1
|
Ernst L, Macedo GC, McCall LI. System-based insights into parasitological and clinical treatment failure in Chagas disease. mSystems 2025:e0003824. [PMID: 39772644 DOI: 10.1128/msystems.00038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Infectious disease treatment success requires symptom resolution (clinical treatment success), which often but not always involves pathogen clearance. Both of these treatment goals face disease-specific and general challenges. In this review, we summarize the current state of knowledge in mechanisms of clinical and parasitological treatment failure in the context of Chagas disease, a neglected tropical disease causing cardiac and gastrointestinal symptoms. Parasite drug resistance and persistence, drug pharmacokinetics and dynamics, as well as persistently altered host immune responses and tissue damage are the most common reasons for Chagas disease treatment failure. We discuss the therapeutics that failed before regulatory approval, limitations of current therapeutic options and new treatment strategies to overcome persistent parasites, inflammatory responses, and metabolic alterations. Large-scale omics analyses were critical in generating these insights and will continue to play a prominent role in addressing the challenges still facing Chagas disease drug treatment.
Collapse
Affiliation(s)
- Luis Ernst
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Giovana C Macedo
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| |
Collapse
|
2
|
Murta SMF, Lemos Santana PA, Jacques Dit Lapierre TJW, Penteado AB, El Hajje M, Navarro Vinha TC, Liarte DB, de Souza ML, Goulart Trossini GH, de Oliveira Rezende Júnior C, de Oliveira RB, Ferreira RS. New drug discovery strategies for the treatment of benznidazole-resistance in Trypanosoma cruzi, the causative agent of Chagas disease. Expert Opin Drug Discov 2024; 19:741-753. [PMID: 38715393 DOI: 10.1080/17460441.2024.2349155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Benznidazole, the drug of choice for treating Chagas Disease (CD), has significant limitations, such as poor cure efficacy, mainly in the chronic phase of CD, association with side effects, and parasite resistance. Understanding parasite resistance to benznidazole is crucial for developing new drugs to treat CD. AREAS COVERED Here, the authors review the current understanding of the molecular basis of benznidazole resistance. Furthermore, they discuss the state-of-the-art methods and critical outcomes employed to evaluate the efficacy of potential drugs against T. cruzi, aiming to select better compounds likely to succeed in the clinic. Finally, the authors describe the different strategies employed to overcome resistance to benznidazole and find effective new treatments for CD. EXPERT OPINION Resistance to benznidazole is a complex phenomenon that occurs naturally among T. cruzi strains. The combination of compounds that inhibit different metabolic pathways of the parasite is an important strategy for developing a new chemotherapeutic protocol.
Collapse
Affiliation(s)
- Silvane Maria Fonseca Murta
- Grupo de Genômica Funcional de Parasitos - Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Pedro Augusto Lemos Santana
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - André Berndt Penteado
- Departamento de Farmacia, Faculdade de Ciencias Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Marissa El Hajje
- Departamento de Farmacia, Faculdade de Ciencias Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Mariana Laureano de Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | | | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
3
|
Chacón C, Mounieres C, Ampuero S, Urzúa U. Transcriptomic Analysis of the Aged Nulliparous Mouse Ovary Suggests a Stress State That Promotes Pro-Inflammatory Lipid Signaling and Epithelial Cell Enrichment. Int J Mol Sci 2023; 25:513. [PMID: 38203684 PMCID: PMC10779227 DOI: 10.3390/ijms25010513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer (OC) incidence and mortality peaks at post-menopause while OC risk is either reduced by parity or increased by nulliparity during fertile life. The long-term effect of nulliparity on ovarian gene expression is largely unknown. In this study, we describe a bioinformatic/data-mining analysis of 112 coding genes upregulated in the aged nulliparous (NP) mouse ovary compared to the aged multiparous one as reference. Canonical gene ontology and pathway analyses indicated a pro-oxidant, xenobiotic-like state accompanied by increased metabolism of inflammatory lipid mediators. Up-regulation of typical epithelial cell markers in the aged NP ovary was consistent with synchronized overexpression of Cldn3, Ezr, Krt7, Krt8 and Krt18 during the pre-neoplastic phase of mOSE cell cultures in a former transcriptome study. In addition, 61/112 genes were upregulated in knockout mice for Fshr and for three other tumor suppressor genes (Pten, Cdh1 and Smad3) known to regulate follicular homeostasis in the mammalian ovary. We conclude that the aged NP ovary displays a multifaceted stress state resulting from oxidative imbalance and pro-inflammatory lipid signaling. The enriched epithelial cell content might be linked to follicle depletion and is consistent with abundant clefts and cysts observed in aged human and mouse ovaries. It also suggests a mesenchymal-to-epithelial transition in the mOSE of the aged NP ovary. Our analysis suggests that in the long term, nulliparity worsens a variety of deleterious effects of aging and senescence thereby increasing susceptibility to cancer initiation in the ovary.
