1
|
Shin H, Kang S, Won C, Min D. A Single-Dose mRNA Vaccine Employing Porous Silica Nanoparticles Induces Robust Immune Responses Against the Zika Virus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404590. [PMID: 39010673 PMCID: PMC11425238 DOI: 10.1002/advs.202404590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Indexed: 07/17/2024]
Abstract
Recently, lipid nanoparticles (LNPs)-based mRNA delivery has been approved by the FDA for SARS-CoV-2 vaccines. However, there are still considerable points for improvement in LNPs. Especially, local administration of LNPs-formulated mRNA can cause off-target translation of mRNA in distal organs which can induce unintended adverse effects. With the hypothesis that large and rigid nanoparticles can be applied to enhance retention of nanoparticles at the injection site, a polyethyleneimine (PEI)-coated porous silica nanoparticles (PPSNs)-based mRNA delivery platform is designed. PPSNs not only facilitate localized translation of mRNA at the site of injection but also prolonged protein expression. It is further demonstrated that the development of a highly efficacious Zika virus (ZIKV) vaccine using mRNA encoding full-length ZIKV pre-membrane (prM) and envelope (E) protein delivered by PPSNs. The ZIKV prME mRNA-loaded PPSNs vaccine elicits robust immune responses, including high levels of neutralizing antibodies and ZIKV E-specific T cell responses in C57BL/6 mice. Moreover, a single injection of prME-PPSNs vaccine provided complete protection against the ZIKV challenge in mice.
Collapse
Affiliation(s)
- Hojeong Shin
- Department of ChemistrySeoul National UniversitySeoul08826Republic of Korea
| | - Seounghun Kang
- Department of ChemistrySeoul National UniversitySeoul08826Republic of Korea
| | - Cheolhee Won
- Institute of Biotherapeutics Convergence TechnologyLemonex Inc.Seoul06683Republic of Korea
| | - Dal‐Hee Min
- Department of ChemistrySeoul National UniversitySeoul08826Republic of Korea
- Institute of Biotherapeutics Convergence TechnologyLemonex Inc.Seoul06683Republic of Korea
| |
Collapse
|
2
|
Zhang T, Huang C, Jiao Y, Shao L, Jiang D, Li F, Li W, Gao X. ICP-MS and fluorescence dual-mode detection of ZIKV-RNA based on quantum dot labeling with hybridization chain reaction. Talanta 2024; 269:125463. [PMID: 38016323 DOI: 10.1016/j.talanta.2023.125463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
The detection of Zika virus (ZIKV) is of great significance to human life and health. Herein, we presented an ICP-MS and fluorescent dual-mode sensor for quantitative analysis of Zika virus RNA fragments (ZIKV-RNA), which employed quantum dots (QDs) as signal tags and combined with hybridization chain reaction (HCR). The dual-mode sensor realized cross-checking of the analysis results and improved the assay accuracy. Firstly, the single-stranded DNA (ssDNA) was anchored on the surface of magnetic beads (MBs). Afterward, HCR was conducted with probe DNA-CdSe quantum dots conjugates (pDNA-QDs) and link DNA (lDNA), producing the MBs-ssDNA-[pDNA-QDs-lDNA]n conjugates. In the presence of target ZIKV-RNA, a strand displacement reaction occurred, leading to the dissociation of the [pDNA-QDs-lDNA]n labels from the conjugates into the solution. Finally, the signal intensity was detected using ICP-MS and fluorescence analysis, with achieved limits of detection of 131 pM and 152 pM, respectively. The inter-assay RSD values of fluorescence and ICP-MS were 3.94 % and 4.26 % at 10 nM level, respectively, showing that the method had good precision. This method showed high selectivity and was applied to the analysis of biological fluids. There was no significant difference between the results of ICP-MS modes and fluorescence mode. This method offers a new strategy for sensitivity analysis of ZIKV-RNA and exhibits promise in clinical applications for diagnosis.
Collapse
Affiliation(s)
- Tianran Zhang
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250000, People's Republic of China; Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250000, People's Republic of China; Yantai Center for Disease Control and Prevention, Yantai, 264000, People's Republic of China
| | - Chao Huang
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People's Republic of China
| | - Yanni Jiao
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250000, People's Republic of China; Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250000, People's Republic of China
| | - Lijun Shao
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250000, People's Republic of China
| | - Dafeng Jiang
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250000, People's Republic of China; Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250000, People's Republic of China.
| | - Fenghua Li
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250000, People's Republic of China
| | - Wei Li
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, 250000, People's Republic of China
| | - Xibao Gao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250000, People's Republic of China.
