1
|
Ramos-Duarte VA, Orlowski A, Jaquenod de Giusti C, Corigliano MG, Legarralde A, Mendoza-Morales LF, Atela A, Sánchez MA, Sander VA, Angel SO, Clemente M. Safe plant Hsp90 adjuvants elicit an effective immune response against SARS-CoV2-derived RBD antigen. Vaccine 2024; 42:3355-3364. [PMID: 38631949 DOI: 10.1016/j.vaccine.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
To better understand the role of pHsp90 adjuvant in immune response modulation, we proposed the use of the Receptor Binding Domain (RBD) of the Spike protein of SARS-CoV2, the principal candidate in the design of subunit vaccines. We evaluated the humoral and cellular immune responses against RBD through the strategy "protein mixture" (Adjuvant + Antigen). The rRBD adjuvanted with rAtHsp81.2 group showed a higher increase of the anti-rRBD IgG1, while the rRBD adjuvanted with rNbHsp90.3 group showed a significant increase in anti-rRBD IgG2b/2a. These results were consistent with the cellular immune response analysis. Spleen cell cultures from rRBD + rNbHsp90.3-immunized mice showed significantly increased IFN-γ production. In contrast, spleen cell cultures from rRBD + rAtHsp81.2-immunized mice showed significantly increased IL-4 levels. Finally, vaccines adjuvanted with rNbHsp90.3 induced higher neutralizing antibody responses compared to those adjuvanted with rAtHsp81.2. To know whether both chaperones must form complexes to generate an effective immune response, we performed co-immunoprecipitation (co-IP) assays. The results indicated that the greater neutralizing capacity observed in the rRBD adjuvanted with rNbHsp90.3 group would be given by the rRBD-rNbHsp90.3 interaction rather than by the quality of the immune response triggered by the adjuvants. These results, together with our previous results, provide a comparative benchmark of these two novel and safe vaccine adjuvants for their capacity to stimulate immunity to a subunit vaccine, demonstrating the capacity of adjuvanted SARS-CoV2 subunit vaccines. Furthermore, these results revealed differences in the ability to modulate the immune response between these two pHsp90s, highlighting the importance of adjuvant selection for future rational vaccine and adjuvant design.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Vaccine
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- COVID-19/prevention & control
- COVID-19/immunology
- COVID-19 Vaccines/immunology
- HSP90 Heat-Shock Proteins/immunology
- Immunity, Cellular
- Immunity, Humoral
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Mice, Inbred BALB C
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
Collapse
Affiliation(s)
- Victor A Ramos-Duarte
- Laboratorio de Molecular Farming y Vacunas-UB6, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Chascomús, Provincia de Buenos Aires 7030, Argentina; Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Alejandro Orlowski
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" (CONICET), Universidad Nacional de La Plata, Facultad de Ciencias Médicas, La Plata, Argentina
| | - Carolina Jaquenod de Giusti
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani" (CONICET), Universidad Nacional de La Plata, Facultad de Ciencias Médicas, La Plata, Argentina
| | - Mariana G Corigliano
- Laboratorio de Molecular Farming y Vacunas-UB6, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Chascomús, Provincia de Buenos Aires 7030, Argentina; Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Ariel Legarralde
- Laboratorio de Molecular Farming y Vacunas-UB6, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Chascomús, Provincia de Buenos Aires 7030, Argentina; Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Luisa F Mendoza-Morales
- Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina; Laboratorio de Biotecnologías en Bovinos y Ovinos, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Provincia de Buenos Aires, Argentina
| | - Agustín Atela
- Laboratorio de Molecular Farming y Vacunas-UB6, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Chascomús, Provincia de Buenos Aires 7030, Argentina; Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Manuel A Sánchez
- Laboratorio de Molecular Farming y Vacunas-UB6, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Chascomús, Provincia de Buenos Aires 7030, Argentina; Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina
| | - Valeria A Sander
- Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina; Laboratorio de Biotecnologías en Bovinos y Ovinos, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Provincia de Buenos Aires, Argentina
| | - Sergio O Angel
- Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina; Laboratorio de Parasitología Molecular-UB2, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Chascomús, Provincia de Buenos Aires, Argentina
| | - Marina Clemente
- Laboratorio de Molecular Farming y Vacunas-UB6, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, Chascomús, Provincia de Buenos Aires 7030, Argentina; Escuela de Bio y Nanotecnologías, Campus Miguelete, 25 de Mayo y Francia, San Martín, Provincia de Buenos Aires 1650, Argentina.
