1
|
Millot C, Hadj-Henni L, Augot D. Culicoides biting midges among cattle in France: be wary of data in the literature. Front Vet Sci 2024; 11:1451442. [PMID: 39512915 PMCID: PMC11540827 DOI: 10.3389/fvets.2024.1451442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/26/2024] [Indexed: 11/15/2024] Open
Abstract
Culicoides are vectors that can transmit many different pathogens to mammals - including humans, and domestic and wild animals - and birds. In order to take preventive measures against any vector-borne disease, it is important to gather information on both the host and vector species. Culicoides species are mainly mammalophilic, ornithophilic or ornithophilic/mammalophilic, but females have also been found to occasionally feed on engorged insects. A recent systematic review based on three groups of key words investigated Culicoides on farms, and asserted that 92 species (including four not present species) have been reported among cattle in mainland France and Corsica. We have re-evaluated the presence of Culicoides species in cattle in France using the same data of the review. Our data show that only 18 species are reported among cattle. Furthermore, our research used molecular and indirect investigations to analyse Culicoides species that had been feeding on cattle. Our results demonstrate that 45 species feed on cattle out of 92 species present in France. The paper discusses the relevance of data in the literature when investigating hosts of Culicoides species.
Collapse
Affiliation(s)
- Christine Millot
- Usc Petard, Anses, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, Reims Cedex, France
| | - Leila Hadj-Henni
- Usc Petard, Anses, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, Reims Cedex, France
| | - Denis Augot
- ANSES, INRAe, ENVA, UMR-BIPAR, Laboratoire de Santé Animale, Maisons-Alfort Cedex, France
| |
Collapse
|
2
|
Promrangsee C, Sriswasdi S, Sunantaraporn S, Savigamin C, Pataradool T, Sricharoensuk C, Boonserm R, Ampol R, Pruenglampoo P, Mungthin M, Schmidt-Chanasit J, Siriyasatien P, Preativatanyou K. Seasonal dynamics, Leishmania diversity, and nanopore-based metabarcoding of blood meal origins in Culicoides spp. in the newly emerging focus of leishmaniasis in Northern Thailand. Parasit Vectors 2024; 17:400. [PMID: 39300564 DOI: 10.1186/s13071-024-06487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Clinical cases of leishmaniasis caused by Leishmania (Mundinia) parasites have been increasingly reported in Southeast Asia, particularly Thailand. Recent evidence has shown that Leishmania (Mundinia) parasites successfully developed into infective metacyclic promastigotes in Culicoides biting midges, strongly supporting their putative role in disease transmission. However, Culicoides diversity, host preference, and Leishmania prevalence in endemic areas remain largely unknown. METHODS We investigated the seasonal dynamics, infection prevalence, and blood meal identification of Culicoides collected from the emerging focus of visceral leishmaniasis in Lampang Province, Northern Thailand, during 2021-2023. Midge samples were molecularly screened for Leishmania using SSU rRNA-qPCR and ITS1-PCR, followed by Sanger plasmid sequencing, and parasite haplotype diversity was analyzed. Host blood meal origins were comparatively identified using host-specific Cytb-PCRs and a nanopore-based metabarcoding approach. RESULTS A total of 501 parous and gravid females and 46 blood-engorged ones belonging to at least 17 species of five subgenera (Remmia, Trithecoides, Avaritia, Hoffmania, and Meijerehelea) and two species groups (Shortti and Calvipalpis) were collected with temporal differences in abundance. Leishmania was detected by SSU rRNA-qPCR in 31 samples of at least 11 midge species, consisting of Culicoides oxystoma, C. guttifer, C. orientalis, C. mahasarakhamense, C (Trithecoides) spp., C. innoxius, C. shortti, C. arakawae, C. sumatrae, C. actoni, and C. fulvus, with the overall infection prevalence of 5.7%. The latter six species represent the new records as putative leishmaniasis vectors in Northern Thailand. The ITS1-PCR and plasmid sequencing revealed that Leishmania martiniquensis was predominantly identified in all qPCR-positive species, whereas L. orientalis was identified only in three C. oxystoma samples. The most dominant haplotype of L. martiniquensis in Thailand was genetically intermixed with those from other geographical regions, confirming its globalization. Neutrality test statistics were also significantly negative on regional and country-wide scales, suggesting rapid population expansion or selective sweeps. Nanopore-based blood meal analysis revealed that most Culicoides species are mammalophilic, with peridomestic and wild mammals (cow, pig, deer, and goat-like species) and humans as hosts, while C. guttifer and C. mahasarakhamense fed preferentially on chickens. CONCLUSIONS This study revealed seasonal dynamics and sympatric circulation of L. martiniquensis and L. orientalis in different species of Culicoides. Evidence of human blood feeding was also demonstrated, implicating Culicoides as putative vectors of human leishmaniasis in endemic areas. Further research is therefore urgently needed to develop vector control strategies and assess the infection status of their reservoir hosts to effectively minimize disease transmission.