Collapse
Affiliation(s)
- Carlos Chacón
- Laboratorio de Genómica Aplicada, Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (C.C.); (C.M.)
| | - Constanza Mounieres
- Laboratorio de Genómica Aplicada, Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (C.C.); (C.M.)
| | - Sandra Ampuero
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Ulises Urzúa
- Laboratorio de Genómica Aplicada, Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (C.C.); (C.M.)
| |
Collapse
|
4
|
García-Torres I, De la Mora-De la Mora I, López-Velázquez G, Cabrera N, Flores-López LA, Becker I, Herrera-López J, Hernández R, Pérez-Montfort R, Enríquez-Flores S. Repurposing of rabeprazole as an anti- Trypanosoma cruzi drug that targets cellular triosephosphate isomerase. J Enzyme Inhib Med Chem 2023; 38:2231169. [PMID: 37401012 PMCID: PMC10351538 DOI: 10.1080/14756366.2023.2231169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023] Open
Abstract
Trypanosoma cruzi is the causative agent of American trypanosomiasis, which mainly affects populations in Latin America. Benznidazole is used to control the disease, with severe effects in patients receiving this chemotherapy. Previous studies have demonstrated the inhibition of triosephosphate isomerase from T. cruzi, but cellular enzyme inhibition has yet to be established. This study demonstrates that rabeprazole inhibits both cell viability and triosephosphate isomerase activity in T. cruzi epimastigotes. Our results show that rabeprazole has an IC50 of 0.4 µM, which is 14.5 times more effective than benznidazole. Additionally, we observed increased levels of methyl-glyoxal and advanced glycation end products after the inhibition of cellular triosephosphate isomerase by rabeprazole. Finally, we demonstrate that the inactivation mechanisms of rabeprazole on triosephosphate isomerase of T. cruzi can be achieved through the derivatization of three of its four cysteine residues. These results indicate that rabeprazole is a promising candidate against American trypanosomiasis.