| |
Collapse
|
2
|
Sánchez-López EF, Corigliano MG, Oliferuk S, Ramos-Duarte VA, Rivera M, Mendoza-Morales LF, Angel SO, Sander VA, Clemente M. Oral Immunization With a Plant HSP90-SAG1 Fusion Protein Produced in Tobacco Elicits Strong Immune Responses and Reduces Cyst Number and Clinical Signs of Toxoplasmosis in Mice. FRONTIERS IN PLANT SCIENCE 2021; 12:726910. [PMID: 34675949 PMCID: PMC8525317 DOI: 10.3389/fpls.2021.726910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/30/2021] [Indexed: 05/17/2023]
Abstract
Plant 90kDa heat shock protein (HSP90) is a potent adjuvant that increases both humoral and cellular immune responses to diverse proteins and peptides. In this study, we explored whether Arabidopsis thaliana HSP90 (AtHsp81.2) can improve the immune effects of a Toxoplasma gondii surface antigen 1 (SAG1). We designed two constructs containing the sequence of mature antigen (SAG1m), from aa77 to aa322, and B- and T-cell antigenic epitope-containing SAG1HC, from aa221 to aa319 fused to AtHsp81.2 sequence. When comparing the transient expression in Nicotiana tabacum X-27-8 leaves, which overexpress the suppressor helper component protease HC-Pro-tobacco etch virus (TEV), to that in N. benthamiana leaves, co-agroinfiltrated with the suppressor p19, optimal conditions included 6-week-old N. benthamiana plants, 7-day time to harvest, Agrobacterium tumefaciens cultures with an OD600nm of 0.6 for binary vectors and LED lights. While AtHsp81.2-SAG1m fusion protein was undetectable by Western blot in any of the evaluated conditions, AtHsp81.2-SAG1HC was expressed as intact fusion protein, yielding up to 90μg/g of fresh weight. Besides, the AtHsp81.2-SAG1HC mRNA was strongly expressed compared to the endogenous Nicotiana tabacum elongation factor-alpha (NtEFα) gene, whereas the AtHsp81.2-SAG1m mRNA was almost undetectable. Finally, mice were orally immunized with AtHsp81.2-SAG1HC-infiltrated fresh leaves (plAtHsp81.2-SAG1HC group), recombinant AtHsp81.2-SAG1HC purified from infiltrated leaves (rAtHsp81.2-SAG1HC group), non-infiltrated fresh leaves (control group), or phosphate-buffered saline (PBS group). Serum samples from plAtHsp81.2-SAG1HC-immunized mice had significantly higher levels of IgGt, IgG2a, and IgG2b anti-SAG1HC antibodies than serum from rAtHsp81.2-SAG1HC, control, and PBS groups. The number of cysts per brain in the plAtHsp81.2-SAG1HC-immunized mice was significantly reduced, and the parasite load in brain tissue was also lower in this group compared with the remaining groups. In an immunoblot assay, plant-expressed AtHsp81.2-SAG1HC was shown to react with antibodies present in sera from T. gondii-infected people. Therefore, the plant expression of a T. gondii antigen fused to the non-pathogenic adjuvant and carrier plant HSP90 as formulations against T. gondii can improve the vaccine efficacy, and plant extract can be directly used for vaccination without the need to purify the protein, making this platform a suitable and powerful biotechnological system for immunogenic antigen expression against toxoplasmosis.
Collapse
Affiliation(s)
- Edwin F. Sánchez-López
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Mariana G. Corigliano
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Sonia Oliferuk
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Victor A. Ramos-Duarte
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Maximiliano Rivera
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Luisa F. Mendoza-Morales
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Sergio O. Angel
- Laboratorio de Parasitología Molecular, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Valeria A. Sander
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Marina Clemente
- Laboratorio de Molecular Farming y Vacunas, Instituto Tecnológico Chascomús (INTECH), Universidad Nacional de General San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| |
Collapse
|
3
|
Chu KB, Quan FS. Advances in Toxoplasma gondii Vaccines: Current Strategies and Challenges for Vaccine Development. Vaccines (Basel) 2021; 9:vaccines9050413. [PMID: 33919060 PMCID: PMC8143161 DOI: 10.3390/vaccines9050413] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Toxoplasmosis, caused by the apicomplexan parasite Toxoplasma gondii, is one of the most damaging parasite-borne zoonotic diseases of global importance. While approximately one-third of the entire world’s population is estimated to be infected with T. gondii, an effective vaccine for human use remains unavailable. Global efforts in pursuit of developing a T. gondii vaccine have been ongoing for decades, and novel innovative approaches have been introduced to aid this process. A wide array of vaccination strategies have been conducted to date including, but not limited to, nucleic acids, protein subunits, attenuated vaccines, and nanoparticles, which have been assessed in rodents with promising results. Yet, translation of these in vivo results into clinical studies remains a major obstacle that needs to be overcome. In this review, we will aim to summarize the current advances in T. gondii vaccine strategies and address the challenges hindering vaccine development.
