact of Anopheles gambiae sensu stricto (s.s.) egg storage on hatchability and life history traits. For each parameter, comparison was made between freshly laid and stored eggs in three densities (40, 80, 120 eggs). METHODS Anopheles gambiae s.s. freshly laid eggs were collected from the Tropical Pesticide Research Institute (TPRI) insectary. Eggs to be stored were kept at - 20 °C for 10 min and then transferred to refrigerators at 4 °C for intervals of 5, 10, 15, 20, and 25 days. After respective storage days, the eggs were transferred from refrigerators to ambient temperature of (25 ± 2) °C for 24 h and then placed in incubators for 24 h. Thereafter eggs were hatched. The egg hatchability, emerged larvae development, larvae survival and emerged adult sex ratios were monitored. RESULTS This study found that hatching rates decreased with increase in storage time. The difference was significant in eggs stored for 10 and 15 days (P < 0.05). There were no significant differences in hatching rates between An. gambiae eggs stored for 5 days and freshly hatched eggs (P > 0.05). Anopheles larvae development (L1 to pupae) was not significantly affected by storage time across all hatching densities. The study also found that larvae survival decreased with increase in egg storage time. However, there was no significant difference between larvae from freshly hatched eggs and those from eggs at 5 and 10 storage days (P > 0.05) but not for eggs stored for 15 days. Furthermore, there was a decrease in emerged adult males and increase in females relative to increased time of egg storage. The difference was significant (P < 0.05) at 15 storage days but not for eggs stored for 5 and 10 days (in triplicate densities). CONCLUSION From this study it was concluded that storing An. gambiae eggs at 4 °C and 48 ± 2% relative humidity (RH) for 5 days is the optimal condition and time that did not affect egg hatching rates, larval development and survivorship and emerged adult mosquito sex ratio.
Collapse
Affiliation(s)
- Ernest Mazigo
- Department of Zoology and Wildlife Conservation, College of Natural and Applied Sciences, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Winifrida Kidima
- Department of Zoology and Wildlife Conservation, College of Natural and Applied Sciences, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Joseph Myamba
- National Institute for Medical Research, Amani Medical Research Centre, P.O. Box 81, Muheza, Tanzania
| | - Eliningaya J Kweka
- Department of Medical Parasitology, School of Medicine, Catholic University of Health and Allied Sciences-Bugando, P.O. Box 1464, Mwanza, Tanzania. .,Division of Livestock and Human Disease Vector Control, Tropical Pesticides Research Institute, P.O.Box 3024, Arusha, Tanzania.
| |
Collapse
|