1
|
Lee S, Baker CM, Sellens E, Stevenson MA, Roche S, Hall RN, Breed AC, Firestone SM. A systematic review of epidemiological modelling in response to lumpy skin disease outbreaks. Front Vet Sci 2024; 11:1459293. [PMID: 39376926 PMCID: PMC11456570 DOI: 10.3389/fvets.2024.1459293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Lumpy skin disease (LSD) is an infectious disease currently spreading worldwide and poses a serious global threat. However, there is limited evidence and understanding to support the use of models to inform decision-making in LSD outbreak responses. This review aimed to identify modelling approaches that can be used before and during an outbreak of LSD, examining their characteristics and priorities, and proposing a structured workflow. We conducted a systematic review and identified 60 relevant publications on LSD outbreak modelling. The review identified six categories of question to be addressed following outbreak detection (origin, entry pathway, outbreak severity, risk factors, spread, and effectiveness of control measures), and five analytical techniques used to address them (descriptive epidemiology, risk factor analysis, spatiotemporal analysis, dynamic transmission modelling, and simulation modelling). We evaluated the questions each analytical technique can address, along with their data requirements and limitations, and accordingly assigned priorities to the modelling. Based on this, we propose a structured workflow for modelling during an LSD outbreak. Additionally, we emphasise the importance of pre-outbreak preparation and continuous updating of modelling post-outbreak for effective decision-making. This study also discusses the inherent limitations and uncertainties in the identified modelling approaches. To support this workflow, high-quality data must be collected in standardised formats, and efforts should be made to reduce inherent uncertainties of the models. The suggested modelling workflow can be used as a process to support rapid response for countries facing their first LSD occurrence and can be adapted to other transboundary diseases.
Collapse
Affiliation(s)
- Simin Lee
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Christopher M. Baker
- School of Mathematics and Statistics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
- Melbourne Centre for Data Science, The University of Melbourne, Parkville, VIC, Australia
- The Centre of Excellence for Biosecurity Risk Analysis, School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Emily Sellens
- Epidemiology, Surveillance and Laboratory Section, Australian Government Department of Agriculture, Fisheries and Forestry, Canberra, ACT, Australia
| | - Mark A. Stevenson
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Sharon Roche
- Epidemiology, Surveillance and Laboratory Section, Australian Government Department of Agriculture, Fisheries and Forestry, Canberra, ACT, Australia
| | | | - Andrew C. Breed
- Epidemiology, Surveillance and Laboratory Section, Australian Government Department of Agriculture, Fisheries and Forestry, Canberra, ACT, Australia
| | - Simon M. Firestone
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
2
|
Obeagu EI, Obeagu GU. Adapting to the shifting landscape: Implications of climate change for malaria control: A review. Medicine (Baltimore) 2024; 103:e39010. [PMID: 39029063 PMCID: PMC11398779 DOI: 10.1097/md.0000000000039010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
Malaria, a global public health challenge, continues to affect millions of lives, particularly in regions where its transmission is endemic. The interplay between climate change and malaria dynamics has emerged as a critical concern, reshaping the landscape of this vector-borne disease. This review publication, titled "Adapting to the shifting landscape: Implications of climate change for malaria control," explores the multifaceted relationship between climate change and the control of malaria. The paper begins by dissecting the influence of climate change on malaria dynamics, including alterations in temperature, precipitation, and other climatic factors that impact the habitat and life cycle of malaria vectors. It delves into the evolving ecology and behavior of malaria vectors in response to changing climatic conditions, emphasizing the importance of understanding these adaptations. As a response to this shifting landscape, the review discusses adaptive strategies for malaria control, ranging from vector control measures to the utilization of climate data in early warning systems. Community engagement and education are highlighted as essential components of these strategies, recognizing the vital role of local communities in effective malaria control efforts. The paper also identifies future directions and research needs, underscoring the importance of staying ahead of the evolving climate-malaria relationship. This review underscores the urgency of adapting to the changing landscape of malaria transmission driven by climate change. It emphasizes the significance of proactively addressing climate-related challenges to enhance malaria control and protect the health and well-being of vulnerable populations.
Collapse
|
3
|
Mwima R, Hui TYJ, Nanteza A, Burt A, Kayondo JK. Potential persistence mechanisms of the major Anopheles gambiae species complex malaria vectors in sub-Saharan Africa: a narrative review. Malar J 2023; 22:336. [PMID: 37936194 PMCID: PMC10631165 DOI: 10.1186/s12936-023-04775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
The source of malaria vector populations that re-establish at the beginning of the rainy season is still unclear yet knowledge of mosquito behaviour is required to effectively institute control measures. Alternative hypotheses like aestivation, local refugia, migration between neighbouring sites, and long-distance migration (LDM) are stipulated to support mosquito persistence. This work assessed the malaria vector persistence dynamics and examined various studies done on vector survival via these hypotheses; aestivation, local refugia, local or long-distance migration across sub-Saharan Africa, explored a range of methods used, ecological parameters and highlighted the knowledge trends and gaps. The results about a particular persistence mechanism that supports the re-establishment of Anopheles gambiae, Anopheles coluzzii or Anopheles arabiensis in sub-Saharan Africa were not conclusive given that each method used had its limitations. For example, the Mark-Release-Recapture (MRR) method whose challenge is a low recapture rate that affects its accuracy, and the use of time series analysis through field collections whose challenge is the uncertainty about whether not finding mosquitoes during the dry season is a weakness of the conventional sampling methods used or because of hidden shelters. This, therefore, calls for further investigations emphasizing the use of ecological experiments under controlled conditions in the laboratory or semi-field, and genetic approaches, as they are known to complement each other. This review, therefore, unveils and assesses the uncertainties that influence the different malaria vector persistence mechanisms and provides recommendations for future studies.
