1
|
Pusawang K, Sriwichai P, Aupalee K, Yasanga T, Phuackchantuck R, Zhong D, Yan G, Somboon P, Junkum A, Wongpalee SP, Cui L, Sattabongkot J, Saeung A. Antennal morphology and sensilla ultrastructure of the malaria vectors, Anopheles maculatus and An. sawadwongporni (Diptera: Culicidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2023; 76:101296. [PMID: 37657362 PMCID: PMC10530502 DOI: 10.1016/j.asd.2023.101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
Mosquitoes rely mainly on the olfactory system to track hosts. Sensilla contain olfactory neuron receptors that perceive different kinds of odorants and transfer crucial information regarding the surrounding environment. Anopheles maculatus and An. sawadwongporni, members of the Maculatus Group, are regarded as vectors of malaria in Thailand. The fine structure of their sensilla has yet to be identified. Herein, scanning electron microscopy is used to examine the sensilla located on the antennae of adults An. maculatus and An. sawadwongporni, collected from the Thai-Myanmar border. Four major types of antennal sensilla are discovered in both species: chaetica, coeloconica, basiconica (grooved pegs) and trichodea. The antennae of female An. maculatus have longer lengths (μm, mean ± SE) in the long sharp-tipped trichodea (40.62 ± 0.35 > 38.20 ± 0.36), blunt-tipped trichodea (20.39 ± 0.62 > 18.62 ± 0.35), and basiconica (7.84 ± 0.15 > 7.41 ± 0.12) than those of An. sawadwongporni. Using light microscopy, it is found that the mean numbers of large sensilla coeloconica (lco) on both flagella in An. maculatus (left: 32.97 ± 0.48; right: 33.27 ± 0.65) are also greater when compared to An. sawadwongporni (left: 30.40 ± 0.62; right: 29.97 ± 0.49). The mean counts of lco located on flagellomeres 1-3, 6, and 9 in An. maculatus are significantly higher than those of An. sawadwongporni. The data in this study indicate that two closely related Anopheles species exhibit similar morphology of sensilla types, but show variations in length, and likewise in the number of large sensilla coeloconica between them, suggesting they might be causative factors that affect their behaviors driven by the sense of smell.
Collapse
Affiliation(s)
- Kanchon Pusawang
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Kittipat Aupalee
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Thippawan Yasanga
- Medical Science Research Equipment Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Rochana Phuackchantuck
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Daibin Zhong
- Department of Population Health and Disease Prevention, University of California, Irvine, CA, 92697, USA.
| | - Guiyun Yan
- Department of Population Health and Disease Prevention, University of California, Irvine, CA, 92697, USA.
| | - Pradya Somboon
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Anuluck Junkum
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Somsakul Pop Wongpalee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Atiporn Saeung
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
2
|
Singh US, Amdep FL, Kshiar A, Acharya P, Karumuthil T, Kale S, Mishra S, Khan N, Kharbisnop B, Kessler A, Carlton JM, Das A, Walton C, Albert S. Characterisation of Anopheles species composition and genetic diversity in Meghalaya, northeast India, using molecular identification tools. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 112:105450. [PMID: 37230159 DOI: 10.1016/j.meegid.2023.105450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Malaria in India is declining, in part due to the use of long-lasting insecticide-treated nets (LLINs) and vector control. Historically, the north-eastern region of India has contributed ~10%-12% of the nation's malaria burden. The important mosquito vectors in northeast India have long been considered to be Anopheles baimaii and An. minimus, both associated with forest habitats. Local deforestation and increased rice cultivation, along with widespread LLIN use, may be changing vector species composition. Understanding if and how vector species composition is changing is critical to successful malaria control. In Meghalaya state, malaria is now at a low level of endemicity with occasional seasonal outbreaks. In a biodiverse setting like Meghalaya, where >24 Anopheles mosquito species have been recorded, accurate morphological identification of all species is logistically challenging. To accurately determine Anopheles species richness in the West Khasi Hills (WKH) and West Jaintia Hills (WJH) districts, adult and larval mosquitoes were collected and identified using molecular methods of allele-specific PCR and cytochrome oxidase I DNA barcoding. In 14 villages across both districts, we identified high species richness, 19 species in total. Molecular findings indicated that An. minimus and An. baimaii were rare, while four other species (An. maculatus, An. pseudowillmori, An. jeyporiensis and An. nitidus) were abundant. Anopheles maculatus was highly prevalent in WKH (39% of light trap collections) and An. pseudowillmori in WJH (45%). Larvae of these four species were found in rice fields, suggesting that land cover change is influencing species composition change. Our results suggest that rice fields might be contributing to the observed abundance of An. maculatus and An. pseudowillmori, which could be playing a role in malaria transmission, either independently due to their high abundance, or in combination with An. baimaii and/or An. minimus.