Collapse
Affiliation(s)
- Chulaluk Promrangsee
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Sira Sriswasdi
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center for Artificial Intelligence in Medicine, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Sakone Sunantaraporn
- Center of Excellence in Vector Biology and Vector-Borne Disease, Chulalongkorn University, Bangkok, Thailand
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chatuthanai Savigamin
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thanapat Pataradool
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Rungfar Boonserm
- Center of Excellence in Vector Biology and Vector-Borne Disease, Chulalongkorn University, Bangkok, Thailand
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rinnara Ampol
- Center of Excellence in Vector Biology and Vector-Borne Disease, Chulalongkorn University, Bangkok, Thailand
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pitchayaporn Pruenglampoo
- Division of Medical Technical and Academic Affairs, Department of Medical Services, Ministry of Public Health, Nonthaburi, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Jonas Schmidt-Chanasit
- Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Hamburg, Germany
| | - Padet Siriyasatien
- Center of Excellence in Vector Biology and Vector-Borne Disease, Chulalongkorn University, Bangkok, Thailand
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanok Preativatanyou
- Center of Excellence in Vector Biology and Vector-Borne Disease, Chulalongkorn University, Bangkok, Thailand.
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
3
|
Ampol R, Somwang P, Khositharattanakool P, Promrangsee C, Pataradool T, Tepboonreung P, Siriyasatien P, Preativatanyou K. Nanopore-Based Surveillance of Leishmania Parasites in Culicoides Latrielle (Diptera: Ceratopogonidae) Caught from the Affected Community and Tham Phra Cave in Chiang Rai Province, the Endemic Area of Leishmaniasis in Northern Thailand. INSECTS 2024; 15:327. [PMID: 38786883 PMCID: PMC11122411 DOI: 10.3390/insects15050327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
In this research, we elucidated the species composition of Culicoides biting midges, infection prevalence, and genetic diversity of Leishmania parasites circulating in the affected community in Chiang Rai Province, being the most endemic area in Northern Thailand. A total of 146 parous and gravid females, belonging to at least twelve Culicoides species in five subgenera and one species group, were trapped from three collection sites with an overall Leishmania prevalence of 26.7% (39/146). Leishmania was detected, using ITS1-PCR, in C. mahasarakamense (15), C. guttifer (11), C. (Trithecoides) spp. (8), C. jacobsoni (2), C. oxystoma (2), and C. orientalis (1). The evidence of Leishmania infection in these last five species represents new records in Northern Thailand. Given a high infection rate in cavernicolous specimens, this indicates an increased risk of parasite exposure when visiting the cave. Using the nanopore amplicon sequencing, L. martiniquensis was ubiquitously identified in all positives, and more than half of these were also co-infected with L. orientalis. The genetic diversity analysis revealed 13 and 17 unique haplotypes for L. martiniquensis and L. orientalis, respectively. Higher haplotype diversity and relatively low nucleotide diversity were observed in both parasite populations, suggesting recent population divergence. Neutrality tests (Tajima's D and Fu and Li's D) showed to be significantly negative, indicating rapid population growth or a selective sweep. Moreover, dominant haplotypes of both Leishmania species were 100% identical to those in all leishmaniasis patients previously reported from Northern Thailand, strongly supporting the imperative role of Culicoides spp. in disease transmission. Essentially, this research provides the first entomological surveillance data representing the sympatric existence, transmission dynamics, and genetic complexity of two autochthonous Leishmania (Mundinia) parasites in several Culicoides species in the endemic area of Northern Thailand. This would contribute to a more complete understanding of the epidemiology of vector infection and facilitate the development of vector control programs to effectively reduce the transmission of this neglected tropical disease in endemic areas of Northern Thailand.
