1
|
Malizia V, de Vlas SJ, Roes KCB, Giardina F. Revisiting the impact of Schistosoma mansoni regulating mechanisms on transmission dynamics using SchiSTOP, a novel modelling framework. PLoS Negl Trop Dis 2024; 18:e0012464. [PMID: 39303001 DOI: 10.1371/journal.pntd.0012464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/15/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The transmission cycle of Schistosoma is remarkably complex, including sexual reproduction in human hosts and asexual reproduction in the intermediate host (freshwater snails). Patterns of rapid recrudescence after treatment and stable low transmission are often observed, hampering the achievement of control targets. Current mathematical models commonly assume regulation of transmission to occur at worm level through density-dependent egg production. However, conclusive evidence on this regulating mechanism is weak, especially for S. mansoni. In this study, we explore the interplay of different regulating mechanisms and their ability to explain observed patterns in S. mansoni epidemiology. METHODOLOGY/PRINCIPAL FINDINGS We developed SchiSTOP: a hybrid stochastic agent-based and deterministic modelling framework for S. mansoni transmission in an age-structured human population. We implemented different models with regulating mechanisms at: i) worm-level (density-dependent egg production), ii) human-level (anti-reinfection immunity), and iii) snail-level (density-dependent snail dynamics). Additionally, we considered two functional choices for the age-specific relative exposure to infection. We assessed the ability of each model to reproduce observed epidemiological patterns pre- and post-control, and compared successful models in their predictions of the impact of school-based and community-wide treatment. Simulations confirmed that assuming at least one regulating mechanism is required to reproduce a stable endemic equilibrium. Snail-level regulation was necessary to explain stable low transmission, while models combining snail- and human-level regulation with an age-exposure function informed with water contact data were successful in reproducing a rapid rebound after treatment. However, the predicted probability of reaching the control targets varied largely across models. CONCLUSIONS/SIGNIFICANCE The choice of regulating mechanisms in schistosomiasis modelling largely determines the expected impact of control interventions. Overall, this work suggests that reaching the control targets solely through mass drug administration may be more challenging than currently thought. We highlight the importance of regulating mechanisms to be included in transmission models used for policy.
Collapse
Affiliation(s)
- Veronica Malizia
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Radboud University Medical Center, Department IQ Health, Biostatistics Research Group, Nijmegen, The Netherlands
| | - Sake J de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kit C B Roes
- Radboud University Medical Center, Department IQ Health, Biostatistics Research Group, Nijmegen, The Netherlands
| | - Federica Giardina
- Radboud University Medical Center, Department IQ Health, Biostatistics Research Group, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Lanza GR, Upatham S, Chen A. A Place-Based Conceptual Model (PBCM) of Neotricula aperta/Schistosoma mekongi habitat before and after dam construction in the Lower Mekong River. PLoS Negl Trop Dis 2023; 17:e0011122. [PMID: 37801463 PMCID: PMC10584140 DOI: 10.1371/journal.pntd.0011122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 10/18/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023] Open
Abstract
In 1971, scientists from Mahidol University in Thailand and the Smithsonian Institution in the USA formed a research team to study a new species of Schistosoma in the Mekong River in Thailand and Laos. The studies, completed during 1971-1973, prior to the construction of any dams or restrictions to the natural flow regime of the Mekong River, provide a unique description of the natural ecological state of the river that can serve as a baseline for current research. The natural transmission of Schistosoma japonicum, Mekong Strain, was first reported on Khong Island, Laos in 1973 using sentinel mice. The first detailed description of the habitat ecology of the snail vector Neotricula aperta was done on-site in 1971 simultaneously with that research and is unique in providing the only description of the river shoreline habitat before any dams were built and any alteration of the natural flow regime was in place. Aggregating current information in a Place-Based Conceptual Model (PBCM) as an organizing template, along with current habitat models that combine ecological data with e-flows, can be developed and used as a tool to predict suitable habitats for snails. The natural flow regime of the Mekong River prior to any impoundments is described with current updates on the potential impacts of climate change and dams with flow-related snail habitat characteristics, including sediment drift and water quality. The application of the PBCM to describe and compare descriptive information on current and potential future N. aperta/S. mekongi habitat is discussed.
Collapse
Affiliation(s)
- Guy R. Lanza
- Division of Environmental Sciences, College of Environmental Sciences and Forestry (ESF), State University of New York, Syracuse, New York, United States of America
| | - Suchart Upatham
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ang Chen
- China Three Gorges Corporation, Wuhan, China
| |
Collapse
|
3
|
Berger DJ, Crellen T, Lamberton PHL, Allan F, Tracey A, Noonan JD, Kabatereine NB, Tukahebwa EM, Adriko M, Holroyd N, Webster JP, Berriman M, Cotton JA. Whole-genome sequencing of Schistosoma mansoni reveals extensive diversity with limited selection despite mass drug administration. Nat Commun 2021; 12:4776. [PMID: 34362894 PMCID: PMC8346512 DOI: 10.1038/s41467-021-24958-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Control and elimination of the parasitic disease schistosomiasis relies on mass administration of praziquantel. Whilst these programmes reduce infection prevalence and intensity, their impact on parasite transmission and evolution is poorly understood. Here we examine the genomic impact of repeated mass drug administration on Schistosoma mansoni populations with documented reduced praziquantel efficacy. We sequenced whole-genomes of 198 S. mansoni larvae from 34 Ugandan children from regions with contrasting praziquantel exposure. Parasites infecting children from Lake Victoria, a transmission hotspot, form a diverse panmictic population. A single round of treatment did not reduce this diversity with no apparent population contraction caused by long-term praziquantel use. We find evidence of positive selection acting on members of gene families previously implicated in praziquantel action, but detect no high frequency functionally impactful variants. As efforts to eliminate schistosomiasis intensify, our study provides a foundation for genomic surveillance of this major human parasite.
Collapse
Affiliation(s)
- Duncan J Berger
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
- Department of Pathology and Pathogen Biology, Centre for Emerging, Endemic and Exotic Diseases, Royal Veterinary College, University of London, Herts, UK.
| | - Thomas Crellen
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
- Imperial College London, Department of Infectious Disease Epidemiology, London, UK
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Poppy H L Lamberton
- Imperial College London, Department of Infectious Disease Epidemiology, London, UK
- Institute for Biodiversity, Animal Health, and Comparative Medicine, and Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Fiona Allan
- The Natural History Museum, Department of Life Sciences, London, UK
| | - Alan Tracey
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Jennifer D Noonan
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Narcis B Kabatereine
- Vector Borne & Neglected Tropical Disease Control Division, Ministry of Health, Kampala, Uganda
| | - Edridah M Tukahebwa
- Vector Borne & Neglected Tropical Disease Control Division, Ministry of Health, Kampala, Uganda
| | - Moses Adriko
- Vector Borne & Neglected Tropical Disease Control Division, Ministry of Health, Kampala, Uganda
| | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Joanne P Webster
- Department of Pathology and Pathogen Biology, Centre for Emerging, Endemic and Exotic Diseases, Royal Veterinary College, University of London, Herts, UK.
- Imperial College London, Department of Infectious Disease Epidemiology, London, UK.
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
| | - James A Cotton
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
| |
Collapse
|