Collapse
Affiliation(s)
- Rita Mwima
- Department of Entomology, Uganda Virus Research Institute (UVRI), Entebbe, Uganda
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, Kampala, Uganda
| | - Tin-Yu J Hui
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK
| | - Ann Nanteza
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, Kampala, Uganda
| | - Austin Burt
- Silwood Park Campus, Department of Life Sciences, Imperial College London, Ascot, UK
| | - Jonathan K Kayondo
- Department of Entomology, Uganda Virus Research Institute (UVRI), Entebbe, Uganda.
| |
Collapse
|
4
|
Gonzalez-Daza W, Vivero-Gómez RJ, Altamiranda-Saavedra M, Muylaert RL, Landeiro VL. Time lag effect on malaria transmission dynamics in an Amazonian Colombian municipality and importance for early warning systems. Sci Rep 2023; 13:18636. [PMID: 37903862 PMCID: PMC10616112 DOI: 10.1038/s41598-023-44821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/12/2023] [Indexed: 11/01/2023] Open
Abstract
Malaria remains a significant public health problem worldwide, particularly in low-income regions with limited access to healthcare. Despite the use of antimalarial drugs, transmission remains an issue in Colombia, especially among indigenous populations in remote areas. In this study, we used an SIR Ross MacDonald model that considered land use change, temperature, and precipitation to analyze eco epidemiological parameters and the impact of time lags on malaria transmission in La Pedrera-Amazonas municipality. We found changes in land use between 2007 and 2020, with increases in forested areas, urban infrastructure and water edges resulting in a constant increase in mosquito carrying capacity. Temperature and precipitation variables exhibited a fluctuating pattern that corresponded to rainy and dry seasons, respectively and a marked influence of the El Niño climatic phenomenon. Our findings suggest that elevated precipitation and temperature increase malaria infection risk in the following 2 months. The risk is influenced by the secondary vegetation and urban infrastructure near primary forest formation or water body edges. These results may help public health officials and policymakers develop effective malaria control strategies by monitoring precipitation, temperature, and land use variables to flag high-risk areas and critical periods, considering the time lag effect.
Collapse
Affiliation(s)
- William Gonzalez-Daza
- Programa do Pós-Graduação em Ecologia e Conservação da Biodiversidade, Departamento de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, 78060-900, Brazil.
| | - Rafael Jose Vivero-Gómez
- Grupo de Microbiodiversidad y Bioprospección, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia Sede Medellín, Street 59A #63-20, 050003, Medellín, Colombia
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Universidad de Antioquia, Calle 62 No. 52-59 Laboratorio 632, Medellín, Colombia
| | | | - Renata L Muylaert
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Victor Lemes Landeiro
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, 78060-900, Brazil
| |
Collapse
|
5
|
Gichuki PM, Kibe L, Mwatele C, Mwangangi J, Mbogo CM. Towards an integrated vector management approach for sustainable control of schistosomiasis and malaria in Mwea, Kirinyaga County, Kenya: Baseline epidemiological and vector results. Heliyon 2023; 9:e20966. [PMID: 37876477 PMCID: PMC10590948 DOI: 10.1016/j.heliyon.2023.e20966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Background Vector control is an important approach in the control of most parasitic and vector-borne diseases including malaria, and schistosomiasis. Distribution of these two infections often overlaps and in such areas it's more economically viable to employ an integrated approach in the control of their vectors which largely shares the same breeding ecosystem. We carried out a baseline epidemiological and vector surveys for malaria and schistosomiasis in Mwea, Kirinyaga County, in preparation for the upscaling of integrated vector management (IVM) for the two diseases. Methods This was a repeated cross sectional survey, where mosquito and snails were sampled during dry and wet seasons in three different ecological zones, Kiamaciri, Thiba and Murinduko to identify possible breeding sites. Mosquito larvae were collected using standard dippers, adults using CDC miniature light traps while snail vectors were sampled using standard snail scoops in different breeding habitats. A total of 1200 pupils from 12 primary schools were tested for malaria using rapid diagnostic tests (Malaria Pf/PAN Ag combo). Stool samples were processed using the Kato Katz technique for intestinal schistosomiasis. Results The overall prevalence of intestinal schistosomiasis was 9.08 % (95 % CI: 07.00-11.00), with Kiamaciri zone recording the highest prevalence at 19 % (95%CI: 15.00-23.00) and Murinduko zone the least at 0.17 % (95%CI: 0.00-0.01). Majority of the infections were of light intensity 78.9 % (95%CI: 70.04-86.13). There was no positive malaria case detected in this study. Of the 3208 adult mosquitoes sampled during the dry season, 20.6 % (95 % CI: 19.25-22.08) were Anopheles gambiae s.l while 79.4 % (95 % CI: 77.92-80.75) were culicines. During the wet season, 3378 adult mosquitoes were collected, of which 14.7 % (95 % CI: 13.56-15.98) were Anopheles gambiae s.l and 85.3 % (95 % CI: 84.02-86.44) culicines. Overall, 4085 mosquito larvae were collected during the two seasons, of which, 57.3 % and 42.7 % were anopheles and culicine respectively. Majority of the larvae (85.1 % (95%CI: 84.01-86.10) were collected during the wet season, with only 14.9 % (95%CI: 14.10-16.00) being collected during the dry season. A total of 2292 fresh water vector snails were collected with a majority (69.6 % (95%CI: 68.00-71.10) being Biomphalaria pffeiferi responsible for transmission of intestinal schistosomiasis. Conclusion This study demonstrates that intestinal schistosomiasis is prevalent in Kiamaciri and Thiba zones, and points to the possibility of active transmission of schistosomiasis in Murinduko zone. Malaria vectors were predominantly observed in all sites despite there being no malaria positive case. Culex quinquefaciatus responsible for the spread of several arboviruses was also observed. The presence of these vectors may lead to future disease outbreaks in the area if concerted control initiatives are not undertaken. The disease vectors shared the same breeding sites and thus its economical and feasible to adopt an integrated vector management approach in control efforts for these disease in the study area.