Collapse
Affiliation(s)
- Itzhel García-Torres
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, CDMX, México
| | | | | | - Nallely Cabrera
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CDMX, México
| | - Luis Antonio Flores-López
- CONAHCYT Instituto Nacional de Pediatría, Laboratorio de Biomoléculas y Salud Infantil, CDMX, México
| | - Ingeborg Becker
- Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México
| | - Juliana Herrera-López
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, México
| | - Roberto Hernández
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, México
| | - Ruy Pérez-Montfort
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CDMX, México
| | - Sergio Enríquez-Flores
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, CDMX, México
| |
Collapse
|
5
|
Reséndiz-Mora A, Barrera-Aveleida G, Sotelo-Rodríguez A, Galarce-Sosa I, Nevárez-Lechuga I, Santiago-Hernández JC, Nogueda-Torres B, Meza-Toledo S, Gómez-Manzo S, Wong-Baeza I, Baeza I, Wong-Baeza C. Effect of B-NIPOx in Experimental Trypanosoma cruzi Infection in Mice. Int J Mol Sci 2022; 24:ijms24010333. [PMID: 36613783 PMCID: PMC9820238 DOI: 10.3390/ijms24010333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Chagas disease is caused by Trypanosoma cruzi and represents a major public health problem, which is endemic in Latin America and emerging in the rest of the world. The two drugs that are currently available for its treatment, Benznidazole and Nifurtimox, are partially effective in the chronic phase of the disease. In this study, we designed and synthesized the benzyl ester of N-isopropyl oxamic acid (B-NIPOx), which is a non-polar molecule that crosses cell membranes. B-NIPOx is cleaved inside the parasite by carboxylesterases, releasing benzyl alcohol (a molecule with antimicrobial activity), and NIPOx, which is an inhibitor of α-hydroxy acid dehydrogenase isozyme II (HADH-II), a key enzyme in T. cruzi metabolism. We evaluated B-NIPOx cytotoxicity, its toxicity in mice, and its inhibitory activity on purified HADH-II and on T. cruzi homogenates. We then evaluated the trypanocidal activity of B-NIPOx in vitro and in vivo and its effect in the intestine of T. cruzi-infected mice. We found that B-NIPOx had higher trypanocidal activity on epimastigotes and trypomastigotes than Benznidazole and Nifurtimox, that it was more effective to reduce blood parasitemia and amastigote nests in infected mice, and that, in contrast to the reference drugs, it prevented the development of Chagasic enteropathy.
Collapse
Affiliation(s)
- Albany Reséndiz-Mora
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio de Enzimología, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Giovanna Barrera-Aveleida
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio de Enzimología, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Anahi Sotelo-Rodríguez
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio de Enzimología, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Iván Galarce-Sosa
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio de Enzimología, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Irene Nevárez-Lechuga
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Laboratorio de Enzimología, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Juan Carlos Santiago-Hernández
- Laboratorio de Enzimología, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Benjamín Nogueda-Torres
- Laboratorio de Helmintología, Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Sergio Meza-Toledo
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Isabel Wong-Baeza
- Laboratorio de Inmunología Molecular II, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Isabel Baeza
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Correspondence: (I.B.); (C.W.-B.); Tel.: +52-55-5729-6000 (ext. 62326) (I.B. & C.W.-B.)
| | - Carlos Wong-Baeza
- Laboratorio de Biomembranas, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Correspondence: (I.B.); (C.W.-B.); Tel.: +52-55-5729-6000 (ext. 62326) (I.B. & C.W.-B.)
| |
Collapse
|
6
|
Téllez J, Amarillo A, Suarez C, Cardozo C, Guerra D, Ochoa R, Muskus C, Romero I. Prediction of potential cysteine synthase inhibitors of Leishmania braziliensis and Leishmania major parasites by computational screening. Acta Trop 2022; 225:106182. [PMID: 34627756 DOI: 10.1016/j.actatropica.2021.106182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 01/09/2023]
Abstract
Leishmaniasis is a neglected tropical disease considered a public health problem that requires innovative strategies for its chemotherapeutic control. In the present investigation, a molecular docking approach was carried out using the protein cysteine synthase (CS) of Leishmania braziliensis (CSLb) and Leishmania major (CSLm) parasites to identify new compounds as potential candidates for the development of selective leishmaniasis therapy. CS protein sequence similarity, active site, structural modeling, molecular docking, and ADMET properties of compounds were analyzed using bioinformatics tools. Molecular docking analyses identified 1000 ligands with highly promising binding affinity scores for both CS proteins. A total of 182 compounds for CSLb and 173 for CSLm were selected for more detailed characterization based on the binding energy and frequency values and ADMET properties. Based on Principal Component Analysis (PCA) and K-means clusterization for both CS proteins, we classified compounds into 5 clusters for CSLb and 7 for CSLm, thus providing an excellent starting point for verification of enzyme inhibition in in vitro studies. We found the ZINC16524774 compound predicted to have a high affinity and stability for both CSLb and CSLm proteins, which was also evaluated through molecular dynamics simulations. Compounds within each of the five clusters also displayed pharmacological and structural properties that make them attractive drug candidates for the development of selective cutaneous leishmaniasis chemotherapy.