Collapse
Affiliation(s)
- Upasana Shyamsunder Singh
- Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | - Alman Kshiar
- Indian Institute of Public Health Shillong, Shillong, Meghalaya 793001, India
| | - Preeti Acharya
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh 482003, India
| | - Tulasi Karumuthil
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh 482003, India
| | - Sonal Kale
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh 482003, India
| | - Sandhya Mishra
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh 482003, India
| | - Nikhat Khan
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh 482003, India
| | - Bankerdonbor Kharbisnop
- Meghalaya State Programme Management Unit (Malaria), National Centre for Vector Borne Disease Control, Department of Health, Government of Meghalaya, Lawmali, Pasteur Hill, Shillong, Meghalaya 793001, India
| | - Anne Kessler
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY 10003, USA
| | - Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY 10003, USA
| | - Aparup Das
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh 482003, India
| | - Catherine Walton
- Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester M13 9PT, UK.
| | - Sandra Albert
- Indian Institute of Public Health Shillong, Shillong, Meghalaya 793001, India; National Lutheran Health and Medical Board, MLCU, Meghalaya, India
| |
Collapse
|
3
|
Zhang C, Luo C, Yang R, Yang Y, Guo X, Deng Y, Zhou H, Zhang Y. Morphological and molecular identification reveals a high diversity of Anopheles species in the forest region of the Cambodia-Laos border. Parasit Vectors 2022; 15:94. [PMID: 35303948 PMCID: PMC8933986 DOI: 10.1186/s13071-022-05167-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/17/2022] [Indexed: 11/25/2022] Open
Abstract
Background To develop an effective malaria vector intervention method in forested international border regions within the Greater Mekong Subregion (GMS), more in-depth studies should be conducted on local Anopheles species composition and bionomic features. There is a paucity of comprehensive surveys of biodiversity integrating morphological and molecular species identification conducted within the border of Laos and Cambodia. Methods A total of 2394 adult mosquitoes were trapped in the Cambodia–Laos border region. We first performed morphological identification of Anopheles mosquitoes and subsequently performed molecular identification using 412 recombinant DNA–internal transcribed spacer 2 (rDNA-ITS2) and 391 mitochondrial DNA–cytochrome c oxidase subunit 2 (mtDNA-COII) sequences. The molecular and morphological identification results were compared, and phylogenetic analysis of rDNA-ITS2 and mtDNA-COII was conducted for the sequence divergence among species. Results Thirteen distinct species of Anopheles were molecularly identified in a 26,415 km2 border region in Siem Pang (Cambodia) and Pathoomphone (Laos). According to the comparisons of morphological and molecular identity, the interpretation of local species composition for dominant species in the Cambodia–Laos border (An. dirus, An. maculatus, An. philippinensis, An. kochi and An. sinensis) achieved the highest accuracy of morphological identification, from 98.37 to 100%. In contrast, the other species which were molecularly identified were less frequently identified correctly (0–58.3%) by morphological methods. The average rDNA-ITS2 and mtDNA-COII interspecific divergence was respectively 318 times and 15 times higher than their average intraspecific divergence. The barcoding gap ranged from 0.042 to 0.193 for rDNA-ITS2, and from 0.033 to 0.047 for mtDNA-COII. Conclusions The Cambodia–Laos border hosts a high diversity of Anopheles species. The morphological identification of Anopheles species provides higher accuracy for dominant species than for other species. Molecular methods combined with morphological analysis to determine species composition, population dynamics and bionomic characteristics can facilitate a better understanding of the factors driving malaria transmission and the effects of interventions, and can aid in achieving the goal of eliminating malaria. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05167-0.