Collapse
Affiliation(s)
- Paul M. Gichuki
- Kenya Medical Research Institute (KEMRI), Eastern & Southern Africa Centre of International Parasite Control (ESACIPAC), Nairobi, P.O BOX 54840-00200 Nairobi, Kenya
- School of Health Sciences, Meru University of Science and Technology, P.O BOX 972-60200 Meru, Kenya
| | - Lydia Kibe
- Kenya Medical Research Institute (KEMRI), Eastern & Southern Africa Centre of International Parasite Control (ESACIPAC), Nairobi, P.O BOX 54840-00200 Nairobi, Kenya
| | - Cassian Mwatele
- Kenya Medical Research Institute (KEMRI), Eastern & Southern Africa Centre of International Parasite Control (ESACIPAC), Nairobi, P.O BOX 54840-00200 Nairobi, Kenya
| | - Joseph Mwangangi
- KEMRI-Wellcome Trust Research Programme, Public Health Unit, PO Box 43640 - 00100, Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI), Centre for Geographical Medicine Research-Coast (CGMR-C). P.O Box 230- 80108 Kilifi, Kenya
| | - Charles M. Mbogo
- Kenya Medical Research Institute (KEMRI), Eastern & Southern Africa Centre of International Parasite Control (ESACIPAC), Nairobi, P.O BOX 54840-00200 Nairobi, Kenya
- KEMRI-Wellcome Trust Research Programme, Public Health Unit, PO Box 43640 - 00100, Nairobi, Kenya
| |
Collapse
|
6
|
Kouroupis D, Charisi K, Pyrpasopoulou A. The Ongoing Epidemic of West Nile Virus in Greece: The Contribution of Biological Vectors and Reservoirs and the Importance of Climate and Socioeconomic Factors Revisited. Trop Med Infect Dis 2023; 8:453. [PMID: 37755914 PMCID: PMC10536956 DOI: 10.3390/tropicalmed8090453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/17/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023] Open
Abstract
Emerging infectious diseases have inflicted a significant health and socioeconomic burden upon the global population and governments worldwide. West Nile virus, a zoonotic, mosquito-borne flavivirus, was originally isolated in 1937 from a febrile patient in the West Nile Province of Uganda. It remained confined mainly to Africa, the Middle East, and parts of Europe and Australia until 1999, circulating in an enzootic mosquito-bird transmission cycle. Since the beginning of the 21st century, a new, neurotropic, more virulent strain was isolated from human outbreaks initially occurring in North America and later expanding to South and South-eastern Europe. Since 2010, when the first epidemic was recorded in Greece, annual incidence has fluctuated significantly. A variety of environmental, biological and socioeconomic factors have been globally addressed as potential regulators of the anticipated intensity of the annual incidence rate; circulation within the zoonotic reservoirs, recruitment and adaptation of new potent arthropod vectors, average winter and summer temperatures, precipitation during the early summer months, and socioeconomic factors, such as the emergence and progression of urbanization and the development of densely populated areas in association with insufficient health policy measures. This paper presents a review of the biological and socioenvironmental factors influencing the dynamics of the epidemics of West Nile virus (WNV) cases in Greece, one of the highest-ranked European countries in terms of annual incidence. To date, WNV remains an unpredictable opponent as is also the case with other emerging infectious diseases, forcing the National Health systems to develop response strategies, control the number of infections, and shorten the duration of the epidemics, thus minimizing the impact on human and material resources.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Konstantina Charisi
- Infectious Diseases Unit, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| | - Athina Pyrpasopoulou
- 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
- Infectious Diseases Unit, Hippokration Hospital, Konstantinoupoleos 49, 54642 Thessaloniki, Greece;
| |
Collapse
|
7
|
Brown JJ, Pascual M, Wimberly MC, Johnson LR, Murdock CC. Humidity - The overlooked variable in the thermal biology of mosquito-borne disease. Ecol Lett 2023; 26:1029-1049. [PMID: 37349261 DOI: 10.1111/ele.14228] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/05/2023] [Indexed: 06/24/2023]
Abstract
Vector-borne diseases cause significant financial and human loss, with billions of dollars spent on control. Arthropod vectors experience a complex suite of environmental factors that affect fitness, population growth and species interactions across multiple spatial and temporal scales. Temperature and water availability are two of the most important abiotic variables influencing their distributions and abundances. While extensive research on temperature exists, the influence of humidity on vector and pathogen parameters affecting disease dynamics are less understood. Humidity is often underemphasized, and when considered, is often treated as independent of temperature even though desiccation likely contributes to declines in trait performance at warmer temperatures. This Perspectives explores how humidity shapes the thermal performance of mosquito-borne pathogen transmission. We summarize what is known about its effects and propose a conceptual model for how temperature and humidity interact to shape the range of temperatures across which mosquitoes persist and achieve high transmission potential. We discuss how failing to account for these interactions hinders efforts to forecast transmission dynamics and respond to epidemics of mosquito-borne infections. We outline future research areas that will ground the effects of humidity on the thermal biology of pathogen transmission in a theoretical and empirical framework to improve spatial and temporal prediction of vector-borne pathogen transmission.