Collapse
Affiliation(s)
- Rinnara Ampol
- Center of Excellence in Vector Biology and Vector-Borne Disease, Chulalongkorn University, Bangkok 10330, Thailand; (R.A.); (T.P.); (P.S.)
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Puckavadee Somwang
- Biomedical Technology Research Group for Vulnerable Populations, Mae Fah Luang University, Chiang Rai 57100, Thailand; (P.S.); (P.K.)
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Pathamet Khositharattanakool
- Biomedical Technology Research Group for Vulnerable Populations, Mae Fah Luang University, Chiang Rai 57100, Thailand; (P.S.); (P.K.)
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Chulaluk Promrangsee
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Thanapat Pataradool
- Center of Excellence in Vector Biology and Vector-Borne Disease, Chulalongkorn University, Bangkok 10330, Thailand; (R.A.); (T.P.); (P.S.)
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Science Program, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Piyapat Tepboonreung
- Medical Science Program, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Padet Siriyasatien
- Center of Excellence in Vector Biology and Vector-Borne Disease, Chulalongkorn University, Bangkok 10330, Thailand; (R.A.); (T.P.); (P.S.)
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanok Preativatanyou
- Center of Excellence in Vector Biology and Vector-Borne Disease, Chulalongkorn University, Bangkok 10330, Thailand; (R.A.); (T.P.); (P.S.)
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Prudhomme J, Depaquit J, Fite J, Quillery E, Bouhsira E, Liénard E. Systematic review of hematophagous arthropods present in cattle in France. Parasite 2023; 30:56. [PMID: 38084937 PMCID: PMC10714678 DOI: 10.1051/parasite/2023059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The arrival of pathogens, whether zoonotic or not, can have a lasting effect on commercial livestock farms, with dramatic health, social and economic consequences. However, available data concerning the arthropod vectors present and circulating on livestock farms in France are still very imprecise, fragmentary, and scattered. In this context, we conducted a systematic review of the hematophagous arthropod species recorded on different types of cattle farms in mainland France (including Corsica). The used vector "groups" studied were biting flies, biting midges, black flies, fleas, horse flies, lice, louse flies, mosquitoes, sand flies, and ticks. A large number of documents were selected (N = 9,225), read (N = 1,047) and analyzed (N = 290), allowing us to provide distribution and abundance maps of different species of medical and veterinary interest according to literature data. Despite the large number of documents collected and analyzed, there are few data provided on cattle farm characteristics. Moreover, data on all arthropod groups lack numerical detail and are based on limited data in time and/or space. Therefore, they are not generalizable nor comparable. There is still little information on many vectors (and their pathogens) and still many unknowns for most studied groups. It appears necessary to provide new, updated and standardized data, collected in different geographical and climatological areas. Finally, this work highlights the lack of entomologists, funding, training and government support, leading to an increased risk of uncontrolled disease emergence in cattle herds.