Collapse
Affiliation(s)
- Canglin Zhang
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu'er, 665099, People's Republic of China
| | - Chunhai Luo
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu'er, 665099, People's Republic of China
| | - Rui Yang
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu'er, 665099, People's Republic of China
| | - Yaming Yang
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu'er, 665099, People's Republic of China
| | - Xiaofang Guo
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu'er, 665099, People's Republic of China
| | - Yan Deng
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu'er, 665099, People's Republic of China
| | - Hongning Zhou
- Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Provincial Collaborative Innovation Center for Public Health and Disease Prevention and Control, Yunnan Institute of Parasitic Diseases Innovative Team of Key Techniques for Vector Borne Disease Control and Prevention (Developing), Yunnan Institute of Parasitic Diseases, Pu'er, 665099, People's Republic of China.
| | - Yilong Zhang
- Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Maquart PO, Fontenille D, Rahola N, Yean S, Boyer S. Checklist of the mosquito fauna (Diptera, Culicidae) of Cambodia. ACTA ACUST UNITED AC 2021; 28:60. [PMID: 34374642 PMCID: PMC8354007 DOI: 10.1051/parasite/2021056] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/04/2021] [Indexed: 11/14/2022]
Abstract
Between 2016 and 2020, the Medical and Veterinary Entomology unit of the Institut Pasteur du Cambodge collected over 230,000 mosquitoes. Based on this sampling effort, a checklist of 290 mosquito species in Cambodia is presented. This is the first attempt to list the Culicidae fauna of the country. We report 49 species for the first time in Cambodia. The 290 species belong to 20 genera: Aedeomyia (1 sp.), Aedes (55 spp.), Anopheles (53 spp.), Armigeres (26 spp.), Coquillettidia (3 spp.), Culex (57 spp.), Culiseta (1 sp.), Ficalbia (1 sp.), Heizmannia (10 spp.), Hodgesia (3 spp.), Lutzia (3 spp.), Malaya (2 spp.), Mansonia (5 spp.), Mimomyia (7 spp.), Orthopodomyia (3 spp.), Topomyia (4 spp.), Toxorhynchites (4 spp.), Tripteroides (6 spp.), Uranotaenia (27 spp.), and Verrallina (19 spp.). The Cambodian Culicidae fauna is discussed in its Southeast Asian context. Forty-three species are reported to be of medical importance, and are involved in the transmission of pathogens.
Collapse
Affiliation(s)
- Pierre-Olivier Maquart
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge 5, BP 983, Blvd. Monivong, 12201 Phnom Penh, Cambodia
| | - Didier Fontenille
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge 5, BP 983, Blvd. Monivong, 12201 Phnom Penh, Cambodia - MIVEGEC, University of Montpellier, CNRS, IRD, 911 Avenue Agropolis, 34394 Montpellier, France
| | - Nil Rahola
- MIVEGEC, University of Montpellier, CNRS, IRD, 911 Avenue Agropolis, 34394 Montpellier, France
| | - Sony Yean
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge 5, BP 983, Blvd. Monivong, 12201 Phnom Penh, Cambodia
| | - Sébastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge 5, BP 983, Blvd. Monivong, 12201 Phnom Penh, Cambodia
| |
Collapse
|
5
|
Ali RSM, Wahid I, Saingamsook J, Saeung A, Wannasan A, Walton C, Harbach RE, Somboon P. Molecular identification of mosquitoes of the Anopheles maculatus group of subgenus Cellia (Diptera: Culicidae) in the Indonesian Archipelago. Acta Trop 2019; 199:105124. [PMID: 31394077 DOI: 10.1016/j.actatropica.2019.105124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
Abstract
This study reports the molecular differentiation of females of Anopheles maculatus s.l. collected in eight localities on five islands in the Indonesian Archipelago: Hargowilis and Hargotirto villages of Central Java Province, North Kalimantan Province, Sabang off the northern tip of Sumatra Province, Sumba Island of East Nusa Tenggara Province and Sulawesi Province. Analyses based on rDNA (ITS2 and D3) and mtDNA (COII) sequences revealed the presence of An. greeni for the first time in North Kalimantan, and at least one novel (previously unrecognized) species of the Maculatus Group in Central Java (Hargowilis). Despite the similarity of rDNA markers of specimens of An. maculatus s.l. from Central Java and Sulawesi, their COII sequences are highly divergent (3.3%), which might indicate the presence of a further new species. Specimens of An. maculatus s.l. from the other localities had identical rDNA sequences to most An. maculatus s.s. from mainland Southeast Asia, but moderate divergence in their COII sequences (1.2-2.1%). The latter might indicate there are further novel species within the Maculatus Complex. However, as the divergence at COII may be the result of geographical structuring within species related to the historical biogeography of the region, further studies are needed to shed light on this possibility.