Collapse
Affiliation(s)
- Joel J Brown
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | - Michael C Wimberly
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | |
Collapse
|
8
|
Starkloff NC, Civitello DJ. Cascading impacts of host seasonal adaptation on parasitism. Trends Parasitol 2022; 38:942-949. [PMID: 36088213 PMCID: PMC9588794 DOI: 10.1016/j.pt.2022.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 01/13/2023]
Abstract
The persistence of parasite populations through harsh seasonal bouts is often critical to circannual disease outbreaks. Parasites have a diverse repertoire of phenotypes for persistence, ranging from transitioning to a different life stage better suited to within-host dormancy to utilizing weather-hardy structures external to hosts. While these adaptive traits allow parasite species to survive through harsh seasons, it is often at survival rates that threaten population persistence. We argue that these periods of parasite (and vector) population busts could be ideal targets for disease intervention. As climate change portends abbreviated host dormancy and extended transmission periods in many host-parasite systems, it is essential to identify novel pathways to shore up current disease-intervention strategies.
Collapse
|
9
|
Cissoko M, Sagara I, Landier J, Guindo A, Sanogo V, Coulibaly OY, Dembélé P, Dieng S, Bationo CS, Diarra I, Magassa MH, Berthé I, Katilé A, Traoré D, Dessay N, Gaudart J. Sub-national tailoring of seasonal malaria chemoprevention in Mali based on malaria surveillance and rainfall data. Parasit Vectors 2022; 15:278. [PMID: 35927679 PMCID: PMC9351140 DOI: 10.1186/s13071-022-05379-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background In malaria endemic countries, seasonal malaria chemoprevention (SMC) interventions are performed during the high malaria transmission in accordance with epidemiological surveillance data. In this study we propose a predictive approach for tailoring the timing and number of cycles of SMC in all health districts of Mali based on sub-national epidemiological surveillance and rainfall data. Our primary objective was to select the best of two approaches for predicting the onset of the high transmission season at the operational scale. Our secondary objective was to evaluate the number of malaria cases, hospitalisations and deaths in children under 5 years of age that would be prevented annually and the additional cost that would be incurred using the best approach. Methods For each of the 75 health districts of Mali over the study period (2014–2019), we determined (1) the onset of the rainy season period based on weekly rainfall data; (ii) the onset and duration of the high transmission season using change point analysis of weekly incidence data; and (iii) the lag between the onset of the rainy season and the onset of the high transmission. Two approaches for predicting the onset of the high transmission season in 2019 were evaluated. Results In the study period (2014–2019), the onset of the rainy season ranged from week (W) 17 (W17; April) to W34 (August). The onset of the high transmission season ranged from W25 (June) to W40 (September). The lag between these two events ranged from 5 to 12 weeks. The duration of the high transmission season ranged from 3 to 6 months. The best of the two approaches predicted the onset of the high transmission season in 2019 to be in June in two districts, in July in 46 districts, in August in 21 districts and in September in six districts. Using our proposed approach would prevent 43,819 cases, 1943 hospitalisations and 70 deaths in children under 5 years of age annually for a minimal additional cost. Our analysis shows that the number of cycles of SMC should be changed in 36 health districts. Conclusion Adapting the timing of SMC interventions using our proposed approach could improve the prevention of malaria cases and decrease hospitalisations and deaths. Future studies should be conducted to validate this approach. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Mady Cissoko
- Malaria Research and Training Centre Ogobara K. Doumbo (MRTC-OKD), FMOS-FAPH, Mali-NIAID-ICER, Université Des Sciences, Des Techniques Et Des Technologies de Bamako, 1805, Bamako, Mali. .,INSERM, IRD, ISSPAM, UM1252, Aix-Marseille University, 13005, Marseille, France. .,Direction Régionale de la Santé de Tombouctou, 59, Tombouctou, Mali.