Collapse
Affiliation(s)
- Jorian Prudhomme
-
InTheres, University of Toulouse, INRAE, ENVT 31300 Toulouse France
| | - Jérôme Depaquit
-
Université de Reims Champagne-Ardenne, Faculté de Pharmacie, EA7510 EpidémioSurveillance et Circulation de Parasites dans les Environnements, and ANSES, USC Pathogènes-Environnement-Toxoplasme-Arthropodes-Réservoirs-bioDiversité Reims France
-
Centre Hospitalo-Universitaire, Laboratoire de Parasitologie-Mycologie 51092 Reims France
| | - Johanna Fite
-
French Agency for Food, Environmental and Occupational Health & Safety, Risk Assessment Department Maisons-Alfort Cedex France
| | - Elsa Quillery
-
French Agency for Food, Environmental and Occupational Health & Safety, Risk Assessment Department Maisons-Alfort Cedex France
| | - Emilie Bouhsira
-
InTheres, University of Toulouse, INRAE, ENVT 31300 Toulouse France
| | - Emmanuel Liénard
-
InTheres, University of Toulouse, INRAE, ENVT 31300 Toulouse France
| |
Collapse
|
5
|
Shults P, Zhang X, Moran M, Cohnstaedt LW, Gerry AC, Vargo EL, Eyer PA. Immigration and seasonal bottlenecks: high inbreeding despite high genetic diversity in an oscillating population of Culicoides sonorensis (Diptera: Ceratopogonidae). JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:987-997. [PMID: 37417303 DOI: 10.1093/jme/tjad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/01/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
Most population genetic studies concern spatial genetic differentiation, but far fewer aim at analyzing the temporal genetic changes that occur within populations. Vector species, including mosquitoes and biting midges, are often characterized by oscillating adult population densities, which may affect their dispersal, selection, and genetic diversity over time. Here, we used a population of Culicoides sonorensis from a single site in California to investigate short-term (intra-annual) and long-term (inter-annual) temporal variation in genetic diversity over a 3 yr period. This biting midge species is the primary vector of several viruses affecting both wildlife and livestock, thus a better understanding of the population dynamics of this species can help inform epidemiological studies. We found no significant genetic differentiation between months or years, and no correlation between adult populations and the inbreeding coefficient (FIS). However, we show that repeated periods of low adult abundance during cooler winter months resulted in recurring bottleneck events. Interestingly, we also found a high number of private and rare alleles, which suggests both a large, stable population, as well as a constant influx of migrants from nearby populations. Overall, we showed that the high number of migrants maintains a high level of genetic diversity by introducing new alleles, while this increased diversity is counterbalanced by recurrent bottleneck events potentially purging unfit alleles each year. These results highlight the temporal influences on population structure and genetic diversity in C. sonorensis and provide insight into factors effecting genetic variation that may occur in other vector species with fluctuating populations.
Collapse
Affiliation(s)
- Phillip Shults
- USDA-ARS, Foreign Arthropod-Borne Animal Diseases Research Unit (FABADRU), 1515 College Avenue, Manhattan, KS 66502, USA
| | - Xinmi Zhang
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Megan Moran
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Lee W Cohnstaedt
- USDA-ARS, Foreign Arthropod-Borne Animal Diseases Research Unit (FABADRU), 1515 College Avenue, Manhattan, KS 66502, USA
| | - Alec C Gerry
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Edward L Vargo
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Pierre-Andre Eyer
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
6
|
Bellekom B, Bailey A, England M, Langlands Z, Lewis OT, Hackett TD. Effects of storage conditions and digestion time on DNA amplification of biting midge (Culicoides) blood meals. Parasit Vectors 2023; 16:13. [PMID: 36635709 PMCID: PMC9837887 DOI: 10.1186/s13071-022-05607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/02/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Molecular analysis of blood meals is increasingly used to identify the hosts of biting insects such as midges and mosquitoes. Successful host identification depends on the availability of sufficient host DNA template for PCR amplification, making it important to understand how amplification success changes under different storage conditions and with different durations of blood meal digestion within the insect gut before being placed into the storage medium. METHOD We characterised and compared the digestion profile of two species of Culicoides over a 96-h period using a novel set of general vertebrate primers targeting the 16S rRNA gene. A set number of individuals from each species were killed over 13 time points post-blood feeding and preserved in 95% ethanol. Samples were stored either at ambient room temperature or in a - 20 °C freezer to examine the effect of storage condition on the PCR amplification success of host DNA. RESULTS We found that amplification success across the 96-h sampling period post-feeding was reduced from 96 to 6% and 96% to 14% for Culicoides nubeculosus and Culicoides sonorensis, respectively. We found no effect of storage condition on PCR amplification success, and storage in 95% ethanol was sufficient to maintain high rates of amplifiable host DNA for at least 9 months, even at room temperature. CONCLUSIONS These findings highlight the limited time frame during which an individual may contain amplifiable host DNA and demonstrate the importance of timely sample capture and processing post-blood feeding. Moreover, storage in 95% ethanol alone is sufficient to limit host DNA degradation. These results are relevant to the design of studies investigating the biting behaviour and disease transmission potential of Culicoides and other biting Diptera.