Collapse
|
7
|
Ángeles-Arvizu A, Enriquez-Flores S, Jiménez-Gutiérrez A, Pérez-Rangel A, Luna-Arias JP, Castillo-Romero A, Hernández JM, León-Avila G. MDR1 protein (ABC-C1) Over Expression in Giardia Intestinalis Incubated with Albendazole and Nitazoxanide. Acta Parasitol 2021; 66:1158-1166. [PMID: 33840056 DOI: 10.1007/s11686-021-00385-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Giardia intestinalis is a worldwide parasite. Drugs used for the treatment of giardiasis are metronidazole, albendazole and nitazoxanide. The development of drug resistance is an obstacle to the effective treatment. Resistance mechanisms in some parasites involve the participation of ATP-binding cassette (ABC) transporter superfamily. PURPOSE To find if the ATP-binding cassette genes are overexpressed in trophozoites treated with albendazole or nitazoxanide. METHODS A search for ATP-binding cassette genes in Giardia sequence database (GiardiaDB) was done and six genes were selected. Trophozoites treated with albendazole or nitazoxanide and the expression of these six ABC genes was quantitated by real-time RT-PCR. The ABC-C1 gene was selected, and a fragment cloned. The ABC-C1 protein was expressed, and polyclonal antibodies were elicited in mice to detect the protein in treated trophozoites, finally a docking analysis was performed for ABC-C1 and tizoxanide interaction. RESULTS Bioinformatics analysis showed that the ATP-binding cassette (ABC) topology is present in the six proteins. The qRT-PCR revealed that the ABC-C1 gene was overexpressed in cells incubated with nitazoxanide or albendazole. Confocal analysis showed that ABC-C1 protein levels increased in trophozoites with both treatments but was higher with nitazoxanide. The mark was detected heavily in the periphery of the cells. Using a docking analysis, it was found that the nitazoxanide metabolite, tizoxanide was docked close to the ATP-binding region as well as in the exit tunnel, located in the transmembrane region. CONCLUSION These findings in Giardia intestinalis, support the possible role of ABC-C1 in drug efflux.
Collapse
Affiliation(s)
- Adriana Ángeles-Arvizu
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Sergio Enriquez-Flores
- Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de EIMyT, Instituto Nacional de Pediatría, Ciudad de México, 04530, México
| | - Alma Jiménez-Gutiérrez
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Armando Pérez-Rangel
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN. Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, México
| | - Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN. Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, México
| | - Araceli Castillo-Romero
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara, 44340, México
| | - José Manuel Hernández
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN. Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México, 07360, México.
| | - Gloria León-Avila
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Casco de Santo Tomás, Ciudad de México, 11340, México.