| | - Issaka Sagara
- Malaria Research and Training Centre Ogobara K. Doumbo (MRTC-OKD), FMOS-FAPH, Mali-NIAID-ICER, Université Des Sciences, Des Techniques Et Des Technologies de Bamako, 1805, Bamako, Mali.,INSERM, IRD, ISSPAM, UM1252, Aix-Marseille University, 13005, Marseille, France
| | - Jordi Landier
- INSERM, IRD, ISSPAM, UM1252, Aix-Marseille University, 13005, Marseille, France
| | - Abdoulaye Guindo
- Malaria Research and Training Centre Ogobara K. Doumbo (MRTC-OKD), FMOS-FAPH, Mali-NIAID-ICER, Université Des Sciences, Des Techniques Et Des Technologies de Bamako, 1805, Bamako, Mali.,INSERM, IRD, ISSPAM, UM1252, Aix-Marseille University, 13005, Marseille, France
| | - Vincent Sanogo
- Programme National de Lutte contre le Paludisme (PNLP Mali), 233, Bamako, Mali
| | - Oumou Yacouba Coulibaly
- Direction Générale de la Santé et Hygiène Publique, Sous-Direction Lutte Contre la Maladie (DGSHP-SDLM), 233, Bamako, Mali
| | - Pascal Dembélé
- Programme National de Lutte contre le Paludisme (PNLP Mali), 233, Bamako, Mali
| | - Sokhna Dieng
- INSERM, IRD, ISSPAM, UM1252, Aix-Marseille University, 13005, Marseille, France
| | | | - Issa Diarra
- Malaria Research and Training Centre Ogobara K. Doumbo (MRTC-OKD), FMOS-FAPH, Mali-NIAID-ICER, Université Des Sciences, Des Techniques Et Des Technologies de Bamako, 1805, Bamako, Mali
| | - Mahamadou H Magassa
- Programme National de Lutte contre le Paludisme (PNLP Mali), 233, Bamako, Mali
| | - Ibrahima Berthé
- Malaria Research and Training Centre Ogobara K. Doumbo (MRTC-OKD), FMOS-FAPH, Mali-NIAID-ICER, Université Des Sciences, Des Techniques Et Des Technologies de Bamako, 1805, Bamako, Mali
| | - Abdoulaye Katilé
- Malaria Research and Training Centre Ogobara K. Doumbo (MRTC-OKD), FMOS-FAPH, Mali-NIAID-ICER, Université Des Sciences, Des Techniques Et Des Technologies de Bamako, 1805, Bamako, Mali.,INSERM, IRD, ISSPAM, UM1252, Aix-Marseille University, 13005, Marseille, France
| | - Diahara Traoré
- Programme National de Lutte contre le Paludisme (PNLP Mali), 233, Bamako, Mali
| | - Nadine Dessay
- ESPACE-DEV, UMR228, IRD/UM/UR/UG/UA, Institut de Recherche Pour le Développement (IRD) France, 34093, Montpellier, France
| | - Jean Gaudart
- Malaria Research and Training Centre Ogobara K. Doumbo (MRTC-OKD), FMOS-FAPH, Mali-NIAID-ICER, Université Des Sciences, Des Techniques Et Des Technologies de Bamako, 1805, Bamako, Mali.,APHM, INSERM, SESSTIM, ISSPAM, Hop Timone, BioSTIC, Biostatistic & ICT, Aix-Marseille University, 13005, Marseille, France
| |
Collapse
|
10
|
Beeton NJ, Wilkins A, Ickowicz A, Hayes KR, Hosack GR. Spatial modelling for population replacement of mosquito vectors at continental scale. PLoS Comput Biol 2022; 18:e1009526. [PMID: 35648783 PMCID: PMC9191746 DOI: 10.1371/journal.pcbi.1009526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/13/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria is one of the deadliest vector-borne diseases in the world. Researchers are developing new genetic and conventional vector control strategies to attempt to limit its burden. Novel control strategies require detailed safety assessment to ensure responsible and successful deployments. Anopheles gambiae sensu stricto (s.s.) and Anopheles coluzzii, two closely related subspecies within the species complex Anopheles gambiae sensu lato (s.l.), are among the dominant malaria vectors in sub-Saharan Africa. These two subspecies readily hybridise and compete in the wild and are also known to have distinct niches, each with spatially and temporally varying carrying capacities driven by precipitation and land use factors. We model the spread and persistence of a population-modifying gene drive system in these subspecies across sub-Saharan Africa by simulating introductions of genetically modified mosquitoes across the African mainland and its offshore islands. We explore transmission of the gene drive between the two subspecies that arise from different hybridisation mechanisms, the effects of both local dispersal and potential wind-aided migration to the spread, and the development of resistance to the gene drive. Given the best current available knowledge on the subspecies’ life histories, we find that an introduced gene drive system with typical characteristics can plausibly spread from even distant offshore islands to the African mainland with the aid of wind-driven migration, with resistance beginning to take over within a decade. Our model accounts for regional to continental scale mechanisms, and demonstrates a range of realistic dynamics including the effect of prevailing wind on spread and spatio-temporally varying carrying capacities for subspecies. As a result, it is well-placed to answer future questions relating to mosquito gene drives as important life history parameters become better understood. Conventional control methods have dramatically reduced malaria, but it still kills over 300,000 children in Africa each year, and this number could increase as their effectiveness wanes. Novel control methods using gene drives rapidly reduce or modify malaria vector populations in laboratory settings, and hence are now being considered for field applications. We use modelling to assess how a gene drive might spread and persist in the malaria-carrying subspecies Anopheles gambiae sensu stricto (s.s.) and Anopheles coluzzii. These two subspecies interbreed and compete, so we model how these interactions affect the spread of the drive at a continental scale. In scenarios that allow mosquitoes to travel on prevailing wind currents, we find that a gene drive can potentially spread across national borders—and jump from offshore islands to the African mainland—but spread is eventually arrested when the drive allele is ousted by a resistant allele. As we learn more about the population dynamics of both genetically modified and wild mosquitoes, and as gene drive systems are further developed to allow local containment and evade resistance, our model will be able to answer more detailed questions about how they can be applied in the field effectively and safely.