Collapse
Affiliation(s)
- Ben Bellekom
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ UK
| | - Abigail Bailey
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ UK
| | - Marion England
- grid.63622.330000 0004 0388 7540The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF UK
| | - Zoe Langlands
- grid.63622.330000 0004 0388 7540The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF UK
| | - Owen T. Lewis
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ UK
| | - Talya D. Hackett
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ UK
| |
Collapse
|
7
|
Pramual P, Jomkumsing P, Wongpakam K, Vaisusuk K, Chatan W, Gomontean B. Population Genetic Structure and Population History of the Biting Midge Culicoides mahasarakhamense (Diptera: Ceratopogonidae). INSECTS 2022; 13:insects13080724. [PMID: 36005350 PMCID: PMC9409184 DOI: 10.3390/insects13080724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 05/12/2023]
Abstract
Biting midges of the genus Culicoides Latreille are significant pests and vectors of disease agents transmitted to humans and other animals. Understanding the genetic structure and diversity of these insects is crucial for effective control programs. This study examined the genetic diversity, genetic structure, and demographic history of Culicoides mahasarakhamense, a possible vector of avian haemosporidian parasites and Leishmania martiniquensis, in Thailand. The star-like shape of the median joining haplotype network, a unimodal mismatch distribution, and significant negative values for Tajima's D and Fu's FS tests indicated that populations had undergone recent expansion. Population expansion time was estimated to be 2000-22,000 years ago. Population expansion may have been triggered by climatic amelioration from cold/dry to warm/humid conditions at the end of the last glaciations, resulting in the increased availability of host blood sources. Population pairwise FST revealed that most (87%) comparisons were not genetically different, most likely due to a shared recent history. The exception to the generally low level of genetic structuring is a population from the northern region that is genetically highly different from others. Population isolation in the past and the limitation of ongoing gene flows due to large geographic distance separation are possible explanations for genetic differentiation.
Collapse
Affiliation(s)
- Pairot Pramual
- Department of Biology, Faculty of Science, Mahasarakham University, Mahasalakan 44150, Thailand
- Correspondence:
| | - Panya Jomkumsing
- Department of Biology, Faculty of Science, Mahasarakham University, Mahasalakan 44150, Thailand
| | - Komgrit Wongpakam
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Mahasalakan 44150, Thailand
| | - Kotchaphon Vaisusuk
- Department of Veterinary Technology and Veterinary Nursing, Faculty of Agricultural Technology, Rajabhat Maha Sarakham University, Mahasalakan 44000, Thailand
| | - Wasupon Chatan
- Department of Veterinary Clinic, Faculty of Veterinary Sciences, Mahasarakham University, Mahasalakan 44000, Thailand
| | - Bhuvadol Gomontean
- Department of Biology, Faculty of Science, Mahasarakham University, Mahasalakan 44150, Thailand
| |
Collapse
|
8
|
Shults P, Moran M, Blumenfeld AJ, Vargo EL, Cohnstaedt LW, Eyer PA. Development of microsatellite markers for population genetics of biting midges and a potential tool for species identification of Culicoides sonorensis Wirth & Jones. Parasit Vectors 2022; 15:69. [PMID: 35236409 PMCID: PMC8889724 DOI: 10.1186/s13071-022-05189-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/01/2022] [Indexed: 01/08/2023] Open
Abstract
Background Proper vector surveillance relies on the ability to identify species of interest accurately and efficiently, though this can be difficult in groups containing cryptic species. Culicoides Latreille is a genus of small biting flies responsible for the transmission of numerous pathogens to a multitude of vertebrates. Regarding pathogen transmission, the C. variipennis species complex is of particular interest in North America. Of the six species within this group, only C. sonorensis Wirth & Jones is a proven vector of bluetongue virus and epizootic hemorrhagic disease virus. Unfortunately, subtle morphological differences, cryptic species, and mitonuclear discordance make species identification in the C. variipennis complex challenging. Recently, single-nucleotide polymorphism (SNP) analysis enabled discrimination