| |
Collapse
|
8
|
Nuryady MM, Nurcahyo RW, Hindun I, Fatmawati D. Multidrug resistance protein structure of Trypanosoma evansi isolated from buffaloes in Ngawi District, Indonesia: A bioinformatics analysis. Vet World 2021; 14:33-39. [PMID: 33642783 PMCID: PMC7896887 DOI: 10.14202/vetworld.2021.33-39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/03/2020] [Indexed: 12/05/2022] Open
Abstract
Background and Aim: Trypanosomiasis, also known as surra, is an infectious disease with a wide host spectrum. In Indonesia, this disease is caused by Trypanosoma evansi. Various trypanocidal drugs have been used to treat this pathogen and subsequent disease. Yet, the long-term trypanocidal administration generates drug-resistant T. evansi. Some have identified genetic alterations in T. evansi transporter protein-coding genes that may be responsible for drug resistance. The Multidrug Resistance Protein E (MRPE) gene is a likely candidate gene responsible for the individual resistance. To date, no research has focused on T. evansi MRPE (TevMRPE) in this context. Hence, this research aimed at analyzing and characterizing the TevMRPE gene and protein using a bioinformatics approach. Materials and Methods: T. evansi was isolated from buffalo suffering from surra in Ngawi Regency, Indonesia. Isolated T. evansi was inoculated and cultured in male mice. The T. evansi genome was isolated from mouse blood with a parasitemia degree as high as 105. A polymerase chain reaction procedure was conducted to amplify the putative MRPE coding gene. The amplicon was sequenced and analyzed using MEGA X, BLAST, and I-tasser softwares. Results: The putative TevMRPE coding gene showed sequence similarity as high as 99.79% against the MRPE gene from Trypanosoma brucei gambiense. The protein profile and characteristics depicted that the putative TevMRPE protein was related to a family of Adenosine Triphosphate-Binding Cassette (ABC) transporter proteins. This family of transporter proteins plays a crucial role in the resistance toward several medicines. Conclusion: The obtained gene sequence in this research was identified as the TevMRPE. This gene is homologous to the T. brucei gambiense MRPE gene and possesses ligand active sites for Adenylyl Imidodiphosphate. In addition, MRPE contains enzyme active sites similar to the cystic fibrosis transmembrane conductance regulator. These data suggest that ABC transport proteins, like MRPE, may be necessary to confer trypanocidal drug resistance in T. evansi.
Collapse
Affiliation(s)
- Moh Mirza Nuryady
- Department of Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Malang, Malang, Indonesia.,Master Program of Veterinary Science, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Raden Wisnu Nurcahyo
- Master Program of Veterinary Science, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Department of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Iin Hindun
- Department of Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Malang, Malang, Indonesia
| | - Diani Fatmawati
- Department of Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Malang, Malang, Indonesia
| |
Collapse
|
9
|
Libisch MG, Rego N, Díaz-Viraqué F, Robello C. Host-pathogen transcriptomics: Trypanosoma cruzi as a model for studying RNA contamination. J Proteomics 2020; 223:103804. [PMID: 32422276 DOI: 10.1016/j.jprot.2020.103804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/14/2020] [Accepted: 05/01/2020] [Indexed: 01/12/2023]
Abstract
Cellular infection assays constitute essential tools to understand host-pathogen interactions, particularly for intracellular microorganisms that are produced in cell lines are needed to propagate the microorganism. In this work, we demonstrate that RNA derived from Vero cells is an important contaminant to consider in order to avoid false positive results in transcriptomic experiments. We study the cross-contamination on a Trypanosoma cruzi cell infection model, the etiological agent of Chagas disease. We implemented the most frequently used trypanosome-purification protocols and, for all of them, we detected RNAs derived from Vero cells in trypomastigote extracts. For some of the protocols we also detected Vero RNAs in infected human cells. We also found this type of contamination in microarray experiments of human samples infected with T. cruzi. Concerning Illumina RNA-Seq data, we found that the contamination with Vero cells is probably introducing spurious results. Finally, we recommend a protocol to purify trypomastigotes, which showed a high percentage of trypomastigote recovery and the absence of Vero contamination in infected human samples. Avoiding this type of contamination should be an important factor to consider during experimental design, in order to minimize false positive results in transcriptomic studies as well as RNA contamination in vaccine production. SIGNIFICANCE: Transcriptomic studies are widely used to understand host-pathogen interactions. When the pathogen is an intracellular microorganism, an additional mammalian cell system can be needed to propagate it. In this work we demonstrate that pathogens purified from infected monolayers can carry RNAs from these mammalian cells, and that this ambient RNA contamination is probably producing false positive results in subsequent transcriptomic studies performed with qRT-PCR, microarrays or Next Generation Sequencing.
Collapse
Affiliation(s)
- María Gabriela Libisch
- Laboratory of Host-Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Natalia Rego
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Florencia Díaz-Viraqué
- Laboratory of Host-Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Carlos Robello
- Laboratory of Host-Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|