Collapse
Affiliation(s)
- Nicholas J. Beeton
- Data61, CSIRO, 3 Castray Esplanade, Battery Point TAS, Australia
- * E-mail: (NJB); (AW)
| | - Andrew Wilkins
- Mineral Resources, CSIRO, 1 Technology Court, Pullenvale QLD, Australia
- * E-mail: (NJB); (AW)
| | - Adrien Ickowicz
- Data61, CSIRO, 3 Castray Esplanade, Battery Point TAS, Australia
| | - Keith R. Hayes
- Data61, CSIRO, 3 Castray Esplanade, Battery Point TAS, Australia
| | | |
Collapse
|
11
|
Amare A, Eshetu T, Lemma W. Dry-season transmission and determinants of Plasmodium infections in Jawi district, northwest Ethiopia. Malar J 2022; 21:45. [PMID: 35164768 PMCID: PMC8842575 DOI: 10.1186/s12936-022-04068-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/30/2022] [Indexed: 11/12/2022] Open
Abstract
Background Malaria remains a serious global public health problem, and continues to have a devastating impact on people’s health worldwide. Continuous monitoring and evaluation of current malaria transmission status in different seasons is a mainstay for the success of ongoing intervention strategies for malaria. The purpose of this study was to assess the dry-season transmission and determinants of malaria in Jawi district, northwest Ethiopia. Methods A community-based cross-sectional study was conducted from January 13 to February 11, 2020; among selected Kebeles in the Jawi district. A multistage sampling technique was used in this study. Random and systematic sampling techniques were carried out to select Kebeles and each household, respectively. Light microscopy and CareStart™ Malaria HRP2/pLDH (Pf/Pv) Combo RDT were implemented to determine the prevalence of malaria. Moreover, associated risk factors in the prevalence of malaria were assessed by using a bivariate and multivariate logistic regression model. Results A total of 219 study participants were enrolled in this study. Of the total enrolled individuals, malaria cases were found among 36 individuals with a positivity rate of 16.4% (95% CI 11.4–21.5). Plasmodium falciparum was the predominant species with an estimated prevalence of 87.0% in the study areas. Interrupted utilization of ITN (AOR = 4.411, 95% CI 1.401–13.880), using over 3 years older ITNs (AOR = 9.622, 95% CI 1.881–49.214), travel history (AOR = 12.703, 95% CI 2.441–66.114), living in a house with holes on the wall (AOR = 3.811, 95% CI 1.010–14.384), and living in a house with an eave (AOR = 4.23, 95% CI 1.065–16.801) significantly increased the probability of malaria positivity rate. Conclusion Malaria is still an important public health burden among individuals in the Jawi district. Interrupted utilization of ITNs, using over 3 years older ITNs, living in a house with holes on the wall, living in a house with an eave, and travel history were identified as the risk factors of malaria. Therefore, the District health office and Health extension workers should promote daily utilization of good ITNs and improve housing conditions to reduce malaria prevalence.
Collapse
|
12
|
Raab M, Pfadenhauer LM, Doumbouya D, Froeschl G. Clinical presentations, diagnostics, treatments and treatment costs of children and adults with febrile illness in a tertiary referral hospital in south-eastern Guinea: A retrospective longitudinal cohort study. PLoS One 2022; 17:e0262084. [PMID: 35007283 PMCID: PMC8746772 DOI: 10.1371/journal.pone.0262084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/18/2021] [Indexed: 12/04/2022] Open
Abstract
Background Febrile illness is frequent among patients in the tropics. It is caused by a wide variety of common diseases such as malaria or gastrointestinal infections but also by less common but highly contagious pathogens with epidemic potential. This study describes the clinical features of adult and paediatric patients with febrile illness in in the largest tertiary referral hospital in south-eastern Guinea, a region at high risk for viral haemorrhagic fever outbreaks. The study further compares their diagnostic characteristics, treatments and outcomes with non-febrile patients in order to contribute to the local epidemiology of febrile illness. Methods We used retrospective data collection to record demographic and clinical data of all incoming patients during a study period of three months. For the follow-up study of inpatients, we retrospectively reviewed patient charts for diagnostic characteristics, diagnoses and outcomes. Results Of the 4317 incoming patients during the study period, 9.5% had a febrile illness. The most used diagnostic measures to identify causative agents in febrile patients were point-of-care tests and most treatments relied on antibiotics. Most common discharge diagnoses for febrile inpatients were malaria (9.6% adults, 56.7% children), salmonella gastroenteritis/typhoid (10.6% adults, 7.8% children) and respiratory infection/pneumonia (5.3% adults, 18.7% children). Inpatient mortality for children was significantly higher in febrile than non-febrile children (18.5% vs. 5.1%, p<0.001) and considerably higher in febrile than non-febrile adults (29.8% vs. 25.0%, p = 0.404). Conclusions Malaria, respiratory infection and gastroenteritis are considered the main causes for febrile illness. The wide reliance on rapid diagnostic tests to diagnose febrile patients not only risks to over- or under-diagnose certain diseases but also leaves the possibility of highly infectious diseases in febrile patients unexplored. Furthermore, the heavy reliance on antibiotics risks to cause antimicrobial resistance. High mortality rates in febrile patients, especially children, should be of concern to public health authorities.