between the species of this group; however, this demanding approach is not practical for vector surveillance. Methods The aim of the current study was to develop a reliable and affordable way of distinguishing between the species within the C. variipennis complex, especially C. sonorensis. Twenty-five putative microsatellite markers were identified using the C. sonorensis genome and tested for amplification within five species of the C. variipennis complex. Machine learning was then used to determine which markers best explain the genetic differentiation between species. This led to the development of a subset of four and seven markers, which were also tested for species differentiation. Results A total of 21 microsatellite markers were successfully amplified in the species tested. Clustering analyses of all of these markers recovered the same species-level identification as the previous SNP data. Additionally, the subset of seven markers was equally capable of accurately distinguishing between the members of the C. variipennis complex as the 21 microsatellite markers. Finally, one microsatellite marker (C508) was found to be species-specific, only amplifying in the vector species C. sonorensis among the samples tested. Conclusions These microsatellites provide an affordable way to distinguish between the sibling species of the C. variipennis complex and could lead to a better understanding of the species dynamics within this group. Additionally, after further testing, marker C508 may allow for the identification of C. sonorensis with a single-tube assay, potentially providing a powerful new tool for vector surveillance in North America. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05189-8.
Collapse
Affiliation(s)
- Phillip Shults
- USDA-ARS, Foreign Arthropod-Borne Animal Diseases Research Unit (FABADRU), 1515 College Ave, Manhattan, KS, 66502, USA.
| | - Megan Moran
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | | | - Edward L Vargo
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Lee W Cohnstaedt
- USDA-ARS, Foreign Arthropod-Borne Animal Diseases Research Unit (FABADRU), 1515 College Ave, Manhattan, KS, 66502, USA
| | - Pierre-Andre Eyer
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
9
|
Analysis of bluetongue disease epizootics in sheep of Andhra Pradesh, India using spatial and temporal autocorrelation. Vet Res Commun 2022; 46:967-978. [PMID: 35194693 DOI: 10.1007/s11259-022-09902-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
Abstract
Bluetongue (BT) disease poses a constant risk to the livestock population around the world. A better understanding of the risk factors will enable a more accurate prediction of the place and time of high-risk events. Mapping the disease epizootics over a period in a particular geographic area will identify the spatial distribution of disease occurrence. A Geographical Information System (GIS) based methodology to analyze the relationship between bluetongue epizootics and spatial-temporal patterns was used for the years 2000 to 2015 in sheep of Andhra Pradesh, India. Autocorrelation (ACF), partial autocorrelation (PACF), and cross-correlation (CCF) analyses were carried out to find the self-dependency between BT epizootics and their dependencies on environmental factors and livestock population. The association with climatic or remote sensing variables at different months lag, including wind speed, temperature, rainfall, relative humidity, normalized difference vegetation index (NDVI), normalized difference water index (NDWI), land surface temperature (LST), was also examined. The ACF & PACF of BT epizootics with its lag showed a significant positive autocorrelation with a month's lag (r = 0.41). Cross-correlations between the environmental variables and BT epizootics indicated the significant positive correlations at 0, 1, and 2 month's lag of rainfall, relative humidity, normalized difference water index (NDWI), and normalized difference vegetation index (NDVI). Spatial autocorrelation analysis estimated the univariate global Moran's I value of 0.21. Meanwhile, the local Moran's I value for the year 2000 (r = 0.32) showed a high degree of spatial autocorrelation. The spatial autocorrelation analysis revealed that the BT epizootics in sheep are having considerable spatial association among the outbreaks in nearby districts, and have to be taken care of while making any forecasting or disease prediction with other risk factors.