| |
Collapse
|
3
|
Kaura T, Sarkar S, Sharma V, Mewara A, Devi S, Singh N, Kaur K, Sehgal R, Ratho RK, Grover GS. Molecular detection of dengue and chikungunya viruses in surveillance of wild-caught Aedes mosquitoes in Punjab, North India. Trans R Soc Trop Med Hyg 2024; 118:95-101. [PMID: 37593844 DOI: 10.1093/trstmh/trad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/05/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses are transmitted mainly by Aedes mosquitoes and are responsible for a significant global healthcare burden. The current study aimed to detect arboviruses in the Aedes mosquitoes in close proximity of patients during the transmission season. METHODS Both immature and adult mosquitoes were collected from in and around the patients' houses. Mosquito pools were homogenized and extracted RNA was subjected to reverse transcription polymerase chain reaction for arboviral detection. Transovarian transmission (TOT) was assessed by screening F0 adults. Mosquito positivity was correlated with the aetiological agents identified in patients. RESULTS Of 46 pools, 19 consisted of wild Aedes, with arboviral positivity in 53% (10/19) of pools. Among wild A. aegypti pools, positivity of DENV mono-infection, CHIKV mono-infection and DENV+CHIKV co-infection was noted in four, two and three pools, respectively. One wild pool of Aedes albopictus was positive for DENV-1. Similarly, A. aegypti F0 (adult Aedes developed from immatures) pools showed 59.2% (16/27) positivity for arboviruses. F0 Aedes showed positivity in three, six and seven pools for DENV-2, CHIKV and DENV+CHIKV, respectively, suggestive of TOT. DENV serotypes and CHIKV from 24 patients' serum samples were matched with strains isolated from Aedes and correlation was observed in four instances. CONCLUSIONS The study detected DENV and CHIKV from wild-caught Aedes and found evidence of DENV and CHIKV TOT in F0 adults.
Collapse
Affiliation(s)
- Taruna Kaura
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Subhabrata Sarkar
- Department of Virology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Vikrant Sharma
- Department of Virology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Abhishek Mewara
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Seema Devi
- Department of Health and Family Welfare, Punjab, India
| | | | - Kanwalpreet Kaur
- Department of Virology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | - R K Ratho
- Department of Virology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India
| | | |
Collapse
|
4
|
Abstract
Zika virus is a mosquito-borne flavivirus known to cause severe birth defects and neuroimmunological disorders. We have previously demonstrated that mosquito transmission of Zika virus decreases with temperature. While transmission was optimized at 29°C, it was limited at cool temperatures (<22°C) due to poor virus establishment in the mosquitoes. Temperature is one of the strongest drivers of vector-borne disease transmission due to its profound effect on ectothermic mosquito vectors, viruses, and their interaction. Although there is substantial evidence of temperature effects on arbovirus replication and dissemination inside mosquitoes, little is known about whether temperature affects virus replication directly or indirectly through mosquito physiology. In order to determine the mechanisms behind temperature-induced changes in Zika virus transmission potential, we investigated different steps of the virus replication cycle in mosquito cells (C6/36) at optimal (28°C) and cool (20°C) temperatures. We found that the cool temperature did not alter Zika virus entry or translation, but it affected genome replication and reduced the amount of double-stranded RNA replication intermediates. If replication complexes were first formed at 28°C and the cells were subsequently shifted to 20°C, the late steps in the virus replication cycle were efficiently completed. These data suggest that cool temperature decreases the efficiency of Zika virus genome replication in mosquito cells. This phenotype was observed in the Asian lineage of Zika virus, while the African lineage Zika virus was less restricted at 20°C. IMPORTANCE With half of the human population at risk, arboviral diseases represent a substantial global health burden. Zika virus, previously known to cause sporadic infections in humans, emerged in the Americas in 2015 and quickly spread worldwide. There was an urgent need to better understand the disease pathogenesis and develop therapeutics and vaccines, as well as to understand, predict, and control virus transmission. In order to efficiently predict the seasonality and geography for Zika virus transmission, we need a deeper understanding of the host-pathogen interactions and how they can be altered by environmental factors such as temperature. Identifying the step in the virus replication cycle that is inhibited under cool conditions can have implications in modeling the temperature suitability for arbovirus transmission as global environmental patterns change. Understanding the link between pathogen replication and environmental conditions can potentially be exploited to develop new vector control strategies in the future.