Collapse
Affiliation(s)
- Manuel Raab
- Division of Infectious Diseases and Tropical Medicine, University Hospital (LMU), Munich, Germany
- * E-mail:
| | - Lisa M. Pfadenhauer
- Institute of Medical Informatics, Biometry and Epidemiology, Pettenkofer School of Public Health, Ludwig Maximilian University Munich, Munich, Germany
| | - Dansira Doumbouya
- Paediatric Service, Hôpital Régional de Nzérékoré, Nzérékoré, Guinea
| | - Guenter Froeschl
- Division of Infectious Diseases and Tropical Medicine, University Hospital (LMU), Munich, Germany
| |
Collapse
|
13
|
Broni FK, Acquah FK, Obiri-Yeboah D, Obboh EK, Sarpong E, Amoah LE. Profiling the Quality and Quantity of Naturally Induced Antibody Responses Against Pfs230 and Pfs48/45 Among Non-Febrile Children Living in Southern Ghana: A Longitudinal Study. Front Cell Infect Microbiol 2021; 11:770821. [PMID: 34900755 PMCID: PMC8656302 DOI: 10.3389/fcimb.2021.770821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/03/2021] [Indexed: 11/15/2022] Open
Abstract
A clear understanding of the properties of naturally induced antibody responses against transmission-blocking vaccine candidates can accelerate the understanding of the development of transmission-blocking immunity. This study characterized the naturally induced IgG responses against two leading transmission-blocking vaccine antigens, Pfs230 and Pfs48/45, in non-febrile children living in Simiw, Ghana. Consecutive sampling was used to recruit 84 non-febrile children aged from 6 to 12 years old into the 6-month (November 2017 until May 2018) longitudinal study. Venous blood (1 ml) was collected once every 2 months and used to determine hemoglobin levels, P. falciparum prevalence using microscopy and polymerase chain reaction, and the levels and relative avidity of IgG responses against Pfs230 and Pfs48/45 using indirect ELISA. IgG levels against Pfs230 and Pfs48/45 decreased from the start (November) to the middle (January) and end (March) of the dry season respectively, then they began to increase. Participants, especially older children (10-12 years old) with active infections generally had lower antibody levels against both antigens. The relative avidities of IgG against both antigens followed the trend of IgG levels until the middle of the dry season, after which the relative avidities of both antigens correlated inversely with the antibody levels. In conclusion, although IgG antibody levels against both Pfs48/45 and Pfs230 began to increase by the early rainy season, they were inversely correlated to their respective relative avidities.
Collapse
Affiliation(s)
- Fermin K. Broni
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Festus K. Acquah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Dorcas Obiri-Yeboah
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
- Directorate of Research, Innovation and Consultancy, University of Cape Coast, Cape Coast, Ghana
| | - Evans K. Obboh
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Esther Sarpong
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Linda E. Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| |
Collapse
|
14
|
Runge M, Mapua S, Nambunga I, Smith TA, Chitnis N, Okumu F, Pothin E. Evaluation of different deployment strategies for larviciding to control malaria: a simulation study. Malar J 2021; 20:324. [PMID: 34315473 PMCID: PMC8314573 DOI: 10.1186/s12936-021-03854-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 07/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Larviciding against malaria vectors in Africa has been limited to indoor residual spraying and insecticide-treated nets, but is increasingly being considered by some countries as a complementary strategy. However, despite progress towards improved larvicides and new tools for mapping or treating mosquito-breeding sites, little is known about the optimal deployment strategies for larviciding in different transmission and seasonality settings. METHODS A malaria transmission model, OpenMalaria, was used to simulate varying larviciding strategies and their impact on host-seeking mosquito densities, entomological inoculation rate (EIR) and malaria prevalence. Variations in coverage, duration, frequency, and timing of larviciding were simulated for three transmission intensities and four transmission seasonality profiles. Malaria transmission was assumed to follow rainfall with a lag of one month. Theoretical sub-Saharan African settings with Anopheles gambiae as the dominant vector were chosen to explore impact. Relative reduction compared to no larviciding was predicted for each indicator during the simulated larviciding period. RESULTS Larviciding immediately reduced the predicted host-seeking mosquito densities and EIRs to a maximum that approached or exceeded the simulated coverage. Reduction in prevalence was delayed by approximately one month. The relative reduction in prevalence was up to four times higher at low than high transmission. Reducing larviciding frequency (i.e., from every 5 to 10 days) resulted in substantial loss in effectiveness (54, 45 and 53% loss of impact for host-seeking mosquito densities, EIR and prevalence, respectively). In seasonal settings the most effective timing of larviciding was during or at the beginning of the rainy season and least impactful during the dry season, assuming larviciding deployment for four months. CONCLUSION The results highlight the critical role of deployment strategies on the impact of larviciding. Overall, larviciding would be more effective in settings with low and seasonal transmission, and at the beginning and during the peak densities of the target species populations. For maximum impact, implementers should consider the practical ranges of coverage, duration, frequency, and timing of larviciding in their respective contexts. More operational data and improved calibration would enable models to become a practical tool to support malaria control programmes in developing larviciding strategies that account for the diversity of contexts.