Collapse
|
10
|
Species delimitation and mitonuclear discordance within a species complex of biting midges. Sci Rep 2022; 12:1730. [PMID: 35110675 PMCID: PMC8810881 DOI: 10.1038/s41598-022-05856-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
The inability to distinguish between species can be a serious problem in groups responsible for pathogen transmission. Culicoides biting midges transmit many pathogenic agents infecting wildlife and livestock. In North America, the C. variipennis species complex contains three currently recognized species, only one of which is a known vector, but limited species-specific characters have hindered vector surveillance. Here, genomic data were used to investigate population structure and genetic differentiation within this species complex. Single nucleotide polymorphism data were generated for 206 individuals originating from 17 locations throughout the United States and Canada. Clustering analyses suggest the occurrence of two additional cryptic species within this complex. All five species were significantly differentiated in both sympatry and allopatry. Evidence of hybridization was detected in three different species pairings indicating incomplete reproductive isolation. Additionally, COI sequences were used to identify the hybrid parentage of these individuals, which illuminated discordance between the divergence of the mitochondrial and nuclear datasets.
Collapse
|
11
|
Mikulíček P, Mešková M, Cyprich M, Jablonski D, Papežík P, Hamidi D, Pekşen ÇA, Vörös J, Herczeg D, Benovics M. Weak population‐genetic structure of a widely distributed nematode parasite of frogs in the western Palearctic. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter Mikulíček
- Department of Zoology Faculty of Natural Sciences Comenius University in Bratislava Bratislava Slovakia
| | - Michaela Mešková
- Department of Zoology Faculty of Natural Sciences Comenius University in Bratislava Bratislava Slovakia
| | - Martin Cyprich
- Department of Zoology Faculty of Natural Sciences Comenius University in Bratislava Bratislava Slovakia
| | - Daniel Jablonski
- Department of Zoology Faculty of Natural Sciences Comenius University in Bratislava Bratislava Slovakia
| | - Petr Papežík
- Department of Zoology Faculty of Natural Sciences Comenius University in Bratislava Bratislava Slovakia
| | - Diyar Hamidi
- Department of Molecular Biology and Genetics Başkent University Ankara Turkey
| | - Çiğdem Akın Pekşen
- Department of Molecular Biology and Genetics Başkent University Ankara Turkey
| | - Judit Vörös
- Department of Zoology Hungarian Natural History Museum Budapest Hungary
| | - David Herczeg
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research Eötvös Loránd Research Network Budapest Hungary
| | - Michal Benovics
- Department of Zoology Faculty of Natural Sciences Comenius University in Bratislava Bratislava Slovakia
- Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
| |
Collapse
|
12
|
Kasičová Z, Schreiberová A, Kimáková A, Kočišová A. Blood meal analysis: host-feeding patterns of biting midges (Diptera, Ceratopogonidae, Culicoides Latreille) in Slovakia. Parasite 2021; 28:58. [PMID: 34283022 PMCID: PMC8336726 DOI: 10.1051/parasite/2021058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/05/2021] [Indexed: 11/14/2022] Open
Abstract
Biting midges of the genus Culicoides are vectors of important pathogens affecting domestic and wild animals and have played a major role in the re-emergence of new outbreaks of bluetongue (BTV) and Schmallenberg (SBV) viruses in Europe. To determine vector-host specificity, trophic preference from blood meal analysis is of major importance in the surveillance of arthropod-borne diseases. Of 28,752 specimens collected, we identified 17 Culicoides species and investigated a total of 48 host sequences from the blood meals. Culicoides obsoletus/C. scoticus, C. dewulfi, C. pulicaris, C. lupicaris, C. punctatus, C. newsteadi, C. riethi, and C. furcillatus were found to feed on mammals (cattle, horses, and humans), birds (domestic chickens), small rodents (Apodemus flavicollis), and hares (Lepus europaeus). To our knowledge, this is the first study investigating trophic preferences of Culicoides spp. in Slovakia. This study demonstrated that Culicoides species are able to feed on domesticated host vertebrates as well as birds, rodents, and humans.
Collapse
Affiliation(s)
- Zuzana Kasičová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice Komenského 73 041 81 Košice Slovak Republic
| | - Andrea Schreiberová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice Komenského 73 041 81 Košice Slovak Republic
| | - Andrea Kimáková
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice Komenského 73 041 81 Košice Slovak Republic
| | - Alica Kočišová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice Komenského 73 041 81 Košice Slovak Republic
| |
Collapse
|