Collapse
|
6
|
Garjito TA, Widiastuti U, Mujiyono M, Prihatin MT, Widiarti W, Setyaningsih R, Alfiah S, Widartono BS, Syafruddin D, Satoto TBT, Gavotte L, Bangs MJ, Manguin S, Frutos R. Genetic homogeneity of Anopheles maculatus in Indonesia and origin of a novel species present in Central Java. Parasit Vectors 2019; 12:351. [PMID: 31307517 PMCID: PMC6631912 DOI: 10.1186/s13071-019-3598-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/05/2019] [Indexed: 11/16/2022] Open
Abstract
Background Anopheles maculatus (s.s.) is an important vector of malaria in Indonesia. Previously it was considered the only member of the Maculatus Group present in Indonesia. A novel species was recently identified in the Kulon Progo District in Central Java. Until recently, few investigations have been conducted looking at An. maculatus genetic diversity in Indonesia, including allopatric island populations. Methods Indonesian An. maculatus (s.l.) samples were collected in several locations in Java, Lesser Sunda Island group, Sumatra and in Kulon Progo (Yogyakarta, central Java) where a novel species has been identified. Samples from a 30-year-old colony of the Kulon Progo population were also included in the analysis. Maximum-likelihood analysis established the phylogenies of the ITS2 (nuclear) and cox1 (mitochondrial) markers. Putative times of separation were based on cox1 genetic distances. Results Two species of the Maculatus Group are present in Indonesia. The novel sibling species is more closely related to Anopheles dispar than to An. maculatus (s.s.). Anopheles maculatus (s.s.) samples are homogeneous based on the ITS2 sequences. Indonesian samples and An. dispar belong to the same cox1 maternal lineage and differ from all other known members of the Maculatus Group. Divergence time between the different populations found in Java was estimated using an established cox1 mutation rate. Conclusions A novel species within the Maculatus Group, most closely related to An. dispar, is confirmed present in the Kulon Progo area of Central Java. The divergence of this species from An. maculatus (s.s.) is explained by the stable refugia in the Kulon Progo area during the quaternary period of intense volcanic activity throughout most of Java. This novel species awaits detailed morphological description before applying a formal species name. For the interim, it is proposed that the Kulon Progo population be designated An. maculatus var. menoreh to distinguish it from An. maculatus (s.s.). Electronic supplementary material The online version of this article (10.1186/s13071-019-3598-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Triwibowo Ambar Garjito
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Central Java, Indonesia. .,University of Montpellier, Montpellier, France. .,HydroSciences Montpellier (UMR-HSM), Institut de Recherche pour le Développement (IRD France), CNRS, Montpellier, France.
| | - Umi Widiastuti
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Central Java, Indonesia
| | - Mujiyono Mujiyono
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Central Java, Indonesia
| | - Mega Tyas Prihatin
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Central Java, Indonesia
| | - Widiarti Widiarti
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Central Java, Indonesia
| | - Riyani Setyaningsih
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Central Java, Indonesia
| | - Siti Alfiah
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, The Ministry of Health of Indonesia, Salatiga, Central Java, Indonesia
| | - Barandi Sapta Widartono
- Department of Geographical Information System, Faculty of Geography, Gadjah Mada University, Yogyakarta, Indonesia
| | - Din Syafruddin
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Tri Baskoro Tunggul Satoto
- Department of Parasitology, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | | | - Michael J Bangs
- Public Health & Malaria Control, International SOS/PT. Freeport Indonesia, Kuala Kencana, Indonesia.,Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Sylvie Manguin
- University of Montpellier, Montpellier, France.,HydroSciences Montpellier (UMR-HSM), Institut de Recherche pour le Développement (IRD France), CNRS, Montpellier, France
| | - Roger Frutos
- University of Montpellier, Montpellier, France.,IES, University of Montpellier, CNRS, Montpellier, France.,Cirad, UMR 17, Intertryp, Montpellier, France
| |
Collapse
|