Collapse
Affiliation(s)
- Manuela Runge
- Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | - Salum Mapua
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Ismail Nambunga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Thomas A Smith
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Nakul Chitnis
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Fredros Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Emilie Pothin
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Clinton Health Access Initiative, Boston, USA
| |
Collapse
|
15
|
Evolution of Malaria Incidence in Five Health Districts, in the Context of the Scaling Up of Seasonal Malaria Chemoprevention, 2016 to 2018, in Mali. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020840. [PMID: 33478166 PMCID: PMC7844620 DOI: 10.3390/ijerph18020840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/26/2022]
Abstract
Context: In Mali, malaria transmission is seasonal, exposing children to high morbidity and mortality. A preventative strategy called Seasonal Malaria Chemoprevention (SMC) is being implemented, consisting of the distribution of drugs at monthly intervals for up to 4 months to children between 3 and 59 months of age during the period of the year when malaria is most prevalent. This study aimed to analyze the evolution of the incidence of malaria in the general population of the health districts of Kati, Kadiolo, Sikasso, Yorosso, and Tominian in the context of SMC implementation. Methods: This is a transversal study analyzing the routine malaria data and meteorological data of Nasa Giovanni from 2016 to 2018. General Additive Model (GAM) analysis was performed to investigate the relationship between malaria incidence and meteorological factors. Results: From 2016 to 2018, the evolution of the overall incidence in all the study districts was positively associated with the relative humidity, rainfall, and minimum temperature components. The average monthly incidence and the relative humidity varied according to the health district, and the average temperature and rainfall were similar. A decrease in incidence was observed in children under five years old in 2017 and 2018 compared to 2016. Conclusion: A decrease in the incidence of malaria was observed after the SMC rounds. SMC should be applied at optimal periods.
Collapse
|
16
|
Krajacich BJ, Sullivan M, Faiman R, Veru L, Graber L, Lehmann T. Induction of long-lived potential aestivation states in laboratory An. gambiae mosquitoes. Parasit Vectors 2020; 13:412. [PMID: 32787948 PMCID: PMC7424682 DOI: 10.1186/s13071-020-04276-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Background How anopheline mosquitoes persist through the long dry season in Africa remains a gap in our understanding of these malaria vectors. To span this period in locations such as the Sahelian zone of Mali, mosquitoes must either migrate to areas of permanent water, recolonize areas as they again become favorable, or survive in harsh conditions including high temperatures, low humidity, and an absence of surface water (required for breeding). Adult mosquitoes surviving through this season must dramatically extend their typical lifespan (averaging 2–3 weeks) to 7 months. Previous work has found evidence that the malaria mosquito An. coluzzii, survives over 200 days in the wild between rainy seasons in a presumed state of aestivation (hibernation), but this state has so far not been replicated in laboratory conditions. The inability to recapitulate aestivation in the lab hinders addressing key questions such as how this state is induced, how it affects malaria vector competence, and its impact on disease transmission. Methods In effort to induce aestivation, we held laboratory mosquitoes in climate-controlled incubators with a range of conditions that adjusted humidity (40–85% RH), temperature (18–27 °C), and light conditions (8–12 h of light) and evaluated their survivorship. These conditions were chosen to mimic the late rainy and dry seasons as well as relevant extremes these mosquitoes may experience during aestivation. Results We found that by priming mosquitoes in conditions simulating the late wet season in Mali, and maintaining mosquitoes in reduced light/temperature, mean mosquito survival increased from 18.34 ± 0.65 to 48.02 ± 2.87 days, median survival increased from 19 (95% CI 17–21) to 50 days (95% CI 40–58), and the maximum longevity increased from 38 to 109 days (P-adj < 0.001). While this increase falls short of the 200 + day survival seen in field mosquitoes, this extension is substantially higher than previously found through environmental or dietary modulation and is hard to reconcile with states other than aestivation. This finding will provide a platform for future characterization of this state, and allow for comparison to field collected samples. ![]()
Collapse
Affiliation(s)
- Benjamin J Krajacich
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.
| | - Margery Sullivan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Roy Faiman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Laura Veru
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Leland Graber
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Tovi Lehmann
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.
| |
Collapse
|