Collapse
Affiliation(s)
- Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
4
|
Junprung W, Supungul P, Tassanakajon A. Structure, gene expression, and putative functions of crustacean heat shock proteins in innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103875. [PMID: 32987013 DOI: 10.1016/j.dci.2020.103875] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones with critical roles in the maintenance of cellular proteostasis. HSPs, which regulate protein folding and refolding, assembly, translocation, and degradation, are induced in response to physiological and environmental stressors. In recent years, HSPs have been recognized for their potential role in immunity; in particular, these proteins elicit a variety of immune responses to infection and modulate inflammation. This review focuses on delineating the structural and functional roles of crustacean HSPs in the innate immune response. Members of crustacean HSPs include high molecular weight HSPs (HSP90, HSP70, and HSP60) and small molecular weight HSPs (HSP21 and HSP10). The sequences and structures of these HSPs are highly conserved across various crustacean species, indicating strong evolutionary links among this group of organisms. The expression of HSP-encoding genes across different crustacean species is significantly upregulated upon exposure to a wide range of pathogens, emphasizing the important role of HSPs in the immune response. Functional studies of crustacean HSPs, particularly HSP70s, have demonstrated their involvement in the activation of several immune pathways, including those mediating anti-bacterial resistance and combating viral infections, upon heat exposure. The immunomodulatory role of HSPs indicates their potential use as an immunostimulant to enhance shrimp health for control of disease in aquaculture.
Collapse
Affiliation(s)
- Wisarut Junprung
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Premruethai Supungul
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd, Klong Luang, Pathum Thani, 12120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Corigliano MG, Sander VA, Sánchez López EF, Ramos Duarte VA, Mendoza Morales LF, Angel SO, Clemente M. Heat Shock Proteins 90 kDa: Immunomodulators and Adjuvants in Vaccine Design Against Infectious Diseases. Front Bioeng Biotechnol 2021; 8:622186. [PMID: 33553125 PMCID: PMC7855457 DOI: 10.3389/fbioe.2020.622186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/15/2020] [Indexed: 02/03/2023] Open
Abstract
Heat shock proteins 90 kDa (Hsp90s) were originally identified as stress-responsive proteins and described to participate in several homeostatic processes. Additionally, extracellular Hsp90s have the ability to bind to surface receptors and activate cellular functions related to immune response (cytokine secretion, cell maturation, and antigen presentation), making them very attractive to be studied as immunomodulators. In this context, Hsp90s are proposed as new adjuvants in the design of novel vaccine formulations that require the induction of a cell-mediated immune response to prevent infectious diseases. In this review, we summarized the adjuvant properties of Hsp90s when they are either alone, complexed, or fused to a peptide to add light to the knowledge of Hsp90s as carriers and adjuvants in the design of vaccines against infectious diseases. Besides, we also discuss the mechanisms by which Hsp90s activate and modulate professional antigen-presenting cells.
Collapse
Affiliation(s)
- Mariana G Corigliano
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Valeria A Sander
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Edwin F Sánchez López
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Víctor A Ramos Duarte
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Luisa F Mendoza Morales
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Sergio O Angel
- Unidad Biotecnológica 2-UB2, Laboratorio de Parasitología Molecular, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Marina Clemente
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| |
Collapse
|
6
|
Contreras SM, Ganuza A, Corvi MM, Angel SO. Resveratrol induces H3 and H4K16 deacetylation and H2A.X phosphorylation in Toxoplasma gondii. BMC Res Notes 2021; 14:19. [PMID: 33413578 PMCID: PMC7792170 DOI: 10.1186/s13104-020-05416-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022] Open
Abstract
Objective Resveratrol (RSV) is a multitarget drug that has demonstrated activity against Toxoplasma gondii in macrophage and human foreskin fibroblast (HFF) cell line infection models. However, the mechanism of action of RSV has not yet been determined. Thus, with the aim of identifying a possible mechanism of the anti-T. gondii activity of this compound, we analyzed the effects of RSV on histones H3 and H4 lysine 16 acetylation (H4K16). We also analyzed RSV-induced DNA damage to intracellular tachyzoites by using the DNA damage marker phosphorylated histone H2A.X (γH2AX). Results RSV inhibited intracellular T. gondii tachyzoite growth at concentrations below the toxic threshold for host cells. The IC50 value after 24 h of treatment was 53 μM. RSV induced a reduction in H4K16 acetylation (H4K16ac), a marker associated with transcription, DNA replication and homologous recombination repair. A similar deacetylation effect was observed on histone H3. RSV also increased T. gondii H2A.X phosphorylation at the SQE motif (termed γH2A.X), which is a DNA damage-associated posttranslational modification. Our findings suggest a possible link between RSV and DNA damage or repair processes that is possibly associated with DNA replication stress.