Collapse
|
5
|
Feitosa-Suntheimer F, Zhu Z, Mameli E, Dayama G, Gold AS, Broos-Caldwell A, Troupin A, Rippee-Brooks M, Corley RB, Lau NC, Colpitts TM, Londoño-Renteria B. Dengue Virus-2 Infection Affects Fecundity and Elicits Specific Transcriptional Changes in the Ovaries of Aedes aegypti Mosquitoes. Front Microbiol 2022; 13:886787. [PMID: 35814655 PMCID: PMC9260120 DOI: 10.3389/fmicb.2022.886787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Dengue fever (DF), caused by the dengue virus (DENV), is the most burdensome arboviral disease in the world, with an estimated 400 million infections each year. The Aedes aegypti mosquito is the main vector of DENV and transmits several other human pathogens, including Zika, yellow fever, and chikungunya viruses. Previous studies have shown that the pathogen infection of mosquitoes can alter reproductive fitness, revealing specific vector-pathogen interactions that are key determinants of vector competence. However, only a handful of studies have examined the effect of DENV infection in A. aegypti, showing a reduction in lifespan and fecundity over multiple blood meals. To provide a more comprehensive analysis of the impact of DENV infection on egg laying and fecundity, we assessed egg laying timing in DENV-2 blood-fed mosquitoes (infected group) compared to mock blood-fed mosquitoes (control group). We confirmed a significant decrease in fecundity during the first gonadotrophic cycle. To further investigate this phenotype and the underlying DENV-2 infection-dependent changes in gene expression, we conducted a transcriptomic analysis for differentially expressed genes in the ovaries of A. aegypti infected with DENV-2 vs. mock-infected mosquitoes. This analysis reveals several DENV-2-regulated genes; among them, we identified a group of 12 metabolic genes that we validated using reverse transcription-quantitative PCR (RT-qPCR). Interestingly, two genes found to be upregulated in DENV-infected mosquito ovaries exhibited an antiviral role for DENV-2 in an Aedes cell line. Altogether, this study offers useful insights into the virus-vector interface, highlighting the importance of gene expression changes in the mosquito's ovary during DENV-2 infection in the first gonadotrophic cycle, triggering antiviral responses that may possibly interfere with mosquito reproduction. This information is extremely relevant for further investigation of A. aegypti's ability to tolerate viruses since virally infected mosquitoes in nature constitute a powerful source of supporting viruses during intra-epidemic periods, causing a huge burden on the public health system.
Collapse
Affiliation(s)
- Fabiana Feitosa-Suntheimer
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, United States
| | - Zheng Zhu
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, United States.,Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Enzo Mameli
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States
| | - Gargi Dayama
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Alexander S Gold
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, United States
| | - Aditi Broos-Caldwell
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, United States
| | - Andrea Troupin
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Meagan Rippee-Brooks
- Department of Biology, Missouri State University, Springfield, MO, United States
| | - Ronald B Corley
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, United States
| | - Nelson C Lau
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, United States.,Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States.,Genome Science Institute, Boston University, Boston, MA, United States
| | - Tonya M Colpitts
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, United States
| | - Berlin Londoño-Renteria
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States.,Department of Entomology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
6
|
Ma Q, Srivastav SP, Gamez S, Dayama G, Feitosa-Suntheimer F, Patterson EI, Johnson RM, Matson EM, Gold AS, Brackney DE, Connor JH, Colpitts TM, Hughes GL, Rasgon JL, Nolan T, Akbari OS, Lau NC. A mosquito small RNA genomics resource reveals dynamic evolution and host responses to viruses and transposons. Genome Res 2021; 31:512-528. [PMID: 33419731 PMCID: PMC7919454 DOI: 10.1101/gr.265157.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Although mosquitoes are major transmission vectors for pathogenic arboviruses, viral infection has little impact on mosquito health. This immunity is caused in part by mosquito RNA interference (RNAi) pathways that generate antiviral small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). RNAi also maintains genome integrity by potently repressing mosquito transposon activity in the germline and soma. However, viral and transposon small RNA regulatory pathways have not been systematically examined together in mosquitoes. Therefore, we developed an integrated mosquito small RNA genomics (MSRG) resource that analyzes the transposon and virus small RNA profiles in mosquito cell cultures and somatic and gonadal tissues across four medically important mosquito species. Our resource captures both somatic and gonadal small RNA expression profiles within mosquito cell cultures, and we report the evolutionary dynamics of a novel Mosquito-Conserved piRNA Cluster Locus (MCpiRCL) made up of satellite DNA repeats. In the larger culicine mosquito genomes we detected highly regular periodicity in piRNA biogenesis patterns coinciding with the expansion of Piwi pathway genes. Finally, our resource enables detection of cross talk between piRNA and siRNA populations in mosquito cells during a response to virus infection. The MSRG resource will aid efforts to dissect and combat the capacity of mosquitoes to tolerate and spread arboviruses.
Collapse
Affiliation(s)
- Qicheng Ma
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Satyam P Srivastav
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Stephanie Gamez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Gargi Dayama
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Fabiana Feitosa-Suntheimer
- Department of Microbiology and the National Emerging Infectious Disease Laboratory, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Edward I Patterson
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Rebecca M Johnson
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Erik M Matson
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Alexander S Gold
- Department of Microbiology and the National Emerging Infectious Disease Laboratory, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Douglas E Brackney
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA
| | - John H Connor
- Department of Microbiology and the National Emerging Infectious Disease Laboratory, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Tonya M Colpitts
- Department of Microbiology and the National Emerging Infectious Disease Laboratory, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Jason L Rasgon
- Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes for the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tony Nolan
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Nelson C Lau
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
- Boston University Genome Science Institute and the National Emerging Infectious Disease Laboratory, Boston, Massachusetts 02118, USA
| |
Collapse
|