Collapse
Affiliation(s)
- Susana M Contreras
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científica Y Técnicas (CONICET), Universidad Nacional General San Martín (UNSAM), Int. Marino Km 8.3, Provincia de Buenos Aires, Chascomús, C.P. 7130, Argentina
| | - Agustina Ganuza
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científica Y Técnicas (CONICET), Universidad Nacional General San Martín (UNSAM), Int. Marino Km 8.3, Provincia de Buenos Aires, Chascomús, C.P. 7130, Argentina.,Laboratorio de Bioquímica y Biología Celular de Parásitos, INTECH, CONICET/UNSAM, Chascomús, Provincia de Buenos Aires, Argentina
| | - María M Corvi
- Laboratorio de Bioquímica y Biología Celular de Parásitos, INTECH, CONICET/UNSAM, Chascomús, Provincia de Buenos Aires, Argentina.
| | - Sergio O Angel
- Laboratorio de Parasitología Molecular, Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científica Y Técnicas (CONICET), Universidad Nacional General San Martín (UNSAM), Int. Marino Km 8.3, Provincia de Buenos Aires, Chascomús, C.P. 7130, Argentina.
| |
Collapse
|
7
|
Bengoa-Luoni SA, Corigliano MG, Sánchez-López E, Albarracín RM, Legarralde A, Ganuza A, Clemente M, Sander VA. The potential of a DIVA-like recombinant vaccine composed by rNcSAG1 and rAtHsp81.2 against vertical transmission in a mouse model of congenital neosporosis. Acta Trop 2019; 198:105094. [PMID: 31323195 DOI: 10.1016/j.actatropica.2019.105094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/28/2019] [Accepted: 07/15/2019] [Indexed: 12/25/2022]
Abstract
Neospora caninum is the etiological agent of neosporosis, a worldwide infectious disease recognized as the major cause of abortions and reproductive failures in livestock, responsible for significant economic losses in cattle industries. Currently, there are not cost-effective control options for this pathology, and the development of a vaccine involving new and integrated approaches is highly recommended. In this study, we evaluated the immunogenic and protective efficacy, as well as the potential DIVA (Differentiation of Infected from Vaccinated Animals) character of a recombinant subunit vaccine composed by the major surface antigen from N. caninum (NcSAG1) and the carrier/adjuvant heat shock protein 81.2 from Arabidopsis thaliana (AtHsp81.2) in a mouse model of congenital neosporosis. BALB/c female mice were intraperitoneal (i.p.) immunized with a mixture of equimolar quantities of rNcSAG1 and rAtHSP81.2 or each protein alone (rNcSAG1 or rAtHsp81.2). The vaccine containing a mixture of rNcSAG1 and rAtHsp81.2 significantly enhanced the production of specific anti-rNcSAG1 total IgG (tIgG), IgG1 and IgG2a antibodies in immunized mice when compared to control groups (non-vaccinated and rAtHsp81.2 immunized mice) as well as to the group of mice immunized only with the antigen (rNcSAG1). In addition, partial protection against vertical transmission and improvement of the offspring survival time was observed in this group. On the other hand, rAtHsp81.2 induced the production of specific anti-rAtHsp81.2 tIgG, allowing us to differentiate vaccinated from infected mice. Despite further experiments have to be made in cattle to test the capability of this vaccine formulation to differentiate vaccinated from infected animals in the field, our results suggest that the formulation composed by rNcSAG1 and rAtHsp81.2 could serve as a basis for the development of a new vaccine approach against bovine neosporosis.
Collapse
Affiliation(s)
| | | | | | | | - Ariel Legarralde
- Unidad de Biotecnología 6-UB6, INTECH, CONICET-UNSAM, Chascomús, Argentina
| | - Agustina Ganuza
- Unidad de Biotecnología 2-UB2, INTECH, CONICET-UNSAM, Consejo de Investigaciones Científicas (CIC) de la Provincia de Buenos Aires, Chascomús, Argentina
| | - Marina Clemente
- Unidad de Biotecnología 6-UB6, INTECH, CONICET-UNSAM, Chascomús, Argentina.
| | - Valeria A Sander
- Unidad de Biotecnología 6-UB6, INTECH, CONICET-UNSAM, Chascomús, Argentina.
| |
Collapse
|